linear
September 20, 2023
[1]: print(7+3)
        10
[2]: print(5+3)
[7]: import seaborn as sns
[8]: iris=sns.load_dataset('iris')
[9]: iris
[9]:          sepal_length   sepal_width   petal_length   petal_width      species
        0              5.1           3.5            1.4           0.2       setosa
        1              4.9           3.0            1.4           0.2       setosa
        2              4.7           3.2            1.3           0.2       setosa
        3              4.6           3.1            1.5           0.2       setosa
        4              5.0           3.6            1.4           0.2       setosa
        ..             …           …            …           …        …
        145            6.7           3.0            5.2           2.3    virginica
        146            6.3           2.5            5.0           1.9    virginica
        147            6.5           3.0            5.2           2.0    virginica
        148            6.2           3.4            5.4           2.3    virginica
        149            5.9           3.0            5.1           1.8    virginica
        [150 rows x 5 columns]
[10]: iris=iris[['petal_length','petal_width']]
[11]: iris
[11]:         petal_length   petal_width
        0              1.4           0.2
        1              1.4           0.2
        2              1.3           0.2
        3              1.5           0.2
                                                   1
      4             1.4            0.2
      ..            …          …
      145           5.2            2.3
      146           5.0            1.9
      147           5.2            2.0
      148           5.4            2.3
      149           5.1            1.8
      [150 rows x 2 columns]
[12]: x=iris['petal_length']
      y=iris['petal_width']
[18]: import matplotlib.pyplot as plt
      plt.scatter(x,y)
      plt.xlabel("petal length")
      plt.ylabel("petal width")
[18]: Text(0, 0.5, 'petal width')
                                         2
[52]: from sklearn.model_selection import train_test_split
      x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.
       ↪4,random_state=23)
[53]: import numpy as np
      x_train=np.array(x_train).reshape(-1,1)
      x_test=np.array(x_test).reshape(-1,1)
[54]: from sklearn.linear_model import LinearRegression
[55]: lr=LinearRegression()
[56]: lr.fit(x_train,y_train)
[56]: LinearRegression()
[57]: c=lr.intercept_
      c
[57]: -0.35113274221437507
[58]: m=lr.coef_
      m
[58]: array([0.41684538])
[48]: y_pred_train=m*x_train+c
      y_pred_train.flatten()
[48]: array([1.73309416,   0.31581987,   1.31624878,   0.3575044 ,   1.98320139,
             1.31624878,   1.64972508,   1.98320139,   1.7747787 ,   1.69140962,
             0.23245079,   0.31581987,   1.98320139,   0.23245079,   0.31581987,
             1.94151685,   1.7747787 ,   1.31624878,   0.23245079,   1.35793332,
             1.85814777,   1.52467147,   2.06657046,   2.40004677,   1.44130239,
             0.19076625,   1.31624878,   1.69140962,   1.69140962,   1.31624878,
             0.27413533,   1.52467147,   1.52467147,   1.27456424,   1.73309416,
             1.64972508,   1.2328797 ,   1.7747787 ,   2.27499315,   2.19162408,
             0.14908171,   2.02488593,   0.8994034 ,   0.27413533,   2.108255 ,
             1.64972508,   0.23245079,   1.52467147,   1.39961786,   1.81646324,
             0.19076625,   0.06571264,   1.10782609,   0.10739718,   1.60804055,
             1.39961786,   0.14908171,   2.06657046,   1.44130239,   1.52467147,
             0.31581987,   2.52510038,   1.56635601,   1.7747787 ,   1.98320139,
             1.60804055,   0.27413533,   0.31581987,   1.94151685,   2.06657046,
             1.48298693,   0.19076625,   1.81646324,   1.02445701,   2.02488593,
             1.10782609,   0.19076625,   0.27413533,   0.27413533,   1.7747787 ,
             0.23245079,   0.23245079,   1.69140962,   0.23245079,   1.48298693,
             0.27413533,   1.56635601,   0.27413533,   0.19076625,   1.7747787 ])
                                                 3
[59]: y_pred=lr.predict(x_train)
      y_pred
[59]: array([1.73309416,   0.31581987,   1.31624878,   0.3575044 ,   1.98320139,
             1.31624878,   1.64972508,   1.98320139,   1.7747787 ,   1.69140962,
             0.23245079,   0.31581987,   1.98320139,   0.23245079,   0.31581987,
             1.94151685,   1.7747787 ,   1.31624878,   0.23245079,   1.35793332,
             1.85814777,   1.52467147,   2.06657046,   2.40004677,   1.44130239,
             0.19076625,   1.31624878,   1.69140962,   1.69140962,   1.31624878,
             0.27413533,   1.52467147,   1.52467147,   1.27456424,   1.73309416,
             1.64972508,   1.2328797 ,   1.7747787 ,   2.27499315,   2.19162408,
             0.14908171,   2.02488593,   0.8994034 ,   0.27413533,   2.108255 ,
             1.64972508,   0.23245079,   1.52467147,   1.39961786,   1.81646324,
             0.19076625,   0.06571264,   1.10782609,   0.10739718,   1.60804055,
             1.39961786,   0.14908171,   2.06657046,   1.44130239,   1.52467147,
             0.31581987,   2.52510038,   1.56635601,   1.7747787 ,   1.98320139,
             1.60804055,   0.27413533,   0.31581987,   1.94151685,   2.06657046,
             1.48298693,   0.19076625,   1.81646324,   1.02445701,   2.02488593,
             1.10782609,   0.19076625,   0.27413533,   0.27413533,   1.7747787 ,
             0.23245079,   0.23245079,   1.69140962,   0.23245079,   1.48298693,
             0.27413533,   1.56635601,   0.27413533,   0.19076625,   1.7747787 ])
[60]: import matplotlib.pyplot as plt
      plt.scatter(x_train,y_train)
      plt.plot(x_train,y_pred,color="red")
      plt.xlabel("petal length")
      plt.ylabel("petal width")
[60]: Text(0, 0.5, 'petal width')
                                                 4
[61]: y_pred_test=lr.predict(x_test)
      y_pred_test
[61]: array([1.89983231,   2.14993954,   1.35793332,   0.27413533,   1.73309416,
             1.69140962,   0.3575044 ,   1.94151685,   0.3575044 ,   1.14951063,
             1.60804055,   0.31581987,   2.108255 ,    0.27413533,   0.27413533,
             1.7747787 ,   1.52467147,   1.60804055,   2.19162408,   0.23245079,
             1.85814777,   0.23245079,   0.31581987,   0.19076625,   1.98320139,
             0.23245079,   0.44087348,   1.64972508,   1.48298693,   1.27456424,
             0.27413533,   1.27456424,   0.19076625,   2.44173131,   0.27413533,
             0.3575044 ,   1.56635601,   1.02445701,   1.39961786,   2.14993954,
             2.02488593,   0.44087348,   1.19119517,   0.23245079,   1.48298693,
             1.73309416,   1.52467147,   2.31667769,   0.27413533,   1.35793332,
             2.19162408,   1.89983231,   0.23245079,   1.98320139,   1.52467147,
             1.60804055,   2.44173131,   1.39961786,   0.23245079,   1.7747787 ])
[62]: import matplotlib.pyplot as plt
      plt.scatter(x_test,y_test)
      plt.plot(x_test,y_pred_test,color="red")
      plt.xlabel("petal length")
      plt.ylabel("petal width")
                                                 5
[62]: Text(0, 0.5, 'petal width')
[ ]: