% Part 1 using arbitrary values for constants
a = 1; % Value for a
b = 2; % Value for b
c = 10; % Value for c
% Range for t
t = linspace(-1, 1, 100); % 100 points between -1 and 1
% Calculate the functions
y1 = a * t.^2; % a*t^2
y2 = b * t; % b*t
y3 = c; % c (constant)
% The combined function
y_combined = a * t.^2 + b * t + c;
% Individual functions
figure;
hold on; % Hold on to plot multiple graphs
plot(t, y1, 'r', 'DisplayName', 'a*t^2'); % Plot a*t^2 in red
plot(t, y2, 'g', 'DisplayName', 'b*t'); % Plot b*t in green
plot(t, y3 * ones(size(t)), 'b', 'DisplayName', 'c'); % Plot c in blue
title('Individual Functions');
xlabel('t');
ylabel('Value');
ylim([-5 15]);
legend show;
grid on; % Add grid for better visualization
hold off; % Release the hold
% Combined function
figure;
plot(t, y_combined, 'Color', [0.5, 0, 0.5], 'DisplayName', 'a*t^2 + b*t + c'); %
Combined function in dashed black
title('Combined Function: a*t^2 + b*t + c');
xlabel('t');
ylabel('Value');
legend show;
grid on; % Add grid for better visualization
1
%Part 2
% The variable (t) still has the same range, so no changes
% The functions
g = 5 + t.^2 + 2*t + 9; % g(t)
h = sin(2*t) .* log(5 + 3*t); % h(t)
% The dot product
dot_product = dot(g, h); % Using the dot function
% Display the result
disp(['The dot product of g(t) and h(t) is: ', num2str(dot_product)]);
The dot product of g(t) and h(t) is: 546.5118
% Part 3
% Define the symbolic variable
syms T;
% Define the function
x = cos(10 * pi * T);
% Compute the Taylor series expansion up to the 4th order (5 terms)
taylor_series = taylor(x, T, 'Order', 5);
% Create a range of t values for plotting
T_values = linspace(-0.2, 0.2, 100); % 100 points between -1 and 1
% Evaluate the original function and the Taylor series at these points
x_values = double(subs(x, T, T_values));
taylor_values = double(subs(taylor_series, T, T_values));
% Plot the original function and the Taylor series
figure;
plot(T_values, x_values, 'b', 'DisplayName', 'cos(10\pi t)'); % Original function
in blue
title('cos(10\pi t)');
2
xlabel('t');
ylabel('Function Value');
ylim([-1 3]);
legend show;
grid on;
figure;
plot(T_values, taylor_values, 'r', 'DisplayName', 'Taylor Series (5 terms)'); %
Taylor series in red dashed line
title('Taylor Series Approximation of cos(10\pi t)');
xlabel('T');
ylabel('Function Value');
ylim([-1 3]);
legend show;
grid on;