0% found this document useful (0 votes)
4 views6 pages

OF FOR M: Goodwin

The document discusses the applications of electro-optic and nonlinear materials in waveguide devices, highlighting their advantages such as high interaction efficiencies and the ability to integrate multiple functions into a single component. It describes the basic functions of electro-optic devices, including phase modulation and amplitude modulation, and their relevance in telecommunications and optical sensors. Additionally, it covers the integration of these devices into complex components like fiber optic gyroscopes, emphasizing their high bandwidth capabilities and transparency to data modulation formats.

Uploaded by

elhamca.286
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
4 views6 pages

OF FOR M: Goodwin

The document discusses the applications of electro-optic and nonlinear materials in waveguide devices, highlighting their advantages such as high interaction efficiencies and the ability to integrate multiple functions into a single component. It describes the basic functions of electro-optic devices, including phase modulation and amplitude modulation, and their relevance in telecommunications and optical sensors. Additionally, it covers the integration of these devices into complex components like fiber optic gyroscopes, emphasizing their high bandwidth capabilities and transparency to data modulation formats.

Uploaded by

elhamca.286
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

APPLICATIONS OF ELECTRO-OPTIC AND NONLINEAR MATERIALS FOR WAVEGUIDE DEVICES

M J GOODWIN*

1. INTRODUCTION

The a p p l i c a t i o n o f o p t i c a l l y n o n l i n e a r m a t e r i a l s i n waveguide formats i s


p a r t i c u l a r l y a t t r a c t i v e f o r several reasons. F i r s t l y , o p t i c a l n o n l i n e a r i t i e s
a r e g e n e r a l l y weak, r e q u i r i n g h i g h o p t i c a l i n t e n s i t i e s o r e l e c t r i c f i e l d
s t r e n g t h s f o r u s a b l e e f f e c t s . The a d o p t i o n o f a waveguide geometry a l l o w s
t h e s t r o n g f i e l d s t o be achieved r e a d i l y by c o n f i n i n g t h e o p t i c a l f i e l d t o a
very small c r o s s s e c t i o n , t y p i c a l l y o f o r d e r 10,0112. A d d i t i o n a l l y , these h i g h
f i e l d s can be m a i n t a i n e d over l o n g i n t e r a c t i o n l e n g t h s , a l l o w i n g h i g h e r
i n t e r a c t i i o n e f f i c i e n c i e s than a r e a c h i e v a b l e i n b u l k m a t e r i a l s . The second
a t t r a c t i o n o f t h e waveguide format stems f r o m t h e p o s s i b i l i t y o f combining
s e v e r a l d e v i c e f u n c t i o n s on a s i n g l e i n t e g r a t e d o p t i c component, t h e
i n d i v i d u a l d e v i c e elements b e i n g connected by m o n o l i t h i c waveguide s e c t i o n s .
This g r e a t l y increases the functional complexity available from e l e c t r o - o p t i c
and n o n l i n e a r components t o t h e e x t e n t t h a t t h e range o f a p p l i c a t i o n s o f
waveguide d e v i c e s i s now expanding r a p i d l y .

Nonlinear o p t i c a l e f f e c t s can be d i v i d e d c o n v e n i e n t l y i n t o two c a t e g o r i e s ;


e l e c t r o - o p t i c e f f e c t s i n which an a p p l i e d e l e c t r i c f i e l d i n t e r a c t s w i t h t h e
o p t i c a l f i e l d s , and n o n l i n e a r ( o r a l l - o p t i c a l ) e f f e c t s i n which two o r more
o p t i c a l f i e l d s i n t e r a c t d i r e c t l y . The b a s i c f u n c t i o n s o f f e r e d by e l e c t r o -
o p t i c and n o n l i n e a r waveguide devices w i l l be d e s c r i b e d and t h e i r use i n more
complex i n t e g r a t e d o p t i c a l components w i l l be i l l u s t r a t e d w i t h examples f r o m
t h e f i e l d s o f o p t i c a l communications, o p t i c a l sensors and s i g n a l processing.

