0% found this document useful (0 votes)
11 views7 pages

Taylors New

Uploaded by

prateekgautam278
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
11 views7 pages

Taylors New

Uploaded by

prateekgautam278
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

Expansion of Functions & Error Approximation

Taylor Series
Consider the expansion of a function 𝑓(𝑥) in terms the power series about any given point ‘𝑎’as:
𝑓(𝑥) = ∑∞ 𝑛
𝑛=0 𝑐𝑛 ℎ , where ℎ = 𝑥 − 𝑎.
If 𝑓(𝑥) is infinitely differentiable about the point ‘𝑎’, then 𝑓(𝑥) can be represented as a special type of series known as
𝑓 (𝑛) (𝑎)
Taylor series. It can be shown by repeated differentiation that 𝑐𝑛 = , where 𝑓 (𝑛) (𝑥) is the 𝑛𝑡ℎ derivative.
𝑛!
ℎ2 ℎ3 ℎ𝑛
Thus 𝑓 (𝑥 ) = 𝑓(𝑎 + ℎ) ≈ 𝑓(𝑎) + ℎ𝑓′(𝑎) + 𝑓′′(𝑎) + 𝑓′′′(𝑎) + ⋯ + 𝑓 (𝑛) (𝑎) + ⋯ …①
2! 3! 𝑛!
(𝑥−𝑎)2 (𝑥−𝑎)3 (𝑥−𝑎)𝑛 (𝑛)
or 𝑓 (𝑥 ) ≈ 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) + 𝑓′′(𝑎) + 𝑓′′′(𝑎) + ⋯ + 𝑓 (𝑎) + ⋯ , if ℎ = (𝑥 − 𝑎) …②
2! 3! 𝑛!
Typically, Taylor series is used to evaluate a function, if the functional value and all it’s derivatives can be computed at
the given point ‘𝑎’.
Example 1 Expand 𝑓(𝑥) = 2𝑥 3 + 7𝑥 2 + 𝑥 − 6 in powers of (𝑥 − 2)
Solution: Let ℎ = 𝑥 − 2, Then using Taylor’s series expansion as given by ②
(𝑥−2)2 (𝑥−2)3 (𝑥−2)𝑛
𝑓 (𝑥 ) ≈ 𝑓 (2) + (𝑥 − 2)𝑓′(2) + 𝑓′′(2) + 𝑓′′′(2) + ⋯ + 𝑓 (𝑛) (2) + ⋯ ③
2! 3! 𝑛!
Now 𝑓(𝑥) = 2𝑥 3 + 7𝑥 2 + 𝑥 − 6 ⇒ 𝑓(2) = 40
𝑓′(𝑥 ) = 6𝑥 2 + 14𝑥 + 1 ⇒ 𝑓′(2) = 53
𝑓′′(𝑥 ) = 12𝑥 + 14 ⇒ 𝑓′′(2) = 38
𝑓′′′(𝑥 ) = 12 ⇒ 𝑓′′′(2) = 12
𝑓 𝑖𝑣 (𝑥 ) = 0
Using these values in ③ , we get
(𝑥−2)2 (𝑥−2)3
𝑓(𝑥) = 40 + 53(𝑥 − 2) + 38 + 12
2! 3!
⇒ 𝑓(𝑥) = 40 + 53(𝑥 − 2) + 19(𝑥 − 2)2 + 2(𝑥 − 2)3
𝜋
Example2 Expand 𝑡𝑎𝑛 𝑥 in powers of (𝑥 − ) upto first four terms.
4
𝜋
Solution: Let ℎ = 𝑥 − , then using Taylor’s series expansion as given in ②
4
𝜋 2 𝜋 3 𝜋 𝑛
𝜋 𝜋 𝜋 (𝑥−4) 𝜋 (𝑥−4) 𝜋 (𝑥−4) 𝜋
𝑓(𝑥 ) ≈ 𝑓 ( ) + (𝑥 − ) 𝑓′ ( ) + 𝑓′′ ( ) + 𝑓′′′ ( ) + ⋯ + 𝑓 (𝑛) ( ) + ⋯ ④
4 4 4 2! 4 3! 4 𝑛! 4
𝜋
Now 𝑓(𝑥) = 𝑡𝑎𝑛 𝑥 ⇒𝑓( ) = 1
4
𝜋
𝑓′(𝑥 ) = 𝑠𝑒𝑐 2 𝑥 ⇒ 𝑓′ ( ) = 2
4
𝜋
𝑓′′(𝑥 ) = 2𝑠𝑒𝑐 2 𝑥 𝑡𝑎𝑛 𝑥 ⇒ 𝑓′′ ( ) = 4
4
𝜋
𝑓′′′(𝑥 ) = 2𝑠𝑒𝑐 4 𝑥 + 4 𝑡𝑎𝑛2 𝑥𝑠𝑒𝑐 2 𝑥 ⇒ 𝑓′′′ ( ) = 16
4

