0% found this document useful (0 votes)
12 views49 pages

PowerPad YY

The document contains structural calculations for a project using MasterSeries PowerPad, detailing design parameters and calculations for various structural elements. It includes data on bending moments, shear forces, and torsional design, adhering to EC 2: 2004 standards. The calculations assess the structural integrity and requirements for different zones and supports within the project framework.

Uploaded by

otienoabu13
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
12 views49 pages

PowerPad YY

The document contains structural calculations for a project using MasterSeries PowerPad, detailing design parameters and calculations for various structural elements. It includes data on bending moments, shear forces, and torsional design, adhering to EC 2: 2004 standards. The calculations assess the structural integrity and requirements for different zones and supports within the project framework.

Uploaded by

otienoabu13
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 49

© MasterSeries PowerPad - Project Title 934770032.

docx

STRUCTURAL CALCULATIONS
Using

MASTERSERIES POWERPAD

Project Name1
Address 1

Address 2

Address 3

ARCHITECT
ARCHITECT NAME
Location

Location

Location

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

STRUCTURAL ENGINEERS

MASTERSERIES SAMPLE OUTPUT


to place your title block here ensure you have copied your personal

TABLESWD.OVR file to the MasterSeries application directory.

In Word 2007 specify the MasterSeries app dir in Trusted Loactions

PROJECT NO: P12345

December 1997

V.A.T. Reg. No. ___ ____ __

 C:\GROUP COURSEWORK REMODEL.$5

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

MEMBER 55

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Basic Data

Design to EC 2: 2004

fck, fyk, γc, γs, h , λ C20/25, 500, 1.5, 1.15, 1.0, 0.8

fykv, $v crit 500, 0.1

Minor Axis Moments


My max = 4.4 kN.m Minor axis moments ignored by user

Torsional Design
Main Rectangular Section assumed to resist Torsion

Ak = Fn(A, u, B, H, Cvrmax, t) 227500, 2000, 350, 650, 45, 90.00 145600 mm²

TRd.c= fctd• t • 2 • Ak 1.03 • 90.00 • 2 • 145600 27.0 kN.m

TRd.max= 2•v•αcw•fcd•Ak•t•Sinθ•Cosθ 2•0.55•1.00•11.33•145600•90.0•0.89•0.45 65.6 kN.m

Unity TEd/ TRd.c + VEd/ VRd.c 0.00/27.03 + 263.90/96.09 2.75 . Design Torsion

Asl= TEd/ Ak /2 • Cotθ • uk / (Fywk/ γs) 0.00 / 145600 / 2 • 2.00 • 1640/(500 / 1.15) 0.0 mm²

As Per _Bar = Asl/ (No.Horz+ No.Vert) /2 0.0/ ( 2 + 1) /2 0.0 mm²

Asr deduction T+B = As• No.Horz 0.0 • 2 0.0 mm²

q = T / Ak / 2 0.0 / 145600/2 0.0 N/mm

As/Svreduction = (q • γs)/( Cotθ •Fywk) • 2(0.0 • 1.15) / (2.00 • 500) • 2 0.000 mm

Bending Moments
Left Support Steel Hogging
X/d=Fn(data, As1, fcd, B, Bweb, d ) 1659, 500, 11, 350, 350, 596.8 0.38

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 350.0 • 0.8 • 227.3 721.2 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 1658.8 ( εs= 0.006) 721.2 kN

Mu = z • Fc 505.85 • 721.2 364.8 kN.m

Mapp/Mu 332.4 / 364.8 0.911 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 573, d' = 45 top 1570

In-Span Steel @ 3937 mm. Sagging


X/d=Fn(data, As1, fcd, B, Bweb, d ) 1483, 500, 11, 1000, 350, 600.1 0.12

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 1000.0 • 0.8 • 71.1 644.7 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 1482.8 ( εs= 0.026) 644.7 kN

Mu = z • Fc 570.11 • 644.7 367.6 kN.m

Mapp/Mu 289.6 / 367.6 0.788 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 573, d' = 45 bottom 1212 mm²

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Right Support Steel Hogging


X/d=Fn(data, As1,As2, fcd, B, Bweb, d, d2) 1257, 605, 500, 11, 350, 350, 605.0, 43 0.17

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 350.0 • 0.8 • 104.0 329.9 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 1256.6 ( εs= 0.017) 546.4 kN

Fsc = Fyd/ γs• As2 410.4 / 1.15 • 605.4 ( εs= 0.002) 216.0 kN

Muc= z • Fc 563.42 • 329.9 185.9 kN.m

Must= z • Fst 563.42 • 546.4 307.8 kN.m

Musc= (d-d1) • Fsc (605.0 - 43.01 • 216.0 121.4 kN.m

Mu = min(Must, Muc+ Musc) min(307.83, 185.85 + 121.4) 307.3 kN.m

Mapp/Mu 205.6 / 307.3 0.669 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 605, d' = 45 top 846

Shear
Max Shear
VRd,max = 0.5 • Bw• d • v • fcd 0.5•350•605.0•0.552•11 662.4 kN

VEd,max 263.9 kN OK

Left Shear Zone 1 at 0 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.579, 1659, 20, 0.15, 0.0, 350, 596.8 99.5 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.31 + 0.15 • 0.0) • 350.0 • 596.76 ) 64.5 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 263.9 / Max(99.5, 64.5) 2.653 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 150.0 • 537.08 • 0.8 • 500.0 • 2.5 562.1 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 350 • 537.08 • 0.54 • (2.5 + 0.4) 396.7 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 263.9 / Min(562.1, 396.7) 0.665 OK

Nominal Shear Zone at 1351 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.577, 1623, 20, 0.15, 0.0, 350, 600.9 99.1 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.31 + 0.15 • 0.0) • 350.0 • 600.89 ) 65.2 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 212.7 / Max(99.1, 65.2) 2.147 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 250.0 • 540.8 • 0.8 • 500.0 • 2.5 339.6 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 350 • 540.8 • 0.54 • (2.5 + 0.4) 399.4 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 212.7 / Min(339.6, 399.4) 0.626 OK

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Nominal Shear Zone at 5649 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.577, 1483, 20, 0.15, 0.0, 350, 600.1 96.1 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.31 + 0.15 • 0.0) • 350.0 • 600.12 ) 64.9 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 172.0 / Max(96.1, 64.9) 1.79 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 250.0 • 540.11 • 0.8 • 500.0 • 2.5 339.2 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 350 • 540.11 • 0.54 • (2.5 + 0.4) 398.9 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 172.0 / Min(339.2, 398.9) 0.507 OK

Right Shear Zone 1 at 7000 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.575, 1257, 20, 0.15, 0.0, 350, 605.0 91.3 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.31 + 0.15 • 0.0) • 350.0 • 605.0 ) 65.5 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 223.1 / Max(91.3, 65.5) 2.444 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 150.0 • 544.5 • 0.8 • 500.0 • 2.5 569.9 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 350 • 544.5 • 0.54 • (2.5 + 0.4) 402.2 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 223.1 / Min(569.9, 402.2) 0.555 OK

 C:\GROUP COURSEWORK REMODEL.$5

MEMBER 53

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Basic Data

Design to EC 2: 2004

fck, fyk, γc, γs, h , λ C20/25, 500, 1.5, 1.15, 1.0, 0.8

fykv, $v crit 500, 0.1

Minor Axis Moments


My max = 3.8 kN.m Minor axis moments ignored by user

Torsional Design
Main Rectangular Section assumed to resist Torsion

Ak = Fn(A, u, B, H, Cvrmax, t) 210000, 1900, 350, 600, 43, 86.00 135696 mm²

TRd.c= fctd• t • 2 • Ak 1.03 • 86.00 • 2 • 135696 24.1 kN.m

TRd.max= 2•v•αcw•fcd•Ak•t•Sinθ•Cosθ 2•0.55•1.00•11.33•135696•86.0•0.89•0.45 58.4 kN.m

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Unity TEd/ TRd.c + VEd/ VRd.c 0.00/24.08 + 160.84/75.60 2.13 . Design Torsion

Asl= TEd/ Ak /2 • Cotθ • uk / (Fywk/ γs) 0.00 / 135696 / 2 • 2.00 • 1556/(500 / 1.15) 0.0 mm²

As Per _Bar = Asl/ (No.Horz+ No.Vert) /2 0.0/ ( 2 + 1) /2 0.0 mm²

Asr deduction T+B = As• No.Horz 0.0 • 2 0.0 mm²

q = T / Ak / 2 0.0 / 135696/2 0.0 N/mm

As/Svreduction = (q • γs)/( Cotθ •Fywk) • 2(0.0 • 1.15) / (2.00 • 500) • 2 0.000 mm

Bending Moments
Left Support Steel Hogging
X/d=Fn(data, As1, fcd, B, Bweb, d ) 1030, 500, 11, 350, 350, 557.4 0.25

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 350.0 • 0.8 • 141.2 448.0 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 1030.4 ( εs= 0.01) 448.0 kN

Mu = z • Fc 500.97 • 448.0 224.4 kN.m

Mapp/Mu 210.4 / 224.4 0.938 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 555, d' = 45 top 964