2. ELECTRO-OPTIC DEVICES

The a p p l i c a t i o n o f an e l e c t r i c f i e l d t o an e l e c t r o - o p t i c m a t e r i a l r e s u l t s i n
a change i n i t s r e f r a c t i v e index, and consequently a l t e r s t h e phase of l i g h t
passing through it. The s i m p l e s t waveguide device i s thus t h e phase
modulator shown s c h e m a t i c a l l y i n F i g . 1. The performance o f a waveguide
phase m o d u l a t o r can be c h a r a c t e r i s e d by t h e d r i v e v o l t a g e p e r u n i t
bandwidth 11j.

v/Af = xR [z] (PA) [q] (1)

where nf i s t h e bandwidth, R t h e t e r m i n a t i n g r e s i s t a n c e , E f f t h e d i e l e c t r i c
constant, n t h e r e f r a c t i v e index, r t h e e l e c t r o - o p t i c c o e f f i c i e n t , p a f a c t o r
determined by t h e modulator type, h t h e wavelength, d t h e e l e c t r o d e
separation, 5 a f u n c t i o n o f t h e e l e c t r o d e dimensions and r a f a c t o r r e l a t i n g
t o t h e degree o f o v e r l a p between t h e o p t i c a l and a p p l i e d e l e c t r i c f i e l d s w i t h
a v a l u e between 0 and 1. Thus, m i n i m i s i n g V / A f f a v o u r s m a t e r i a l s w i t h l o w
d i e l e c t r i c c o n s t a n t , h i g h e l e c t r o - o p t i c c o e f f i c i e n t s and h i g h r e f r a c t i v e
index. Also, t h e e l e c t r o d e c o n f i g u r a t i o n should be designed t o maximise r,
which i n turn f a v o u r s s t r u c t u r e s a l l o w i n g t h e p l a c i n g o f e l e c t r o d e s above and

*M J Goodwin, Plessey Research Caswell L i m i t e d , Caswell, Towcester,


Northants, England, "12 8EQ

611
below t h e waveguide, though t h i s i s n o t p o s s i b l e w i t h a i l e l e c t r o - o p t i c
m a t e r i a l systems.

The device bandwidth i s l i m i t e d by t h e RC t i m e c o n s t a n t o f t h e e l e c t r o d e


s t r u c t u r e , and t h i s p r e s e n t s a t r a d e - o f f between reduced capacitance (C-L)
f o r h i g h speed, and t h e consequent i n c r e a s e i n d r i v e v o l t a g e r e q u i r e d f o r a
g i v e n degree o f m o d u l a t i o n (V-l/L). The l i m i t a t i o n s imposed by lumped
e l e c t r o d e s can be overcome by employing a t r a v e l l i n g - w a v e e l e c t r o d e s t r u c t u r e
i n which t h e o p t i c a l and e l e c t r i c a l s i g n a l s propagate t o g e t h e r along t h e
device, y i e l d i n g a c u m u l a t i v e phase s h i f t . Very h i g h bandwidths up t o
100 GHz have been r e p o r t e d [ 2 , though a c h i e v i n g low e l e c t r i c a l losses and
matched e l e c t r i c a l and o p t i c a v e l o c i t i e s i n t h e s e s t r u c t u r e s r e q u i r e s
careful attention.