Using these values in ④, we get


𝜋 𝜋
2 8 𝜋
3
𝑓(𝑥) = 1 + 2 (𝑥 − ) + 2 (𝑥 − ) + (𝑥 − )
4 4 3 4

Example 3 Estimate the value of √10 correct to four places of decimal.


Solution: Here 𝑓(𝑥 ) = √10 = √9 + 1 , taking 𝑎 = 9 and ℎ = 1 , ⸪𝑥 = 𝑎 + ℎ
Using Taylor’s series expansion as given by ① , we have
ℎ2 ℎ3 ℎ𝑛
𝑓(𝑥 ) ≈ 𝑓(𝑎) + ℎ𝑓′(𝑎) + 𝑓′′(𝑎) + 𝑓′′′(𝑎) + ⋯ + 𝑓 (𝑛) (𝑎) + ⋯
2! 3! 𝑛!
1 1 1
12 13 14
⇒ (10)2 ≈ (9 + 1)2 = 92 + 1. 𝑓′(9) + 𝑓′′(9) + 𝑓′′′(9) + 𝑓 𝑖𝑣 (9) + ⋯ ⑤
2! 3! 4!
1
Now 𝑓(𝑥) = 𝑥 2 ⇒ 𝑓(9) = 3
−1
1 1
𝑓′(𝑥 ) = 𝑥2 ⇒ 𝑓′(9) = = 0.1667
2 6
−3
1
𝑓′′(𝑥 ) = − 𝑥 2 ⇒ 𝑓′′(9) = −0.0093
4
−5
3
𝑓′′′(𝑥 ) = 𝑥 2 ⇒ 𝑓′′′(2) = 0.0015
8