In-Span Steel @ 2812 mm. Sagging


X/d=Fn(data, As1, fcd, B, Bweb, d ) 804, 500, 11, 1000, 350, 557.0 0.07

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 1000.0 • 0.8 • 38.6 349.7 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 804.2 ( εs= 0.047) 349.7 kN

Mu = z • Fc 529.15 • 349.7 185.0 kN.m

Mapp/Mu 145.4 / 185.0 0.786 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 555, d' = 45 bottom 616 mm²

Right Support Steel Hogging


X/d=Fn(data, As1, fcd, B, Bweb, d ) 804, 500, 11, 350, 350, 557.0 0.2

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 350.0 • 0.8 • 110.2 349.7 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 804.2 ( εs= 0.014) 349.7 kN

Mu = z • Fc 512.92 • 349.7 179.4 kN.m

Mapp/Mu 168.2 / 179.4 0.938 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 555, d' = 45 top 753

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Shear
Max Shear
VRd,max = 0.5 • Bw• d • v • fcd 0.5•350•557.0•0.552•11 609.8 kN

VEd,max 160.8 kN OK

Left Shear Zone 1 at 0 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.599, 1030, 20, 0.15, 0.0, 350, 557.4 82.1 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.32 + 0.15 • 0.0) • 350.0 • 557.44 ) 61.7 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 160.8 / Max(82.1, 61.7) 1.958 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 250.0 • 501.7 • 0.8 • 500.0 • 2.5 315.1 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 350 • 501.7 • 0.54 • (2.5 + 0.4) 370.6 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 160.8 / Min(315.1, 370.6) 0.511 OK

Nominal Shear Zone at 2251 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.599, 804, 20, 0.15, 0.0, 350, 557.0 75.6 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.32 + 0.15 • 0.0) • 350.0 • 557.0 ) 61.7 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 80.7 / Max(75.6, 61.7) 1.068 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 250.0 • 501.3 • 0.8 • 500.0 • 2.5 314.8 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 350 • 501.3 • 0.54 • (2.5 + 0.4) 370.3 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 80.7 / Min(314.8, 370.3) 0.256 OK

Nominal Shear Zone at 3749 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.599, 804, 20, 0.15, 0.0, 350, 557.0 75.6 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.32 + 0.15 • 0.0) • 350.0 • 557.0 ) 61.6 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 72.4 / Max(75.6, 61.6) 0.958 no Links req

Right Shear Zone 1 at 6000 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.599, 804, 20, 0.15,

 C:\GROUP COURSEWORK REMODEL.$5

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

MEMBER 72

Basic Data
© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Design to EC 2: 2004

fck, fyk, γc, γs, h , λ C20/25, 500, 1.5, 1.15, 1.0, 0.8

fykv, $v crit 500, 0.1

Torsional Design
Main Rectangular Section assumed to resist Torsion

Ak = Fn(A, u, B, H, Cvrmax, t) 100000, 1300, 250, 400, 45, 76.92 55917 mm²

TRd.c= fctd• t • 2 • Ak 1.03 • 76.92 • 2 • 55917 8.9 kN.m

TRd.max= 2•v•αcw•fcd•Ak•t•Sinθ•Cosθ 2•0.55•1.00•11.33•55917•76.9•0.89•0.45 21.5 kN.m

Unity TEd/ TRd.c + VEd/ VRd.c 0.00/8.87 + 119.46/49.09 2.43 . Design Torsion

Asl= TEd/ Ak /2 • Cotθ • uk / (Fywk/ γs) 0.00 / 55917 / 2 • 2.00 • 992/(500 / 1.15) 0.0 mm²

As Per _Bar = Asl/ (No.Horz+ No.Vert) /2 0.0/ ( 2 + 0) /2 0.0 mm²

Asr deduction T+B = As• No.Horz 0.0 • 2 0.0 mm²

q = T / Ak / 2 0.0 / 55917/2 0.0 N/mm

As/Svreduction = (q • γs)/( Cotθ •Fywk) • 2(0.0 • 1.15) / (2.00 • 500) • 2 0.000 mm

Bending Moments
Left Support Steel Hogging
X/d=Fn(data, As1,As2, fcd, B, Bweb, d, d2) 1257, 603, 500, 11, 250, 250, 355.0, 43 0.37

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 250.0 • 0.8 • 131.7 298.6 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 1256.6 ( εs= 0.006) 546.4 kN

Fsc = Fyd/ γs• As2 471.5 / 1.15 • 603.2 ( εs= 0.002) 247.3 kN

Muc= z • Fc 302.3 • 298.6 90.3 kN.m

Must= z • Fst 302.3 • 546.4 165.2 kN.m

Musc= (d-d1) • Fsc (355.0 - 43.0 • 247.3 77.2 kN.m

Mu = min(Must, Muc+ Musc) min(165.17, 90.27 + 77.2) 165.2 kN.m

Mapp/Mu 128.7 / 165.2 0.779 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 355, d' = 45 top 1006, bottom 81 mm²

In-Span Steel @ 3000 mm. Sagging


X/d=Fn(data, As1, fcd, B, Bweb, d ) 829, 500, 11, 600, 250, 348.8 0.19

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 600.0 • 0.8 • 66.3 360.6 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 829.4 ( εs= 0.015) 360.6 kN

Mu = z • Fc 322.3 • 360.6 116.2 kN.m

Mapp/Mu 75.8 / 116.2 0.652 OK

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 355, d' = 45 bottom 515 mm²

Right Support Steel Hogging


X/d=Fn(data, As1,As2, fcd, B, Bweb, d, d2) 1169, 603, 500, 11, 250, 250, 348.8, 43 0.34

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 250.0 • 0.8 • 120.2 272.6 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 1168.7 ( εs= 0.007) 508.1 kN

Fsc = Fyd/ γs• As2 449.7 / 1.15 • 603.2 ( εs= 0.002) 235.9 kN

Muc= z • Fc 300.71 • 272.6 82.0 kN.m

Must= z • Fst 300.71 • 508.1 152.8 kN.m

Musc= (d-d1) • Fsc (348.81 - 43.0 • 235.9 72.1 kN.m

Mu = min(Must, Muc+ Musc) min(152.8, 81.96 + 72.1) 152.8 kN.m

Mapp/Mu 139.1 / 152.8 0.910 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 323, d' = 45 top 1120, bottom 278 mm²

Shear
Max Shear
VRd,max = 0.5 • Bw• d • v • fcd 0.5•250•348.8•0.552•11 272.8 kN

VEd,max 119.5 kN OK

Left Shear Zone 1 at 0 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.751, 1257, 20, 0.15, 0.0, 250, 355.0 56.8 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.36 + 0.15 • 0.0) • 250.0 • 355.0 ) 32.1 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 116.1 / Max(56.8, 32.1) 2.043 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 150.0 • 319.5 • 0.8 • 500.0 • 2.5 334.4 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 250 • 319.5 • 0.54 • (2.5 + 0.4) 168.6 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 116.1 / Min(334.4, 168.6) 0.689 OK

Nominal Shear Zone at 1351 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.749, 687, 20, 0.15, 0.0, 250, 356.3 46.5 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.36 + 0.15 • 0.0) • 250.0 • 356.32 ) 32.2 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 78.5 / Max(46.5, 32.2) 1.687 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 250.0 • 320.68 • 0.8 • 500.0 • 2.5 201.4 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 250 • 320.68 • 0.54 • (2.5 + 0.4) 169.2 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 78.5 / Min(201.4, 169.2) 0.464 OK

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Nominal Shear Zone at 4649 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.759, 784, 20, 0.15, 0.0, 250, 347.5 48.1 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.37 + 0.15 • 0.0) • 250.0 • 347.49 ) 31.7 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 82.0 / Max(48.1, 31.7) 1.704 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 250.0 • 312.74 • 0.8 • 500.0 • 2.5 196.4 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 250 • 312.74 • 0.54 • (2.5 + 0.4) 165.0 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 82.0 / Min(196.4, 165.0) 0.497 OK

Right Shear Zone 1 at 6000 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.757, 1169, 20, 0.15, 0.0, 250, 348.8 55.0 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.36 + 0.15 • 0.0) • 250.0 • 348.81 ) 31.8 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 119.5 / Max(55.0, 31.8) 2.171 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 150.0 • 313.93 • 0.8 • 500.0 • 2.5 328.6 kN (6.8)

VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 250 • 313.93 • 0.54 • (2.5 + 0.4) 165.6 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 119.5 / Min(328.6, 165.6) 0.721 OK

 C:\GROUP COURSEWORK REMODEL.$5

MEMBER 405

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Basic Data

Design to EC 2: 2004

fck, fyk, γc, γs, h , λ C20/25, 500, 1.5, 1.15, 1.0, 0.8

fykv, $v crit 500, 0.1

Minor Axis Moments


My max = 6.6 kN.m Minor axis moments ignored by user

Torsional Design
Main Rectangular Section assumed to resist Torsion

Ak = Fn(A, u, B, H, Cvrmax, t) 87500, 1200, 250, 350, 41, 72.92 49067 mm²

TRd.c= fctd• t • 2 • Ak 1.03 • 72.92 • 2 • 49067 7.4 kN.m

TRd.max= 2•v•αcw•fcd•Ak•t•Sinθ•Cosθ 2•0.55•1.00•11.33•49067•72.9•0.89•0.45 17.9 kN.m