Of w i d e r i n t e r e s t and a p p l i c a t i o n a r e e l e c t r o - o p t i c devices y i e l d i n g
amplitude m o d u l a t i o n o r s w i t c h i n g . The two s t r u c t u r e s shown i n F i g u r e 2, t h e
Mach-Zehnder i n t e r f e r o m e t e r and t h e d i r e c t i o n a l c o u p l e r , a r e t h e most
commonly employed c o n f i g u r a t i o n s t l ] [ 3 j . The design o f these devices i s
g e n e r a l l y concerned w i t h a c h i e v i n g h i g h m o d u l a t i o n r a t e f o r a minimum expend-
i t u r e o f e l e c t r i c a l power, and t h e design t r a d e o f f s f o r these two r e q u i r e -
ments a r e s i m i l a r t o t h o s e f o r t h e phase modulator and w e l l documented 141.
Broadband performance t o 40 GHz has been demonstrated i n LiNbO 5 I, and
several schemes f o r f r a c t i o n a l bandwidth m o d u l a t i o n can be empfoied t o
r e s t r i c t t h e m o d u l a t i o n bandwidth w i t h t h e aim o f reduced d r i v e power
requirement a6-1[7][8]. Equation 1 y i e l d s a f i g u r e of m e r i t , F, f o r comparing
i n t e n s i t y mo u f a t o r s , F = hfh/V, The d e v i c e shown i n F i g u r e 3 d i s p l a y e d t h e
h i q h e s t r e D o r t e d v a l u e o f F=6.2 G~z.m.v-1. T h i s was a GaAs/ GaAlAs
t r a v e l l i n g ' wave Mach Zehnder s t r u c t u k e employing an e l e c t r i c a l slow-wave
e l e c t r o d e system t o achieve near v e l o c i t y matching 1 9 3 .

3. INTEGRATED ELECTRO-OPTIC COMPONENTS

I n i t i a l i n t e g r a t i o n o f d i s c r e t e e l e c t r o - o p t i c d e v i c e elements has been a med


a t a c h i e v i n g l a r g e a r r a y s of waveguide switches f o r space-, time- and
w a v e l e n g t h - d i v i s i o n s w i t c h i n g f o r telecommunications, and more r e c e n t l y f o r
s w i t c h i n g r.f. s i g n a l s c a r r i e d on f i b r e o p t i c t r a n s m i s s i o n l i n e s . I n
a d d i t i o n t o t h e i r h i g h bandwidth c a p a b i l i t y , these s t r u c t u r e s a r e a l s o
a t t r a c t i v e because o f t h e i r transparency t o t h e frequency c o n t e n t o r
modulation f o r m a t o f t h e data they convey, i n marked c o n t r a s t t o e q u i v a l e n t
e l e c t r i c a l s w i t c h i n g a r r a y s . The most commonly used s w i t c h i n g element
employed i s t h e d i r e c t i o n a l c o u p l e r , and a r r a y s up t o 8 x 8 i n Ti:LiNbO,
waveguides i l O j [ l l j and 4 x 4 i n InP semiconductor waveguides L 1 2 ] have been
reported.

I n terms o f f u n c t i o n a l complexity, t h e most demanding i n t e g r a t e d component


c u r r e n t l y b e i n g i n v e s t i g a t e d i s t h a t used i n t h e f i b r e o p t i c gyroscope (FOG),
shown s c h e m a t i c a l l y i n F i g u r e 4. These components a r e c u r r e n t l y f a b r i c a t e d
i n Ti:LiNbO, and i n c l u d e d i r e c t i o n a l c o u p l e r , phase modulator and phase and
p o l a r i s a t i o n f i l t e r elements i n t e g r a t e d i n a s i n g l e i n t e g r a t e d o p t i c
component. The FOG i s c o n f i g u r e d as a Sagnac i n t e r f e r o m e t e r i n which
r o t a t i o n o f t h e f i b r e c o i l induces a phase s h i f t between t h e two c o u n t e r
p r o p a g a t i n g l i g h t waves [13j. A p p l i c a t i o n o f an equal and o p p o s i t e e l e c t r o -
o p t i c phase s h i f t c a n c e l s t h i s , and t h e v o l t a g e r e q u i r e d i s p r o p o r t i o n a l t o
the r o t a t i o n rate.
4. NONLINEAR WAVEGUIDE DEVICES

Second-order n o n l i n e a r i n t e r a c t i o n s i n c l u d e second harmonic generation, and


p a r a m e t r i c a m p l i f i c a t i o n and o s c i l l a t i o n . These have been i n v e s t i g a t e d i n
waveguide s t r u c t u r e s , p r i n c i p a l l y i n LiNbO, based m a t e r i a l systems ~ 1 4 1.
More r e c e n t l y , o r g a n i c m a t e r i a l s have r e c e i v e d c o n s i d e r a b l e a t t e n t i o n 115 J,
o f f e r i n g 1a r g e r n o n l inear c o e f f ic i e n t s and t h e consequent p o s s i b i 1it y o f
e f f i c i e n t o p e r a t i o n a t o p t i c a l power l e v e l s a v a i l a b l e f r o m s o l i d s t a t e l a s e r
diodes, and s i m p l e l o w - c o s t waveguide f a b r i c a t i o n processes.