Using these values in ⑤ , we get
1
0.0093 0.0015
(10) = 3 + 0.1667 −
2 + +⋯
2 6
1
⇒ (10)2 = 3 + 0.1667 − .0047 + .0003 + ⋯
= 3.1623 approx
Maclaurin Series
It is the special case of Taylor series about the point zero. Putting 𝑎 = 0 in ② ,
𝑥2 𝑥3 𝑥𝑛
Thus, Maclaurin series of 𝑓(𝑥) is given by: 𝑓(𝑥 ) = 𝑓(0) + 𝑥𝑓′(0) + 𝑓′′(0) + 𝑓′′′(0) + ⋯ + 𝑓 (𝑛) (0) + ⋯⑥
2! 3! 𝑛!
Maclaurin series of some standard functions:
𝑥3 𝑥5 𝑥7
1. sin 𝑥 = 𝑥 − + − +⋯
3! 5! 7!
𝑥2 𝑥4 𝑥6
2. cos 𝑥 = 1 − + − +⋯
2! 4! 6!
𝑥2 𝑥3 𝑥4
3. e𝑥 = 1 + 𝑥 + + + +⋯
2! 3! 4!
𝑥2 𝑥3 𝑥4
4. log(1 + 𝑥) = 𝑥 − + − + ⋯ , |𝑥 | < 1
2 3 4
𝑥2 𝑥3 𝑥4
5. log(1 − 𝑥) = −𝑥 − − − − ⋯, |𝑥 | < 1
2 3 4
𝑚(𝑚−1) 2 𝑚(𝑚−1)(𝑚−2)
6. (1 + 𝑥)m = 1 + 𝑚𝑥 + 𝑥 + 𝑥3 + ⋯
2! 3!
Example 4 Expand 𝑒 𝑥 𝑐𝑜𝑠 𝑥 by Maclaurin series.
𝑥2 𝑥3 𝑥𝑛
Solution: We have, 𝑓 (𝑥 ) = 𝑓 (0) + 𝑥𝑓′(0) + 𝑓′′(0) + 𝑓′′′(0) + ⋯ + 𝑓 (𝑛) (0) + ⋯ ⑥
2! 3! 𝑛!
𝑥 0
Here 𝑓(𝑥 ) = 𝑒 𝑐𝑜𝑠 𝑥 ⇒ 𝑓(0) = 𝑒 𝑐𝑜𝑠 0 = 1
𝑓′(𝑥 ) = 𝑒 𝑥 𝑐𝑜𝑠 𝑥 − 𝑒 𝑥 𝑠𝑖𝑛 𝑥 ⇒ 𝑓′(0) = 𝑒 0 𝑐𝑜𝑠 0 − 𝑒 0 𝑠𝑖𝑛 0 = 1
𝑓′′(𝑥 ) = −2𝑒 𝑥 𝑠𝑖𝑛 𝑥 ⇒ 𝑓′′(0) = −2𝑒 0 𝑠𝑖𝑛 0 = 0
𝑓′′′(𝑥 ) = −2𝑒 𝑥 𝑐𝑜𝑠 𝑥 − 2𝑒 𝑥 𝑠𝑖𝑛 𝑥 ⇒ 𝑓′′′(0) = −2𝑒 0 𝑐𝑜𝑠 0 − 2𝑒 0 𝑠𝑖𝑛 0 = −2
𝑓 𝑖𝑣 (𝑥 ) = −4𝑒 𝑥 𝑐𝑜𝑠 𝑥 ⇒ 𝑓 𝑖𝑣 (0) = −4𝑒 0 𝑐𝑜𝑠 0 = −4
Putting these values in ⑥, we get
𝑥 2𝑥 3 4𝑥 4
e cos 𝑥 = 1 + 𝑥 − − −⋯
3! 4!
𝑥3 𝑥4
or e𝑥 cos 𝑥 = 1 + 𝑥 − − +⋯
3 6
𝑥2 𝑥4
Example5 Show that 𝑙𝑜𝑔 𝑠𝑒𝑐 𝑥 = + +⋯
2 12
𝑥2 𝑥3 𝑥𝑛
Solution: We have, 𝑓 (𝑥 ) = 𝑓 (0) + 𝑥𝑓′(0) + 𝑓′′(0) + 𝑓′′′(0) + ⋯ + 𝑓 (𝑛) (0) + ⋯ ⑥
2! 3! 𝑛!
Here 𝑓(𝑥 ) = 𝑙𝑜𝑔 𝑠𝑒𝑐 𝑥 ⇒ 𝑓(0) = 𝑙𝑜𝑔 1 = 0
𝑓′(𝑥 ) = 𝑡𝑎𝑛 𝑥 ⇒ 𝑓′(0) = 𝑡𝑎𝑛 0 = 0
𝑓′′(𝑥 ) = 𝑠𝑒𝑐 2 𝑥 ⇒ 𝑓′′(0) = 𝑠𝑒𝑐 2 0 = 1
𝑓′′′(𝑥 ) = 2𝑠𝑒𝑐 2 𝑥 𝑡𝑎𝑛 𝑥 ⇒ 𝑓′′′(0) = 2𝑠𝑒𝑐 2 0 𝑡𝑎𝑛 0 = 0
𝑓 𝑖𝑣 (𝑥 ) = 2𝑠𝑒𝑐 4 𝑥 + 4 𝑡𝑎𝑛2 𝑥𝑠𝑒𝑐 2 𝑥 ⇒ 𝑓 𝑖𝑣 (0) = 2
𝑥2 𝑥4
Putting these values in ⑥, we get 𝑙𝑜𝑔 𝑠𝑒𝑐 𝑥 = + +⋯
2 12
𝜋 1 𝜃2 𝜃3
Example 6 Show that 𝑠𝑖𝑛 ( + 𝜃) = (1 + 𝜃 − − + ⋯)
4 2
√ 2! 3!
Solution: By Taylor’s expansion, we have
ℎ2 ℎ3 ℎ𝑛