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Unity TEd/ TRd.c + VEd/ VRd.c 0.00/7.38 + 19.95/30.15 0.66 . Ignore Torsion

Asl= TEd/ Ak /2 • Cotθ • uk / (Fywk/ γs) 0.00 / 49067 / 2 • 2.00 • 908/(500 / 1.15) 0.0 mm²

As Per _Bar = Asl/ (No.Horz+ No.Vert) /2 0.0/ ( 2 + 0) /2 0.0 mm²

Asr deduction T+B = As• No.Horz 0.0 • 2 0.0 mm²

q = T / Ak / 2 0.0 / 49067/2 0.0 N/mm

As/Svreduction = (q • γs)/( Cotθ •Fywk) • 2(0.0 • 1.15) / (2.00 • 500) • 2 0.000 mm

Asv/Sv prov (2 external legs only) min(0.79) 0.79 OK

Bending Moments
Left Support Steel Hogging
X/d=Fn(data, As1,As2, fcd, B, Bweb, d, d2) 227, 226, 500, 11, 250, 250, 309.0, 41 0.14

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 250.0 • 0.8 • 42.0 95.2 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 226.7 ( εs= 0.022) 98.6 kN

Fsc = Fyd/ γs• As2 17.0 / 1.15 • 226.2 ( εs= 0.0) 3.3 kN

Muc= z • Fc 292.19 • 95.2 27.8 kN.m

Must= z • Fst 292.19 • 98.6 28.8 kN.m

Musc= (d-d1) • Fsc (309.0 - 41.0 • 3.3 0.9 kN.m

Mu = min(Must, Muc+ Musc) min(28.8, 27.83 + 0.9) 28.7 kN.m

Mapp/Mu 5.1 / 28.7 0.177 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 305, d' = 45 top 39

In-Span Steel @ 2156 mm. Sagging


X/d=Fn(data, As1,As2, fcd, B, Bweb, d, d2) 226, 226, 500, 11, 250, 250, 309.0, 41 0.14

Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 250.0 • 0.8 • 42.0 95.2 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 226.2 ( εs= 0.022) 98.3 kN

Fsc = Fyd/ γs• As2 16.4 / 1.15 • 226.2 ( εs= 0.0) 3.2 kN

Muc= z • Fc 292.21 • 95.2 27.8 kN.m

Must= z • Fst 292.21 • 98.3 28.7 kN.m

Musc= (d-d1) • Fsc (309.0 - 41.0 • 3.2 0.9 kN.m

Mu = min(Must, Muc+ Musc) min(28.74, 27.81 + 0.9) 28.7 kN.m

Mapp/Mu 11.6 / 28.7 0.406 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 305, d' = 45 bottom 90 mm²

Right Support Steel Hogging


X/d=Fn(data, As1,As2, fcd, B, Bweb, d, d2) 227, 226, 500, 11, 250, 250, 309.0, 41 0.14

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Fc = h • Fcd• Beff• λ • X 1.0 • 11.33 • 250.0 • 0.8 • 42.0 95.2 kN

Fst = Fyd/ γs• As1 500.0 / 1.15 • 226.7 ( εs= 0.022) 98.6 kN

Fsc = Fyd/ γs• As2 17.0 / 1.15 • 226.2 ( εs= 0.0) 3.3 kN

Muc= z • Fc 292.19 • 95.2 27.8 kN.m

Must= z • Fst 292.19 • 98.6 28.8 kN.m

Musc= (d-d1) • Fsc (309.0 - 41.0 • 3.3 0.9 kN.m

Mu = min(Must, Muc+ Musc) min(28.8, 27.83 + 0.9) 28.7 kN.m

Mapp/Mu 26.8 / 28.7 0.932 OK

AsRequired to EC2 Cl 3.1.7, Fig 3.5 Assuming d = 305, d' = 45 top 213

Shear
Max Shear
VRd,max = 0.5 • Bw• d • v • fcd 0.5•250•309.0•0.552•11 241.6 kN

VEd,max 20 kN OK

Nominal Shear Zone at 1 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.805, 227, 20, 0.15, 0.0, 250, 309.0 30.2 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.38 + 0.15 • 0.0) • 250.0 • 309.0 ) 29.3 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 12.5 / Max(30.2, 29.3) 0.416 no Links req

Nominal Shear Zone at 5999 mm


VRd,c.a=Fn(Crdc,K, Asl,fck,K1,scp,Bw,d) 0.12, 1.805, 227, 20, 0.15, 0.0, 250, 309.0 30.2 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.38 + 0.15 • 0.0) • 250.0 • 309.0 ) 29.3 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 20.0 / Max(30.2, 29.3) 0.661 no Links req

0.0, 350, 557.0 75.6 kN (6.2.a)

VRd,c.b=(Vmin+ K1•scp) • Bw• d (0.32 + 0.15 • 0.0) • 350.0 • 557.0 ) 61.7 kN (6.2.b)

Vapp/ max(VRd,c.a, VRd,c.b) 152.5 / Max(75.6, 61.7) 2.017 Links Req

VRd,s = Asw/ S • Z • 0.8 • fywk• Cotθ 157 • 250.0 • 501.3 • 0.8 • 500.0 • 2.5 314.8 kN (6.8)

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
VRd,max = αcw• bw•z•v1•fcd/(cotθ +tanθ) 1 • 350 • 501.3 • 0.54 • (2.5 + 0.4) 370.3 kN
(6.9)

Vapp/ max(VRd,s, VRd,max) 152.5 / Min(314.8, 370.3) 0.484 OK

 C:\GROUP COURSEWORK REMODEL.$5

 C:\GROUP COURSEWORK REMODEL.$5

MEMBER 298 : (GRID C2 - LEVEL 1)

Basic Data
Design to BS 8110: 1997

Grades Fy, Fyv, Fcu 500 N/mm², 500 N/mm², 25 N/mm²

Restraint Conditions and Effective Lengths


βx : for 450 mm deep column Top: Shallow, Bottom: Deep 1.30

βy : for 450 mm wide column Top: Deep, Bottom: Deep 1.20

Lc=3000 Lox=3000-(750+0)/2 2625

Loy=3000-(750+0)/2 2625

Lex=3412.5 mm, Lex/h=7.6, exx=20.0 mm

Ley=3150.0 mm, Ley/b=7.0, eyy=20.0 mm

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

BI-AXIAL , SHORT, UNBRACED, COLUMN DESIGN

Critical Case : 9 : All Spans Loaded (1.35 D1 + 1.50 L1 + 1.35


D2 + 1.50 L2) (Ultim

Part 1 of 2 with Mxx Nominal considered


Axial Capacity
Applied Axial N 2303.6 kN

Nuz=.45•(B•H-acs)•fcu + .87•asc•fy .45x(450x450-2061)x25 + 0.87x2060.9x500 3151.4 kN


OK

Ncap=.9•.45•(B•H-acs)•fcu + .87•asc•fy.9x.45x(450x450-2061)x25 + 0.87x2060.9x500 2925.9 kN OK

X-X Moments
Applied Moments (Mx1, Mx2) -23.2 kN.m, 22.6 kN.m

M nom=fn(N, exx) 2303.6 kN, 20.0 mm 46.1 kN.m

Design Moment 46.1 kN.m

Y-Y Moments
Applied Moments (My1, My2) -5.3 kN.m, 10.6 kN.m

Design Moment 10.6 kN.m

Resultant Design Moment


M=sqr(Mx² + My²) sqr(46.1² + 10.6² ) 47.3 kN.m

θ = atn(My / Mx) atn(10.6/ 46.1) 13.0 deg

Moment Capacity
Design Data X/h, h, b, X, Ac, Ybar 0.827, 540 mm, 450 mm, 446.36 mm, 162161 mm², 224.9 mm

Bar group1:M1 fn(bars,d,ε%,s,la,F) 1 x 20, 479.7, -0.026, -52, -209.9, -16.4 3.4 kNm

Bar group2:M2 fn(bars,d,ε%,s,la,F) 1 x 20, 401.0, 0.036, 71, -131.2, 22.3 -2.9 kNm

Bar group3:M3 fn(bars,d,ε%,s,la,F) 1 x 16, 442.3, 0.003, 6, -172.5, 1.3 -0.2 kNm

Bar group4:M4 fn(bars,d,ε%,s,la,F) 1 x 16, 309.6, 0.107, 214, -39.8, 43.1 -1.7 kNm

Bar group5:M5 fn(bars,d,ε%,s,la,F) 1 x 20, 138.7, 0.241, 435, 131.2, 136.7 17.9 kNm

Bar group6:M6 fn(bars,d,ε%,s,la,F) 1 x 20, 60.0, 0.303, 435, 209.9, 136.7 28.7 kNm

Bar group7:M7 fn(bars,d,ε%,s,la,F) 1 x 16, 97.4, 0.274, 435, 172.5, 87.5 15.1 kNm

Bar group8:M8 fn(bars,d,ε%,s,la,F) 1 x 16, 230.0, 0.170, 339, 39.8, 68.2 2.7 kNm

Concrete Fc=(Ac•.45•fcu) 162161 x 0.45 x 25 1824.3 kN

F Equlibrum S (Ft) + FC - Fapp= 0 -16+22+1+43+137+137+87+68+1824-2303.6 0.0 kN OK

