Digital Electronics:
1. Discuss decimal number system. Define radix.
2. Define octal number system. How the counting in octal number system is made?
3. Discuss how the hexadecimal numbers are convened into its equivalent binary
numbers and vice — versa.
4. Write numbers from 1 to 15 in the following number systems:
(i) Binary (ii) Octal (iii) Hexadecimal
5. Discuss how the addition of binary numbers is performed.
6. Discuss how the subtraction of binary numbers is performed.
7. What are signed numbers? Give the different ways of representing the signed
binary numbers in a digital system.
8. Explain the 1's and 2’s complement representation of binary numbers.
9. Explain the Addition/Subtraction method of Signed Numbers in 2’s complement
representation taking suitable examples.
10. Discuss 9’s and 10’s complement of decima) numbers. How 10’s complement is
used for the addition of signed decimal numbers,
11. Convert the following decimal numbers into their equivalent binary numbers:
(i) 356 (ii) 679 (iii) 5797 (iv) 4391
12. Convert the following binary numbers into their equivalent decimal numbers:
(i) 1010111 (ii) 1110101 (iii) 10001001 1 (iv) 110010001
13. Covert the following binary number« into their octal, hexadecimal and decimal
equivalent: (i) 1011101 (ii) l0l0l0l 1101 (iii) 1001l01011 (iv) 10111101
14. Consett the following hexadecimal number to binary and then to octal
(i) 2BAFC (ii) 67DEF (iii) 25d7C (iv) 2AB76
15. Covert the following octal number into their decimal equivalent:
(i) 26775 (ii) 67344 (iii) 53276 (iv) 15405
27. Convert the following octal numbers into their binary equivalent:
(i) 126705 (ii) 207344 (iii) 350276 (iv) 415005
28. Express the following decimal numbers into their equivalent octal and
hexadecimal number.
(i) 798562 (ii) 179856 (iii) 369852 (iv) 9120305
29. Convert the following decimal numbers into binary numbers.
(i) 697.625 (ii) 1457.23 (iii) 22097.96 (iv) 39870.0625
16. Convert the following decimal numbers into octal numbers. (i) 4537.3l2 (ii)
7192.25 (iii) 4389.125 (iv) 1767.3
17. Convert the following binary numbers to their equivalent octal and
hexadecimal numbers. (i) 11011011.0 11 (ii) 1011101 11.1111 (iii)
10111110l.111011
18. Express the following hexadecimal numbers to their equivalent binary and
octal numbers. (i) 3AC45B.20B (ii) 6754A.2FE
(iii) 4596BC.31 DF (iv) 239.2AB7
19. Add the following numbers in binary: (i) (45)10 + (67)10 (ii) (246)10 +
(397)10 (iii) (6754)10 + (2450)10 (iv) (4096)10 + (256)10
20. Subtract the following numbers in binary: (i) 2576310 – 245410 (ii) 983210 –
243210 (iii) 450610 – 200410 (iv) 900610 – 459810
21. Perform the following binary additions. (i) 11010111 +1011010 (ii)
10111101.101 + 10101001.011 (iii) 100101101.101 + 10010110.01 (iv)
111010110.1101+10111011.0101
22. Perform the following binary subtraction. (i) 11010011 – 1010010 (ii)
10100101.101 – 10111001.001
23. (iii) 100101011.001 – 10100110.01 (iv) 110010110.1001–10100011.0111
24. Solve the following: (i) (11011)2 x (101)2 = (?)2 (ii) (110010)2 x (1011)2 =
(?)2 (iii) (1101.011)2 x (101.01)2 = (?)2
25. Solve the following: (i) (11001)2 ÷ (1011)2 = (?)2 (ii) (101010)2 ÷
(1001)2 = (?)2 (iii) (10101.011)2 ÷ (100.11)2 = (?)2 (iv) (1.00101)2 ÷(10.10)2
=(?)2
26. Perform the following operations in 12-bit system using 2’s complement
method. (i) – 149 – 126 (ii) 607 – 319 (iii) – 871 + 112 (iv) 312 – 540.
27. Subtract the following using 10’s complement method: (i) 94562074 – 495421
(ii) 3216547 – 9876540
28. Convert the following BCD (8421) code numbers to decimal numbers: (i)
0100001100000110 (ii) 0010100101110000 (iii) 1001100000000001 (iv)
0101010000100001
29. Convert the following decimal numbers to XS3 (excess –3) code: 1026, 4375,
6980, 4415
30. Convert the following excess –3 codes to decimal numbers: (i)
1100011101011001 (ii) 0101011000110110 (iii) 0110011101000101 (iv)
1000010010111001
31. Convert the following decimal numbers to gray code: 8975, 4568, 23501, 10254
32. Convert the following gray code numbers to binary numbers. (i)
(1010111010000101110) g (ii) (1111001011011011011) g (iii)
(10110111011111101)g (iv) (10000100100100100)g
33. Construct 7 –bit even parity Hamming code for transmitting the following
digital data: (i) 0101 (ii) 1000 (iii) 0110
34. Using the BCD (8421) code, perform the addition of following decimal numbers
verify your answer: (i) 0781 + 123 (ii) 1056 + 4891 (iii) 254 + 511 (iv)
3001 + 25
35.
36. BCD addition and subtraction
37. Excess –3 codes addition and subtraction.