𝑓 (𝑥 ) = 𝑓(𝑎 + ℎ) ≈ 𝑓(𝑎) + ℎ𝑓′(𝑎) + 𝑓′′(𝑎) + 𝑓′′′(𝑎) + ⋯ + 𝑓 (𝑛) (𝑎) + ⋯ …①
2! 3! 𝑛!
ℎ2 ℎ3
⸫ 𝑠𝑖𝑛 𝑥 = 𝑠𝑖𝑛(𝑎 + ℎ) ≈ 𝑠𝑖𝑛 𝑎 + ℎ 𝑐𝑜𝑠 𝑎 + (−𝑠𝑖𝑛𝑎) + (−𝑐𝑜𝑠𝑎) + ⋯
2! 3!
𝜋
Taking 𝑎 = and ℎ = 𝜃
4
𝜋 𝜋 𝜋 𝜃2 𝜋 𝜃3 𝜋
𝑠𝑖𝑛 ( + 𝜃) = 𝑠𝑖𝑛 + 𝜃𝑐𝑜𝑠 + (−𝑠𝑖𝑛 4 ) + (−𝑐𝑜𝑠 4 ) + ⋯
4 4 4 2! 3!
𝜋 1 𝜃2 𝜃3
or 𝑠𝑖𝑛 ( + 𝜃) = (1 + 𝜃 − − + ⋯)
4 √2 2! 3!
Approximation of Errors
Consider a function 𝑦 = 𝑓(𝑥), then if 𝛿𝑥 be a small change in x and 𝛿𝑦 be the resulting change in 𝑦,
𝑑𝑦
then 𝛿𝑦 = 𝛿𝑥 approximately.
𝑑𝑥
Example 7 Find the change in the total surface area of a right circular cone when
(i) the radius is constant but there is a small change in the altitude
(ii) the altitude is constant but there is a small change in the radius.
Solution: Let S be the total surface area of the cone , then S = 𝜋𝑟 2 + 𝜋𝑟√𝑟 2 + ℎ2
𝑑𝑆
(i) The radius 𝑟 is constant, and altitude ℎ changes, then 𝛿𝑆 = 𝛿ℎ
𝑑ℎ
𝑑𝑆 𝜋𝑟 𝜋𝑟ℎ
Now =0+ . 2ℎ =
𝑑ℎ 2√𝑟 2 +ℎ 2 √𝑟 2 +ℎ2
𝑑𝑆 𝜋𝑟ℎ
∴ 𝛿𝑆 = 𝛿ℎ = 𝛿ℎ approximately.
𝑑ℎ √𝑟 2 +ℎ2
𝑑𝑆
(ii) The altitude ℎ is constant, and radius 𝑟 changes, then 𝛿𝑆 = 𝛿𝑟
𝑑𝑟
𝑑𝑆 2𝜋𝑟 2 𝜋(2𝑟 2 +ℎ2 )
Now = 2𝜋𝑟 + 𝜋√𝑟 2 + ℎ2 + = 2𝜋𝑟 +
𝑑𝑟 2√𝑟 2 +ℎ2 √𝑟 2 +ℎ2
𝑑𝑆 𝜋(2𝑟 2 +ℎ2 )
∴ 𝛿𝑆 = 𝛿𝑟 = (2𝜋𝑟 + ) 𝛿𝑟 approximately.
𝑑𝑟 √𝑟 2 +ℎ2
Example 8 If 𝑎 , 𝑏 , 𝑐 are the sides of the triangle ABC and S is the semi- perimeter, show that if there is a small error 𝛿𝑐
in the measurement of side 𝑐 then the error 𝛿∆ in the area ∆ of the triangle is given by
∆ 1 1 1 1
𝛿∆ = ( + + − ) 𝛿𝑐
4 𝑆 𝑆−𝑎 𝑆−𝑏 𝑆−𝑐
Solution: We know that ∆2 = 𝑆(𝑆 − 𝑎)(𝑆 − 𝑏)(𝑆 − 𝑐)
Taking log of both sides, we get 2𝑙𝑜𝑔∆= 𝑙𝑜𝑔 𝑆 + log(𝑆 − 𝑎) + log(𝑆 − 𝑏) + log (𝑆 − 𝑐)
2 𝑑∆ 1 𝑑𝑆 1 𝑑(𝑆−𝑎) 1 𝑑(𝑆−𝑏) 1 𝑑(𝑆−𝑐)
Differentiating both the sides w.r.t. 𝑐 , we get = + + +
∆ 𝑑𝑐 𝑆 𝑑𝑐 𝑆−𝑎 𝑑𝑐 𝑆−𝑏 𝑑𝑐 𝑆−𝑐 𝑑𝑐
(𝑎+𝑏+𝑐) 2 𝑑∆ 11 1 1 1
Also, 𝑆 = , ⸫ = + + −
2 ∆ 𝑑𝑐 𝑆2 2(𝑆−𝑎) 2(𝑆−𝑏) 2(𝑆−𝑐)
𝑑∆ ∆ 1 1 1 1
⇒ = ( + + − )
𝑑𝑐 4 𝑆 (𝑆−𝑎) (𝑆−𝑏) (𝑆−𝑐)
𝑑∆ ∆ 1 1 1 1
⇒ 𝛿∆= 𝛿𝑐 = ( + + − ) 𝛿𝑐
𝑑𝑐 4 𝑆 (𝑆−𝑎) (𝑆−𝑏) (𝑆−𝑐)