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Concrete Mc=Fc•(H/2-Ybar) 1824.3 x (540 / 2 - 224.9) 81.9 kNm

Mu =Mc + (M1+...+M8) 81.9 + (3.4+-2.9+-0.2+-1.7+17.9+28.7+15.1)

+ (2.7) 144.9kNm

Max Moment/Mu 47.3 / 144.9 0.326 OK

X-X Shear Checks


App. Shear Vx, v, v max 15.27 kN, 0.08 N/mm², 4 N/mm² 0.021 OK

M/N, 0.6h 20 mm, 270 mm Nominal links

Y-Y Shear Checks


App. Shear Vy, v, v max 5.3 kN, 0.03 N/mm², 4 N/mm² 0.007 OK

M/N, 0.6b 4.6 mm, 270 mm Nominal links

BI-AXIAL , SHORT, UNBRACED, COLUMN DESIGN

Critical Case : 9 : All Spans Loaded (1.35 D1 + 1.50 L1 + 1.35


D2 + 1.50 L2) (Ultim

Part 2 of 2: with Myy Nominal considered


Axial Capacity
Applied Axial N 2303.6 kN

Nuz=.45•(B•H-acs)•fcu + .87•asc•fy .45x(450x450-2061)x25 + 0.87x2060.9x500 3151.4 kN


OK

Ncap=.9•.45•(B•H-acs)•fcu + .87•asc•fy.9x.45x(450x450-2061)x25 + 0.87x2060.9x500 2925.9 kN OK

X-X Moments
Applied Moments (Mx1, Mx2) -23.2 kN.m, 22.6 kN.m

Design Moment 23.2 kN.m

Y-Y Moments
Applied Moments (My1, My2) -5.3 kN.m, 10.6 kN.m

M nom=fn(N, eyy) 2303.6, 20.0 46.1 kN.m

Design Moment 46.1 kN.m

Resultant Design Moment


M=sqr(Mx² + My²) sqr(23.2² + 46.1² ) 51.6 kN.m

θ = atn(My / Mx) atn(46.1/ 23.2) 63.2 deg

Moment Capacity
Design Data X/h, h, b, X, Ac, Ybar 0.786, 604 mm, 450 mm, 475.24 mm, 163660 mm², 258.5 mm

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Bar group1:M1 fn(bars,d,ε%,s,la,F) 1 x 20, 537.3, -0.046, -91, -235.1, -28.7 6.8 kNm

Bar group2:M2 fn(bars,d,ε%,s,la,F) 1 x 20, 224.8, 0.184, 369, 77.4, 115.9 9.0 kNm

Bar group3:M3 fn(bars,d,ε%,s,la,F) 1 x 16, 382.0, 0.069, 137, -79.7, 27.6 -2.2 kNm

Bar group4:M4 fn(bars,d,ε%,s,la,F) 1 x 16, 460.3, 0.011, 22, -158.0, 4.4 -0.7 kNm

Bar group5:M5 fn(bars,d,ε%,s,la,F) 1 x 20, 379.6, 0.070, 141, -77.4, 44.2 -3.4 kNm

Bar group6:M6 fn(bars,d,ε%,s,la,F) 1 x 20, 67.2, 0.301, 435, 235.1, 136.7 32.1 kNm

Bar group7:M7 fn(bars,d,ε%,s,la,F) 1 x 16, 222.5, 0.186, 372, 79.7, 74.9 6.0 kNm

Bar group8:M8 fn(bars,d,ε%,s,la,F) 1 x 16, 144.2, 0.244, 435, 158.0, 87.5 13.8 kNm

Concrete Fc=(Ac•.45•fcu) 163660 x 0.45 x 25 1841.2 kN

F Equlibrum S (Ft) + FC - Fapp= 0 -29+116+28+4+44+137+75+87+1841-2303.6 0.0 kN OK

Concrete Mc=Fc•(H/2-Ybar) 1841.2 x (604 / 2 - 258.5) 80.6 kNm

Mu =Mc + (M1+...+M8) 80.6 + (6.8+9.0+-2.2+-0.7+-3.4+32.1+6.0)

+ (13.8) 141.9kNm

Max Moment/Mu 51.6 / 141.9 0.364 OK

X-X Shear Checks


App. Shear Vx, v, v max 15.27 kN, 0.08 N/mm², 4 N/mm² 0.021 OK

M/N, 0.6h 10.1 mm, 270 mm Nominal links

Y-Y Shear Checks


App. Shear Vy, v, v max 5.3 kN, 0.03 N/mm², 4 N/mm² 0.007 OK

M/N, 0.6b 20 mm, 270 mm Nominal links

COLUMN TIE CHECK

Maximum floor load in lift BS 8110 Pt 1: CL 3.12.3.7 & 2.4.3.2

No Tie Force case found (1.05D+0.35/1.05L). Using ULS reduced by 1.33=1.40/1.05 conservative

Capacity = 0.87 • fy• Asc 0.87 • 500 • 2061 896.5 kN OK

 C:\GROUP COURSEWORK REMODEL.$5

PAD 10 @ NODE 10 : (GRID C2)

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Basic Properties
Design to BS 8110: 1997

Fy, Fcu, Covers T, B, S 500 N/mm², 25 N/mm², 50 mm, 50 mm, 50 mm

Gross: Area, Area1, Z zz, Z xx 12.25, 0.203, 7.146, 7.146

Conc Den, Surcharge, LFsrv , LFult, SWP25.0, 0.0, 1.0, 1.0, 150

Effective Reinforcement to Cl 3.11.3.2 : ZZ Steel perp to axis

lc > (3c/4 +9d/4) 3500 >= (3 x 450 / 4 + 9 x 575 / 4) 3500> 1631

2/3 of Reinforcement in 3 x575 1725 mm

Eff no. of Bottom Bars 2 x 4-B16@150 ext. + 16-B16@150 int. 24-B16

Effective Reinforcement to Cl 3.11.3.2 : XX Steel perp to axis

lc > (3c/4 +9d/4) 3500 >= (3 x 450 / 4 + 9 x 575 / 4) 3500> 1631

2/3 of Reinforcement in 3 x575 1725 mm

Eff no. of Bottom Bars 2 x 4-B16@150 ext. + 16-B16@150 int. 24-B16

Z-Z Axis Section Capacities


As Bottom bars 24-B16@150 4825 mm²

X/d = Fn(AS, Fy, K1, Beff, Fcu, γm) 4825, 500, 0.41, 3500, 25, 0.87 0.11

Mu conc = Fn(Z, Beff, X, K1, Fcu) 490, 3500, 59, 0.41, 25 1029 kN.m

vc = Fn(AS, bv, d, Fcu) 4825, 3500, 517, 25 0.41 N/mm²

X-X Axis Section Capacities


As Bottom bars 24-B16@150 4825 mm²

X/d = Fn(AS, Fy, K1, Beff, Fcu, γm) 4825, 500, 0.41, 3500, 25, 0.87 0.12
© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Mu conc = Fn(Z, Beff, X, K1, Fcu) 474, 3500, 59, 0.41, 25 995 kN.m

vc = Fn(AS, bv, d, Fcu) 4825, 3500, 501, 25 0.41 N/mm²

Critical Serviceability : 1 : All Spans Loaded (1.35 D1 + 1.50


L1 + 1.35 D2 + 1.50 L2) (Ultim (Approx.)
No Service Case defined Calculating approximate values based on

an Average ULS load Factor of 1.00

Fpad = Den•d•Area•LF 25.0 x 0.575 x 12.25 x 1.00 176.1 kN

Fcol = F 1593.9 + 1593.9 kN

Fres = F + Fpad 1593.9 + 176.1 1770.0 kN

Mzz = Mzz + Vx•D + Fcol•ezz -1.0 + (0.0 x 0.575) + (1593.9 x 0.0) -1.0 kN.m

Mxx res = Mxx + Vz•D + Fcol•exx 3.6 + (0.0 x 0.575) + (1593.9 x 0.0) 3.6 kN.m

Horizontal Shear Ignored

Effective L (Le) = Fn(Mzz,Fres,L) -1.0, 1770.0, 3500 3500 mm

Effective B (Be) = Fn(Mzz,Fres,B) 3.6, 1770.0, 3500 3500 mm

Pressure
Pmax = Fn(Pa, Pzz, Pxx, p1-4) 144.5, ±0.1, ±0.5, 144.8, 143.8, 144.1, 145.1 145.1 kN/m² OK

Check for up-lift Le 3500 >=3500 Be 3500 >=3500 OK

FOS Overturning
Mzz Rest = (F)•e+(pad)•L/2 (1594) x 1.750 + ( 176) x 1.750 3097 kN.m