T h i r d - o r d e r n o n l inear waveguide devices a r e based on t h e in t e n s i ty-dependent


r e f r a c t i v e i n d e x ( n 2 ) , whereby

n (I) = no + n 2 I (2)
where no i s t h e l i n e a r r e f r a c t i v e i n d e x and I i s t h e o p t i c a l i n t e n s i t y . I n
a guided-wave device, t h i s leads t o an i n t e n s i t y - d e p e n d e n t p r o p a g a t i o n
constant. C l e a r l y , t h e e l e c t r o - o p t i c device concepts discussed above have an
a l l - o p t i c a l e q u i v a l e n t , i n which t h e r o l e o f t h e a p p l i e d e l e c t r i c f i e l d i s
played by t h e o p t i c a l i n t e n s i t y i t s e l f . F o r example, i n t h e n o n l i n e a r
d i r e c t i o n a l c o u p l e r , an i n c r e a s e i n o p t i c a l i n t e n s i t y o f t h e i n p u t s i g n a l
induces a change i n p r o p a g a t i o n c o n s t a n t and switches t h e o u t p u t s i g n a l from
one o u t p u t p o r t t o t h e o t h e r . T h i s t y p e o f a l l - o p t i c a l s w i t c h i n g a l l o w s
o p t i c a l l o g i c gates t o be d e v i s e d which have p o t e n t i a l a p p l i c a t i o n s f o r
s i g n a l processing, p a r t i c u l a r l y s i n c e t h e s w i t c h i n g t i m e s a s s o c i a t e d w i t h
some t h i r d - o r d e r m a t e r i a l s l i e i n t h e sub-picosecond regime, f a r beyond t h e
speeds a c c e s s i b l e i n e l e c t r o n i c l o g i c gates.

To date t h e r e have been few demonstrations o f a l l - o p t i c a l s w i t c h i n g


( r e f e r e n c e 16 p r o v i d e s a r e c e n t r e v i e w o f t h e area) and t h e optimum m a t e r i a l
has y e t t o be i d e n t i f i e d , p r i m a r i l y because o f t h e somewhat severe r e q u i r e -
ments imposed by t h e h i g h o p t i c a l i n t e n s i t i e s encountered i n these devices.
Various f i g u r e s of m e r i t have been proposed and, by most, s i l i c a g l a s s i s
ranked h i g h l y : i n i t i a l l y s u r p r i s i n g s i n c e s i l i c a processes a very small n 2
c o e f f i c i e n t , though i n p r a c t i c e t h i s i s o f f s e t by i t s very low a t t e n u a t i o n
and l o w a b s o r p t i o n a c h i e v e d i n o p t i c a l f i b r e geometries. It i s i n t h e s i l i c a
system t h a t t h e f a s t e s t a l l - o p t i c a l s w i t c h i n g has been r e p o r t e d w i t h a
response t i m e l e s s t h a n 100 f s e c 1171. C l e a r l y , f u r t h e r m a t e r i a l s
development i s r e q u i r e d t o a l l o w h i s c l a s s o f devices t o f u l f i l i t s
potential.