Example 9 If 𝑇 = 2𝜋√(𝑙⁄𝑔) , find the error in T corresponding to 2% error in 𝑙 where 𝑔 is constant.


𝑑𝑇
Solution: Error in T is given by 𝛿𝑇 = 𝛿𝑙
𝑑𝑙
𝑑𝑇 2𝜋 1
Now =
𝑑𝑙 √𝑔 2√𝑙
𝜋 1
∴ 𝛿𝑇 = 𝛿𝑙
√𝑔 √𝑙
𝛿𝑇 𝜋 𝛿𝑙 √𝑔 1 𝛿𝑙
⇒ = =
𝑇 √𝑔 √𝑙 2𝜋√𝑙 2 𝑙
𝛿𝑇 1 𝛿𝑇
⇒ ( . 100) = ( . 100)
𝑇 2 𝑇
i.e. percentage error in 𝑇 is half of the percentage error in 𝑙
⸫ corresponding to 2% error in 𝑙 , percentage error in T is 1%.

Exercise
1. Expand 𝑡𝑎𝑛−1 𝑥 in powers of (𝑥 − 1).
𝜋 1 1 1
Ans. 𝑡𝑎𝑛−1 𝑥 = + (𝑥 − 1) − (𝑥 − 1)2 + (𝑥 − 1)3 + ⋯
4 2 4 12
11
2. Using Taylor’s theorem find the approximate value of 𝑓 ( ) where 𝑓(𝑥 ) = 𝑥 3 + 32 + 15𝑥 − 10
10
Ans. 11.461
𝑥2 𝑥3 𝑥4
3. Show that log(1 + 𝑠𝑖𝑛𝑥 ) = 𝑥 − + − +⋯
2 6 12
𝜋 2 8 10
4. Show that 𝑡𝑎𝑛 ( + 𝑥) = 1 + 2𝑥 + 2𝑥 + 𝑥3
+ 𝑥 4 + ⋯ and hence find tan 46o
4 33
Ans. 1.0355
5. A soap bubble of radius 2cm shrinks to radius 1.9 cm. Find the decrease in volume and surface area.
Ans. -5.024 cm3 and -5.024cm2
6. If log104 = 0.6021, find the approximate value of log10404.
Ans. 2.61205
7. Let A, B and C be the angles of a triangle opposite to the sides a, b and c respectively. If small errors 𝛿𝑎, 𝛿𝑏 and
𝑎
𝛿𝑐are made in the sides then show that 𝛿𝐴 = (𝛿𝑎 − 𝛿𝑏 𝑐𝑜𝑠𝐶 − 𝛿𝑐 𝑐𝑜𝑠𝐵) where ∆ is the area of the triangle.
2∆

You might also like