FOS OT zz = Mzz Rest / Mzz ot 3097 / 1 3002.61 > 1.5 OK

Mxx Rest = (F)•e+(pad)•L/2 (1594) x 1.750 + ( 176) x 1.750 3097 kN.m

FOS OT xx = Mxx Rest / Mxx ot 3097 / 4 865.46 > 1.5 OK

Critical Ultimate : 9 : All Spans Loaded (1.35 D1 + 1.50 L1 +


1.35 D2 + 1.50 L2) (Ultim
Fpad = Den•d•Area•LF 25.0 x 0.575 x 12.25 x 1.00 176.1 kN

Fcol = F 2303.6 + 2303.6 kN

Fres = F + Fpad 2303.6 + 176.1 2479.7 kN

Mzz = Mzz + Vx•D + Fcol•ezz -23.3 + (0.0 x 0.575) + (2303.6 x 0.0) -23.3 kN.m

Mxx res = Mxx + Vz•D + Fcol•exx 5.3 + (0.0 x 0.575) + (2303.6 x 0.0) 5.3 kN.m

Horizontal Shear Ignored

Effective L (Le) = Fn(Mzz,Fres,L) -23.3, 2479.7, 3500 3500 mm

Effective B (Be) = Fn(Mzz,Fres,B) 5.3, 2479.7, 3500 3500 mm

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Pressure
Pmax = Fn(Pa, Pzz, Pxx, p1-4) 202.4, ±3.3, ±0.7, 199.9, 198.4, 204.9, 206.4 206.4 kN/m² (ULS)

Check for up-lift Le 3500 >=3500 Be 3500 >=3500 (ULS)

FOS Overturning
Mzz Rest = (F)•e+(pad)•L/2 (2304) x 1.750 + ( 176) x 1.750 4339 kN.m

FOS OT zz = Mzz Rest / Mzz ot 4339 / 23 186.64 > 1.0 OK

Mxx Rest = (F)•e+(pad)•L/2 (2304) x 1.750 + ( 176) x 1.750 4339 kN.m

FOS OT xx = Mxx Rest / Mxx ot 4339 / 5 820.31 > 1.0 OK

Moments and Shears


Static load reduction w=(Sur + Den•D)•L

(0.0 + 25.0 x 0.575) x 1.00 14.4kN/m²

Moments at Column Face


X-X Moment Lower M - w•la²•B/2 821.7 - 14.4 • 3500 • 1525² / 2 763.2 kN.m OK

X-X Moment Upper M - w•La²•B/2 826 - 14.4 • 3500 • 1525² / 2 767.5 kN.m OK

Z-Z Moment Left M - w•La²•B/2 833.2 - 14.4 • 3500 • 1525² / 2 774.7 kN.m OK

Z-Z Moment Right M - w•la²•B/2 814.4 - 14.4 • 3500 • 1525² / 2 755.9 kN.m OK

Shear at d and 2d from Column Face


Checking <= 2vc at d & <= vc at 2d from column face

X-X lower Vd, V2d, lad, la2d, d, b, w 723.6, 369.4, 1024, 523, 501, 3500, 14.4 0.38, 0.20 N/mm² OK

X-X upper Vd, V2d, lad, la2d, d, b, w 727.4, 371.7, 1024, 523, 501, 3500, 14.4 0.39, 0.20 N/mm² OK

Z-Z left Vd, V2d, lad, la2d, d, b, w 722.3, 352.7, 1008, 491, 517, 3500, 14.4 0.37, 0.18 N/mm² OK

Z-Z right Vd, V2d, lad, la2d, d, b, w 706, 343.1, 1008, 491, 517, 3500, 14.4 0.36, 0.18 N/mm² OK

Punching Shear
Sub Zone Loads F0=791.2 + F1=116.2 + F2=115.6 + F3=118.5 + F4=119.2

+ F12=300.9 + F23=303.9 + F34=308.6 + F41=305.6 2479.7 kN

Sub Zone Error = Fres/S(F0-F41) (1 - 2479.694 / 2479.694)•100 0.000% OK

Zone Locations P4------------------- P

| F4 | F41 | F1

|------------------

| F34| F0 | F12 | F0 is bound by Punching Perimite

|------------------| @ 1.5 d from column face

| F3 | F23 | F2

P3------------------- P2

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
vc ave = (vc zz + vc xx)/2 (0.407, 0.411) / 2 0.409 N/mm²

Zone 1 Full punching '[]' Fnet Fres- (F0) - (Areaext• wconc

2479.7 - 791.2 - 8.3 • 14.4 1568.6 kN

vnet= Fnet/ Perim / d • Vmod 1568.6 / 7908 / 509 • 1.010 0.394 N/mm² OK

Zone 2 Left side free 'P' Fnet Fres- (F0+F34) - (Areaext• wconc

2479.7 - 791.2 - 6.8 • 14.4 1281.7 kN

vnet= Fnet/ Perim / d • Vmod 1281.7 / 7454 / 509 • 1.013 0.342 N/mm² OK

Zone 3 Right side free 'P' Fnet Fres- (F0+F12) - (Areaext• wconc

2479.7 - 791.2 - 6.8 • 14.4 1289.3 kN

vnet= Fnet/ Perim / d • Vmod 1289.3 / 7454 / 509 • 1.010 0.343 N/mm² OK

Zone 4 Top side free 'P' Fnet Fres- (F0+F41) - (Areaext• wconc

2479.7 - 791.2 - 6.8 • 14.4 1284.6 kN

vnet= Fnet/ Perim / d • Vmod 1284.6 / 7454 / 509 • 1.012 0.343 N/mm² OK

Zone 5 Btm side free 'P' Fnet Fres- (F0+F23) - (Areaext• wconc

2479.7 - 791.2 - 6.8 • 14.4 1286.4 kN

vnet= Fnet/ Perim / d • Vmod 1286.4 / 7454 / 509 • 1.010 0.342 N/mm² OK

Zone 6 Left & Btm sides free 'G ' Fnet Fres- (F0+F23+F3+F34) - (Areaext• wconc

2479.7 - 791.2 - 4.8 • 14.4 889.2 kN

vnet= Fnet/ Perim / d • Vmod 889.2 / 5477 / 509 • 1.016 0.324 N/mm² OK

Zone 7 Left & Top sides free 'G ' Fnet Fres- (F0+F34+F4+F41) - (Areaext• wconc

2479.7 - 791.2 - 4.8 • 14.4 886.8 kN

vnet= Fnet/ Perim / d • Vmod 886.8 / 5477 / 509 • 1.013 0.322 N/mm² OK

Zone 8 Right & Top sides free 'G ' Fnet Fres- (F0+F41+F1+F12) - (Areaext• wconc

2479.7 - 791.2 - 4.8 • 14.4 897.4 kN

vnet= Fnet/ Perim / d • Vmod 897.4 / 5477 / 509 • 1.009 0.325 N/mm² OK

Zone 9 Right & Btm sides free 'G ' Fnet Fres- (F0+F12+F2+F23) - (Areaext• wconc

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
2479.7 - 791.2 - 4.8 • 14.4 899.9 kN

vnet= Fnet/ Perim / d • Vmod 899.9 / 5477 / 509 • 1.007 0.325 N/mm² OK

Punching shear at Column Head


vmax= Min(5,0.8•RFcu min(5, 0.8 x Sqr(25) 4 N/mm²

Column Head Fnet Fres- (Fcol) - (Areaext• wconc

2479.7 - 791.2 - 12 • 14.4 2265.5 kN

vnet= Fnet/ Perim / d • Vmod 2265.5 / 1800 / 509 • 1.000 2.473 N/mm² OK

 C:\GROUP COURSEWORK REMODEL.$5

MEMBER 244 : (GRID A1 - LEVEL 1)

Basic Data
Design to BS 8110: 1997

Grades Fy, Fyv, Fcu 500 N/mm², 500 N/mm², 25 N/mm²

Restraint Conditions and Effective Lengths


βx : for 400 mm deep column Top: Shallow, Bottom: Deep 1.30

βy : for 400 mm wide column Top: Shallow, Bottom: Deep 1.30

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Lc=3000 Lox=3000-(400+0)/2 2800

Loy=3000-(400+0)/2 2800

Lex=3640.0 mm, Lex/h=9.1, exx=20.0 mm

Ley=3640.0 mm, Ley/b=9.1, eyy=20.0 mm

BI-AXIAL , SHORT, UNBRACED, COLUMN DESIGN

Critical Case : 5 : DeadplusLiveplus Wind(1.35 D1 + 1.5 L1 +


1.35 D2+1.5 L2+0.75W1)

Part 1 of 2 with Mxx Nominal considered


Axial Capacity
Applied Axial N 1434.3 kN

Nuz=.45•(B•H-acs)•fcu + .87•asc•fy .45x(400x400-804)x25 + 0.87x804.2x500 2140.8 kN


OK

Ncap=.9•.45•(B•H-acs)•fcu + .87•asc•fy.9x.45x(400x400-804)x25 + 0.87x804.2x500 1961.7 kN OK

X-X Moments
Applied Moments (Mx1, Mx2) -57.4 kN.m, 31.7 kN.m

M nom=fn(N, exx) 1434.3 kN, 20.0 mm 28.7 kN.m

Design Moment 57.4 kN.m

Y-Y Moments
Applied Moments (My1, My2) 8.7 kN.m, -15.7 kN.m

Design Moment 15.7 kN.m

Resultant Design Moment


M=sqr(Mx² + My²) sqr(57.4² + 15.7² ) 59.5 kN.m

θ = atn(My / Mx) atn(15.7/ 57.4) 15.3 deg

Moment Capacity
Design Data X/h, h, b, X, Ac, Ybar 0.740, 491 mm, 400 mm, 363.64 mm, 113869 mm², 188.3 mm