5. CONCLUSIONS

E l e c t r o - o p t i c and n o n l i n e a r waveguide devices a r e a t t r a c t i v e f o r a range o f


e x i s t i n g and p o t e n t i a l a p p l i c a t i o n s i n o p t i c a l comnunications, o p t i c a l
sensors and s i g n a l p r o c e s s i n g . C u r r e n t l y , LiNbO, and t h e 111-V compound
semiconductor GaAs and InP based m a t e r i a l s systems a r e t h e most advanced f o r
e l e c t r o - o p t i c and second-order n o n l i n e a r devices, and s i l i c a f i b r e s f o r t h i r d
o r d e r wavegui de d e v i ces . New m a t e r i a1 s o f f e r i n g 1a r g e r e l e c t r o - o p t i c and
n o n l i n e a r c o e f f i c i e n t s would r e s u l t i n improved d e v i c e performance, though
a d d i t i o n a l r e q u i r e m e n t s f o r p r o c e s s i b i l i t y , low-loss, s t a b i l i t y and o p t i c a l
damage t h r e s h o l d s must a l s o be addressed.
References

[l] R C A l f e r n e s s , IEEE Trans Microwave Theory and Techn., MTT-30, 1121


( 1982).

[2] J Nees, S W i l l i a m s o n and G Morou, Appl. Phys. L e t t . , 54, 1962 (1989).


!3j R R A Syms, Opt. Quantum. Electron., 20, 189 (1988).

[4] See f o r example, R C A l f e r n e s s , IEEE Quantum. E l e c t r o n . , QE-17, 946


(1981).

1 5 1 D W D o l f i , M Nazarathy and R L Jungerman, E l e c t r o n . L e t t . , 24, 528


(1988).
161 R C A l f e r n e s s , S K Korothy and E M a r c a t i l i , IEEE J. Quantum E l e c t r o n . ,
QE-20, 301 (1984).

1 7 1 M I z u t s u e t a l , Techn. D i g e s t OFC/IOOC '87, Reno, Nevada, USA, 126


(1987).
L 8 j W J S t e w a r t , I Bennion and M J Goodwin, P h i l . Trans. R. Soc. Land.,
A313, 401 (1984).

191 R G Walker, I Bennion and A C C a r t e r , 7 t h I n t e r n a t i o n a l Conf. I n t e g r a t e d


O p t i c s and O p t i c a l F i b r e Communication, Kobe, Japan, J u l y 1989, Techn.
D i g e s t , Vol. 4, 78 (19891.

[lo] P Granestrand e t a l , E l e c t r o n . L e t t . , 22, 816 (1986).


1111 P J D u t h i e and M J Wale, E l e c t r o n . L e t t . , 24, 594 (1988).
[12J H Inoue e t a l , OSA Proceedings on Photonic S w i t c h i n g , Volume 4, 241,
1989.
1131 S E z e k i e l and H J A r d i t t y ( e d s . ) , F i b r e - O p t i c R o t a t i o n Sensors and
Re1 a t e d Technol o g i es , S p r i nger-Veri ag, B e r l i n

1141 R Regener and W Sohler, J. Opt. Soc. Amer. B. 5, 267 (1988).


1151 D J W i l l i a m s ( e d . ) ,
N o n l i n e a r O p t i c a l P r o p e r t es o f Organic and
Polymeric M e t e r i a1 s, ACS Symposium Serf es , No 233, American Chemical
S o c i e t y , Washington DC, 1983.

1161 G I Stegeman e t a l , J. Lightwave Technol., 6, 953 (1988).

[17] S I F r i b e r g , A M Weiner, Y S i l b e r b e r g , B G Sfez and P W Smith, O p t i c s


Lett., 13, 904 (1988).
Figure 1: Electro-optic Waveguide Phase Modulator

0 V.L 0 V.L

( a ) Mach-Zehnder Interferometer (b) Directional Coupler

Figure 2: Electro-optic Waveguide Amp1 itude Modulators and t h e i r


Transmission Characteristics
+ve d.c. waveguide

4
cw
light
in

F i g u r e 3: T r a v e l 1 ing-Wave Mach-Zehnder Modulator i n AlGaAs/GaAs

-
light output
to detaxor
plariser/mode filter

integrated

F i g u r e 4: I n t e g r a t e d O p t i c F i b r e O p t i c Gyroscope

You might also like