Bar group1:M1 fn(bars,d,ε%,s,la,F) 1 x 16, 429.8, -0.064, -127, -184.2, -25.6 4.7 kNm

Bar group2:M2 fn(bars,d,ε%,s,la,F) 1 x 16, 350.8, 0.012, 25, -105.2, 5.0 -0.5 kNm

Bar group3:M3 fn(bars,d,ε%,s,la,F) 1 x 16, 140.4, 0.215, 430, 105.2, 86.4 9.1 kNm

Bar group4:M4 fn(bars,d,ε%,s,la,F) 1 x 16, 61.4, 0.291, 435, 184.2, 87.5 16.1 kNm

Concrete Fc=(Ac•.45•fcu) 113869 x 0.45 x 25 1281.0 kN

F Equlibrum S (Ft) + FC - Fapp= 0 -26 + 5 + 86 + 87 + 1281 - 1434.3 0.0 kN OK

Concrete Mc=Fc•(H/2-Ybar) 1281.0 x (491 / 2 - 188.3) 73.4 kNm

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Mu =Mc + (M1+...+M4) 73.4 + (4.7+-0.5+9.1+16.1) 102.8kNm

Max Moment/Mu 59.5 / 102.8 0.579 OK

X-X Shear Checks


App. Shear Vx, v, v max 29.72 kN, 0.21 N/mm², 4 N/mm² 0.053 OK

M/N, 0.6h 40.1 mm, 240 mm Nominal links

Y-Y Shear Checks


App. Shear Vy, v, v max 8.1 kN, 0.06 N/mm², 4 N/mm² 0.014 OK

M/N, 0.6b 10.9 mm, 240 mm Nominal links

BI-AXIAL , SHORT, UNBRACED, COLUMN DESIGN

Critical Case : 5 : DeadplusLiveplus Wind(1.35 D1 + 1.5 L1 +


1.35 D2+1.5 L2+0.75W1)

Part 2 of 2: with Myy Nominal considered


Axial Capacity
Applied Axial N 1434.3 kN

Nuz=.45•(B•H-acs)•fcu + .87•asc•fy .45x(400x400-804)x25 + 0.87x804.2x500 2140.8 kN


OK

Ncap=.9•.45•(B•H-acs)•fcu + .87•asc•fy.9x.45x(400x400-804)x25 + 0.87x804.2x500 1961.7 kN OK

X-X Moments
Applied Moments (Mx1, Mx2) -57.4 kN.m, 31.7 kN.m

Design Moment 57.4 kN.m

Y-Y Moments
Applied Moments (My1, My2) 8.7 kN.m, -15.7 kN.m

M nom=fn(N, eyy) 1434.3, 20.0 28.7 kN.m

Design Moment 28.7 kN.m

Resultant Design Moment


M=sqr(Mx² + My²) sqr(57.4² + 28.7² ) 64.2 kN.m

θ = atn(My / Mx) atn(28.7/ 57.4) 26.5 deg

Moment Capacity
Design Data X/h, h, b, X, Ac, Ybar 0.717, 537 mm, 400 mm, 384.80 mm, 114892 mm², 212.7 mm

Bar group1:M1 fn(bars,d,ε%,s,la,F) 1 x 16, 469.5, -0.077, -154, -201.2, -31.0 6.2 kNm

Bar group2:M2 fn(bars,d,ε%,s,la,F) 1 x 16, 335.5, 0.045, 90, -67.2, 18.0 -1.2 kNm

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Bar group3:M3 fn(bars,d,ε%,s,la,F) 1 x 16, 201.1, 0.167, 334, 67.2, 67.2 4.5 kNm

Bar group4:M4 fn(bars,d,ε%,s,la,F) 1 x 16, 67.1, 0.289, 435, 201.2, 87.5 17.6 kNm

Concrete Fc=(Ac•.45•fcu) 114892 x 0.45 x 25 1292.5 kN

F Equlibrum S (Ft) + FC - Fapp= 0 -31 + 18 + 67 + 87 + 1293 - 1434.3 0.0 kN OK

Concrete Mc=Fc•(H/2-Ybar) 1292.5 x (537 / 2 - 212.7) 71.9 kNm

Mu =Mc + (M1+...+M4) 71.9 + (6.2+-1.2+4.5+17.6) 99.0kNm

Max Moment/Mu 64.2 / 99.0 0.648 OK

X-X Shear Checks


App. Shear Vx, v, v max 29.72 kN, 0.21 N/mm², 4 N/mm² 0.053 OK

M/N, 0.6h 40.1 mm, 240 mm Nominal links

Y-Y Shear Checks


App. Shear Vy, v, v max 8.1 kN, 0.06 N/mm², 4 N/mm² 0.014 OK

M/N, 0.6b 20 mm, 240 mm Nominal links

COLUMN TIE CHECK

Maximum floor load in lift BS 8110 Pt 1: CL 3.12.3.7 & 2.4.3.2

No Tie Force case found (1.05D+0.35/1.05L). Using ULS reduced by 1.33=1.40/1.05 conservative

Capacity = 0.87 • fy• Asc 0.87 • 500 • 804 349.8 kN OK

 C:\GROUP COURSEWORK REMODEL.$5

PAD 1 @ NODE 1 : (GRID A1)

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Basic Properties
Design to BS 8110: 1997

Fy, Fcu, Covers T, B, S 500 N/mm², 25 N/mm², 50 mm, 50 mm, 50 mm

Gross: Area, Area1, Z zz, Z xx 7.563, 0.16, 3.466, 3.466

Conc Den, Surcharge, LFsrv , LFult, SWP23.4, 0.0, 1.0, 1.0, 150

Effective Reinforcement to Cl 3.11.3.2 : ZZ Steel perp to axis

lc > (3c/4 +9d/4) 2750 >= (3 x 400 / 4 + 9 x 475 / 4) 2750> 1369

2/3 of Reinforcement in 3 x475 1425 mm

Eff no. of Bottom Bars 2 x 2-B16@200 ext. + 11-B16@200 int. 12-B16

Effective Reinforcement to Cl 3.11.3.2 : XX Steel perp to axis

lc > (3c/4 +9d/4) 2750 >= (3 x 400 / 4 + 9 x 475 / 4) 2750> 1369

2/3 of Reinforcement in 3 x475 1425 mm

Eff no. of Bottom Bars 2 x 2-B16@200 ext. + 11-B16@200 int. 12-B16

Z-Z Axis Section Capacities


As Bottom bars 12-B16@200 2413 mm²

X/d = Fn(AS, Fy, K1, Beff, Fcu, γm) 2413, 500, 0.41, 2750, 25, 0.87 0.09

Mu conc = Fn(Z, Beff, X, K1, Fcu) 396, 2750, 37, 0.41, 25 416 kN.m

vc = Fn(AS, bv, d, Fcu) 2413, 2750, 417, 25 0.38 N/mm²

X-X Axis Section Capacities


As Bottom bars 12-B16@200 2413 mm²

X/d = Fn(AS, Fy, K1, Beff, Fcu, γm) 2413, 500, 0.41, 2750, 25, 0.87 0.09

Mu conc = Fn(Z, Beff, X, K1, Fcu) 381, 2750, 37, 0.41, 25 400 kN.m
© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
vc = Fn(AS, bv, d, Fcu) 2413, 2750, 401, 25 0.38 N/mm²

Critical Serviceability : 1 : All Spans Loaded (1.35 D1 + 1.50


L1 + 1.35 D2 + 1.50 L2) (Ultim (Approx.)
No Service Case defined Calculating approximate values based on

an Average ULS load Factor of 1.00

Fpad = Den•d•Area•LF 23.4 x 0.475 x 7.563 x 1.00 84.1 kN

Fcol = F 975.3 + 975.3 kN

Fres = F + Fpad 975.3 + 84.1 1059.4 kN

Mzz = Mzz + Vx•D + Fcol•ezz -6.3 + (0.0 x 0.475) + (975.3 x 0.0) -6.3 kN.m

Mxx res = Mxx + Vz•D + Fcol•exx -7.1 + (0.0 x 0.475) + (975.3 x 0.0) -7.1 kN.m

Horizontal Shear Ignored

Effective L (Le) = Fn(Mzz,Fres,L) -6.3, 1059.4, 2750 2750 mm

Effective B (Be) = Fn(Mzz,Fres,B) -7.1, 1059.4, 2750 2750 mm

Pressure
Pmax = Fn(Pa, Pzz, Pxx, p1-4) 140.1, ±1.8, ±2.1, 136.2, 140.3, 143.9, 139.8 143.9 kN/m² OK

Check for up-lift Le 2750 >=2750 Be 2750 >=2750 OK

FOS Overturning
Mzz Rest = (F)•e+(pad)•L/2 (975) x 1.375 + ( 84) x 1.375 1457 kN.m

FOS OT zz = Mzz Rest / Mzz ot 1457 / 6 232.44 > 1.5 OK

Mxx Rest = (F)•e+(pad)•L/2 (975) x 1.375 + ( 84) x 1.375 1457 kN.m

FOS OT xx = Mxx Rest / Mxx ot 1457 / 7 204.51 > 1.5 OK

Critical Ultimate : 5 : DeadplusLiveplus Wind(1.35 D1 + 1.5 L1


+ 1.35 D2+1.5 L2+0.75W1)
Fpad = Den•d•Area•LF 23.4 x 0.475 x 7.563 x 1.00 84.1 kN

Fcol = F 1434.3 + 1434.3 kN

Fres = F + Fpad 1434.3 + 84.1 1518.3 kN

Mzz = Mzz + Vx•D + Fcol•ezz -57.4 + (0.0 x 0.475) + (1434.3 x 0.0) -57.4 kN.m

Mxx res = Mxx + Vz•D + Fcol•exx -8.7 + (0.0 x 0.475) + (1434.3 x 0.0) -8.7 kN.m

Horizontal Shear Ignored

Effective L (Le) = Fn(Mzz,Fres,L) -57.4, 1518.3, 2750 2750 mm

Effective B (Be) = Fn(Mzz,Fres,B) -8.7, 1518.3, 2750 2750 mm

Pressure
Pmax = Fn(Pa, Pzz, Pxx, p1-4) 200.8, ±16.6, ±2.5, 181.7, 186.7, 219.8, 214.8 219.8 kN/m² (ULS)

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Check for up-lift Le 2750 >=2750 Be 2750 >=2750 (ULS)

FOS Overturning
Mzz Rest = (F)•e+(pad)•L/2 (1434) x 1.375 + ( 84) x 1.375 2088 kN.m

FOS OT zz = Mzz Rest / Mzz ot 2088 / 57 36.35 > 1.0 OK

Mxx Rest = (F)•e+(pad)•L/2 (1434) x 1.375 + ( 84) x 1.375 2088 kN.m

FOS OT xx = Mxx Rest / Mxx ot 2088 / 9 241.35 > 1.0 OK

Moments and Shears


Static load reduction w=(Sur + Den•D)•L

(0.0 + 23.4 x 0.475) x 1.00 11.1kN/m²

Moments at Column Face


X-X Moment Lower M - w•la²•B/2 384.5 - 11.1 • 2750 • 1175² / 2 363.4 kN.m OK

X-X Moment Upper M - w•La²•B/2 377.7 - 11.1 • 2750 • 1175² / 2 356.6 kN.m OK

Z-Z Moment Left M - w•La²•B/2 403.6 - 11.1 • 2750 • 1175² / 2 382.5 kN.m OK

Z-Z Moment Right M - w•la²•B/2 358.6 - 11.1 • 2750 • 1175² / 2 337.5 kN.m OK

Shear at d and 2d from Column Face


Checking <= 2vc at d & <= vc at 2d from column face

X-X lower Vd, V2d, lad, la2d, d, b, w 431.2, 208.2, 774, 373, 401, 2750, 11.1 0.37, 0.18 N/mm² OK

X-X upper Vd, V2d, lad, la2d, d, b, w 423.5, 203.7, 774, 373, 401, 2750, 11.1 0.36, 0.17 N/mm² OK

Z-Z left Vd, V2d, lad, la2d, d, b, w 443.5, 201.9, 758, 341, 417, 2750, 11.1 0.37, 0.17 N/mm² OK

Z-Z right Vd, V2d, lad, la2d, d, b, w 393.5, 174.7, 758, 341, 417, 2750, 11.1 0.32, 0.14 N/mm² OK

Punching Shear
Sub Zone Loads F0=531.5 + F1=58.5 + F2=59.8 + F3=68.1 + F4=66.8

+ F12=171.4 + F23=185.2 + F34=195.5 + F41=181.6 1518.3 kN

Sub Zone Error = Fres/S(F0-F41) (1 - 1518.307 / 1518.307)•100 0.000% OK

Zone Locations P4------------------- P

| F4 | F41 | F1

|------------------

| F34| F0 | F12 | F0 is bound by Punching Perimite

|------------------| @ 1.5 d from column face

| F3 | F23 | F2

P3------------------- P2

vc ave = (vc zz + vc xx)/2 (0.376, 0.381) / 2 0.378 N/mm²

Zone 1 Full punching '[]' Fnet Fres- (F0) - (Areaext• wconc

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
1518.3 - 531.5 - 4.9 • 11.1 932.2 kN

vnet= Fnet/ Perim / d • Vmod 932.2 / 6508 / 409 • 1.052 0.369 N/mm² OK

Zone 2 Left side free 'P' Fnet Fres- (F0+F34) - (Areaext• wconc

1518.3 - 531.5 - 4 • 11.1 746.9 kN

vnet= Fnet/ Perim / d • Vmod 746.9 / 6004 / 409 • 1.066 0.324 N/mm² OK

Zone 3 Right side free 'P' Fnet Fres- (F0+F12) - (Areaext• wconc

1518.3 - 531.5 - 4 • 11.1 771.0 kN

vnet= Fnet/ Perim / d • Vmod 771 / 6004 / 409 • 1.051 0.330 N/mm² OK

Zone 4 Top side free 'P' Fnet Fres- (F0+F41) - (Areaext• wconc

1518.3 - 531.5 - 4 • 11.1 760.8 kN

vnet= Fnet/ Perim / d • Vmod 760.8 / 6004 / 409 • 1.052 0.326 N/mm² OK

Zone 5 Btm side free 'P' Fnet Fres- (F0+F23) - (Areaext• wconc

1518.3 - 531.5 - 4 • 11.1 757.1 kN

vnet= Fnet/ Perim / d • Vmod 757.1 / 6004 / 409 • 1.058 0.326 N/mm² OK

Zone 6 Left & Btm sides free 'G ' Fnet Fres- (F0+F23+F3+F34) - (Areaext• wconc

1518.3 - 531.5 - 2.8 • 11.1 507.3 kN

vnet= Fnet/ Perim / d • Vmod 507.3 / 4377 / 409 • 1.070 0.303 N/mm² OK

Zone 7 Left & Top sides free 'G ' Fnet Fres- (F0+F34+F4+F41) - (Areaext• wconc

1518.3 - 531.5 - 2.8 • 11.1 512.1 kN

vnet= Fnet/ Perim / d • Vmod 512.1 / 4377 / 409 • 1.080 0.309 N/mm² OK

Zone 8 Right & Top sides free 'G ' Fnet Fres- (F0+F41+F1+F12) - (Areaext• wconc

1518.3 - 531.5 - 2.8 • 11.1 544.5 kN

vnet= Fnet/ Perim / d • Vmod 544.5 / 4377 / 409 • 1.033 0.314 N/mm² OK

Zone 9 Right & Btm sides free 'G ' Fnet Fres- (F0+F12+F2+F23) - (Areaext• wconc

1518.3 - 531.5 - 2.8 • 11.1 539.7 kN

vnet= Fnet/ Perim / d • Vmod 539.7 / 4377 / 409 • 1.043 0.315 N/mm² OK

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Punching shear at Column Head


vmax= Min(5,0.8•RFcu min(5, 0.8 x Sqr(25) 4 N/mm²

Column Head Fnet Fres- (Fcol) - (Areaext• wconc

1518.3 - 531.5 - 7.4 • 11.1 1403.9 kN

vnet= Fnet/ Perim / d • Vmod 1403.9 / 1600 / 409 • 1.000 2.145 N/mm² OK

 C:\GROUP COURSEWORK REMODEL.$5

MasterFrame : Graphics

Frame Geometry - (Full Frame) - 3D Front View

 C:\SLABS GRW.SLB

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

MASTERKEY CONCRETE - TWO-WAY SLAB

SLAB 02

Basic Data
Dimensions Lx=6000, Ly=6000, D=175

Grades and Covers fcu=25, fy=500, top=20, bottom=20, Aggregate = 20

Load = 1.4•(gk + Den•D) + 1.6•qk 1.4•(1.80 + 25.00•0.175) + 1.6•3.50 14.25 kN/m²

Edge Fixity Edge: 1 Fixed, 2 Pinned, 3 Pinned, 4 Pinned Nd = 3

Bottom Steel at Mid-Span XX (3-4)


As bottom (0.517%) 12 @ 125 mm c/c 905 mm² OK

BM app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.042 21.8 kN.m

X/d = Fn(As, fy, K1, fcu, γm) 905, 500, 0.41, 25, 0.87 = 39 / 149 0.26

Mu conc = Fn(Z, X, K1, fcu) 131, 39, 0.41, 25 51.72 kN.m OK

Tens MF=Fn(Asr, Asp, fy, M, d) 346, 905, 500, 149 2.00 Table 3.10

Allow L/d=Fn(Basic, Ten) 20, 2.000 40.00 Cl 3.5.7

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx
Actual L/d=Fn(L,d) 6000, 149 41.03 OK

Bottom Steel at Mid-Span YY (1-2)


As bottom (0.517%) 12 @ 125 mm c/c 905 mm² OK

BM app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.044 22.3 kN.m

X/d = Fn(As, fy, K1, fcu, γm) 905, 500, 0.41, 25, 0.87 = 39 / 137 0.28

Mu conc = Fn(Z, X, K1, fcu) 119, 39, 0.41, 25 47.00 kN.m OK

Support Steel at Edges 3&4 XX (short span)


As bottom (0.517%) 12 @ 125 mm c/c 905 mm² OK

SF app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.290 24.8 kN

Vcap = Fn(As, d, fcu, vc) 905, 149, 25, 0.69 102.07 kN OK

Support Steel at Edge 1 YY (long span left)


As top (0.517%) 12 @ 125 mm c/c 905 mm² OK

BM app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.058 29.7 kN.m

X/d = Fn(As, fy, K1, fcu, γm) 905, 500, 0.41, 25, 0.87 = 39 / 149 0.26

Mu conc = Fn(Z, X, K1, fcu) 131, 39, 0.41, 25 51.72 kN.m OK

SF app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.450 38.5 kN

Vcap = Fn(As, d, fcu, vc) 905, 149, 25, 0.69 102.07 kN OK

Support Steel at Edge 2 YY (long span right)


As bottom (0.517%) 12 @ 125 mm c/c 905 mm² OK

SF app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.300 25.6 kN

Vcap = Fn(As, d, fcu, vc) 905, 137, 25, 0.72 98.56 kN OK

Distribution Steel
As Min = Fn(fy, d, b, As%) 500, 175, 1000, 0.13 228 mm²/m

 C:\SLABS GRW.SLB

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

MASTERKEY CONCRETE - TWO-WAY SLAB

SLAB 1

Basic Data
Dimensions Lx=6000, Ly=7000, D=175

Grades and Covers fcu=25, fy=500, top=20, bottom=20, Aggregate = 20

Load = 1.4•(gk + Den•D) + 1.6•qk 1.4•(1.80 + 25.00•0.175) + 1.6•3.50 14.25 kN/m²

Edge Fixity Edge: 1 Pinned, 2 Fixed, 3 Fixed, 4 Pinned Nd = 2

Bottom Steel at Mid-Span XX (3-4)


As bottom (0.517%) 12 @ 125 mm c/c 905 mm² OK

BM app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.045 23.3 kN.m

X/d = Fn(As, fy, K1, fcu, γm) 905, 500, 0.41, 25, 0.87 = 39 / 137 0.28

Mu conc = Fn(Z, X, K1, fcu) 119, 39, 0.41, 25 47.00 kN.m OK

Tens MF=Fn(Asr, Asp, fy, M, d) 382, 905, 500, 137 1.86 Table 3.10

Allow L/d=Fn(Basic, Ten) 26, 1.859 48.34 Cl 3.5.7

Actual L/d=Fn(L,d) 6000, 137 43.80 OK

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Bottom Steel at Mid-Span YY (1-2)


As bottom (0.517%) 12 @ 125 mm c/c 905 mm² OK

BM app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.034 17.4 kN.m

X/d = Fn(As, fy, K1, fcu, γm) 905, 500, 0.41, 25, 0.87 = 39 / 149 0.26

Mu conc = Fn(Z, X, K1, fcu) 131, 39, 0.41, 25 51.72 kN.m OK

Support Steel at Edge 3 XX (short span top)


As top (0.431%) 12 @ 150 mm c/c 754 mm² OK

BM app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.061 31.0 kN.m

X/d = Fn(As, fy, K1, fcu, γm) 754, 500, 0.41, 25, 0.87 = 32 / 137 0.24

Mu conc = Fn(Z, X, K1, fcu) 122, 32, 0.41, 25 40.13 kN.m OK

SF app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.450 38.5 kN

Vcap = Fn(As, d, fcu, vc) 754, 137, 25, 0.68 92.75 kN OK

Support Steel at Edge 4 XX (short span bottom)


As bottom (0.517%) 12 @ 125 mm c/c 905 mm² OK

SF app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.300 25.6 kN

Vcap = Fn(As, d, fcu, vc) 905, 137, 25, 0.72 98.56 kN OK

Support Steel at Edge 1 YY (long span left)


As bottom (0.517%) 12 @ 125 mm c/c 905 mm² OK

SF app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.260 22.2 kN

Vcap = Fn(As, d, fcu, vc) 905, 149, 25, 0.69 102.07 kN OK

Support Steel at Edge 2 YY (long span right)


As' bottom (0.517%) 12 @ 125 mm c/c 905 mm² OK

As top (0.431%) 12 @ 150 mm c/c 754 mm² OK

BM app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.045 23.2 kN.m

X/d = Fn(As, fy, K1, fcu, γm) 754, 500, 0.41, 25, 0.87 = 28 / 149 0.19

Mu conc = Fn(Z, X, K1, fcu) 136, 28, 0.41, 25 38.99 kN.m

Mu Csteel = Fn(d, d', As', fy1) 149.0, 26.0, 905, 53 5.11 kN.m

Mu = Mu conc + Mu Csteel 39.0 ,5.1 44.09 kN.m OK

SF app = Fn(Wult, Lx, Coef) 14.25, 6000, 0.400 34.2 kN

Vcap = Fn(As, d, fcu, vc) 754, 149, 25, 0.64 96.05 kN OK

Distribution Steel
As Min = Fn(fy, d, b, As%) 500, 175, 1000, 0.13 228 mm²/m

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

 C:\SLABS GRW.SLB

MASTERKEY CONCRETE - SIMPLY SUPPORTED ONE-WAY SLAB

SLAB 03

Basic Data
Dimensions Lx=2000, D=175

Grades and Covers fcu=25, fy=500, top=20, bottom=20, Aggregate = 20

Load = 1.4•(gk + Den•D) + 1.6•qk 1.4•(1.80 + 25.00•0.175) + 1.6•3.50 14.25 kN/m²

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Mid-Span Steel
As bottom (0.323%) 12 @ 200 mm c/c 565 mm² OK

BM app = Fn(Wult, Lx, Coef) 14.25, 2000, 0.125 7.1 kN.m

X/d = Fn(As, fy, K1, fcu, γm) 565, 500, 0.41, 25, 0.87 = 24 / 149 0.16

Mu conc = Fn(Z, X, K1, fcu) 138, 24, 0.41, 25 33.95 kN.m OK

Tens MF=Fn(Asr, Asp, fy, M, d) 117, 565, 500, 149 2.00 Table 3.10

Allow L/d=Fn(Basic, Ten) 20, 2.000 40.00 Cl 3.5.7

Actual L/d=Fn(L,d) 2000, 149 13.42 OK

Support Steel
As bottom (0.323%) 12 @ 200 mm c/c 565 mm² OK

SF app = Fn(Wult, Lx, Coef) 14.25, 2000, 0.500 14.2 kN

Vcap = Fn(As, d, fcu, vc) 565, 149, 25, 0.59 87.27 kN OK

Distribution Steel
As Min = Fn(fy, d, b, As%) 500, 175, 1000, 0.13 228 mm²/m

 C:\GROUP COURSEWORK REMODEL.$5

MasterFrame : Graphics

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

MasterFrame : Graphics

Frame Geometry - (Full Frame) - 3D Front View

 C:\GROUP COURSEWORK REMODEL.$5

 C:\GROUP COURSEWORK REMODEL.$5

MasterFrame : Graphics

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

 C:\GROUP COURSEWORK REMODEL.$5

MasterFrame : Graphics

Frame Geometry - (Plan at Level 1) - 3D Front View

 C:\GROUP COURSEWORK REMODEL.$5

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

MasterFrame : Graphics

MasterFram

e : Graphics

Load Diagram - All Loading Cases - All Groups - Z Loads

Frame Geometry - (Full Frame) - 3D Front View

Frame Geometry - (Grid Line : A - A) - 3D Front View

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Frame Geometry - (Plan at Level 1) - 3D Front View

MasterFrame : Graphics

Load Case 001 : All Spans Loaded (1.40 D1 + 1.60 L1 + 1.40 D2 + 1.60 L2) (Ultim

Bending Moment Diagram - (Full Frame) - 3D Front View

200 kN.m = 1m

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

 C:\GROUP COURSEWORK REMODEL.$5

MasterFrame : Graphics

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Member : M 0055

ll Spans Loaded (1.35 D1 + 1.50 L1 + 1.350 D2 + 1.50 L2)


(Ultim

Load Case 001 :

Axial Force (kN) Torque (kN.m)

Fmax -5.47 Tmax +0.48

Fmin -5.47 Tmin +0.48

Shear Force : Major Axis Shear Force : Minor Axis

Bending Moment : Major Axis Bending Moment : Minor Axis

Deflected Shape : Major Axis Deflected Shape : Minor Axis

Load Case 001 : All Spans Loaded (1.35 D1 + 1.50 L1 + 1.35 D2 + 1.50 L2) (Ultim

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Bending Moment Diagram - (Full Frame) - 3D Front View - (Full Frame) - 3D Front
View

200 kN.m = 1m

MasterFrame : Graphics

Load Case 001 : All Spans Loaded (1.40 D1 + 1.60 L1 + 1.40 D2 + 1.60 L2) (Ultim

Shear Force Diagram (Major Axis) - (Full Frame) - 3D Front View

200 kN = 1m

 C:\GROUP COURSEWORK REMODEL.$5

MasterFrame : Graphics

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

Load Case 001 : All Spans Loaded (1.40 D1 + 1.60 L1 + 1.40 D2 + 1.60 L2) (Ultim

Shear Force Diagram (Major Axis) - (Full Frame) - 3D Front View - (Full Frame) -
3D Front View

200 kN = 1m

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102
© MasterSeries PowerPad - Project Title 934770032.docx

© Civil and Structural Computer Services Limited, 1 Circular Road, Newtownabbey, Co. Antrim BT37 0RA, Tel : 028 9036 5950 Fax : 028 9036 5102

You might also like