Sur Electrostatics
Sur Electrostatics
UnparfoJCe
Slectbestatics Eo Pesmitiu iby (ree Space
vacvum)
max
togego)
Slecic decto t Stahics (ais ox
to intact wh
ano het fotce Reld a
Frmediwm Fais
Conduchon
8ecaue
f heat , g theSe
choge, cuttent
e, fode
Hhe ptocesr
wil be .93
OF
2=tne (ne)
nikalna
3Con q2 opat a40w heud
Chadge is quanhsed
Pgas n e ntrges, matab Slep2:Rq92()
bod pe ve chatge exist kaoegn duning te. Foek = (-s)43) K(sus)
s) Aqox do conducting body ko wide se onnec
jab tak unjea
magnifode L2c +SC Sign )
kiya, Chasqe tob tak gow kasega Find Foet on
UnparfotUe
Slectbestatics Eo Pesmitíoiby
vocuum)
&uee space max
tag ego)
Slectc>tecto t Staies (ois ox
charge
is atteat EoK Epemiiuthy f ony medtum
Tno ondvco
Covstont Gny nedium
when temial vol toge -o
eukal /unchasgad conducting body
Eo = 88G x\6 c Dionen Sion$a'iT
No- paotong = No elecaon mj Highky
N
13
Conduchon uttent wil be
poßlible in conductos, ic whyease olso
colled choe
] Indusgd chage
f'a neute! body i bsought
clole then elecbic lield ioes
OF EQULI B RIUM
would beak bond blw +ve (a-)
2 -ve charge
The tedsbibutn o| chasge an A,
in unchittged
Conducing body in pre Sence chaged fsom Qi
Conducting body iscalled indutedchasge
Phenomenon is índyction:
Dike
Jdeal
Paepees
chasqes
batey
eleckaic
Jepel. Unltke
chasge:
atac
qQil2
em cson't
odr
be
undike, psition
bdu the 2 chosge
of
but erthes on
2) Elesic
left or aight of he 2chote sy lem. Asoy Jtom
chasge soalan quanhty
W
Conservatiue
Chatge is
ih
qvanhsed &
natuse
paticle is
ane
aloays
like , potikn
kchuen
chey
d
Hhe
eg m
body pe vo chabge exist kangn qunig he 2 chag and awey fum hgler
s connec
s) Agax do body ko wide
conduching magnode change
kiya, chage tob tak &lou Kasega
tak unka
o mignitu de •l
Iine qoinig
chasged
He
phcle
2 choges
is aluiay s
and
cutsde the
& stoble
K=
gion of
The Qvsaunding
GENERAL ANALYIS ELECcTRIC
unit tue eot
FEUe charged pachde a in uhck
Q (0,a) o chatge. a wnit tue test charged parhee
choige ke jegell
xing erge toh 2 nah ayega
o force is max at n =t a N2
Pabce feld a, qo ko B ke Reld me le jke
uaki feld disteob kasns kadegi
ma
Hlong veco
F=o F=o
lixed chabges
2(2Ji+1) 2
F
to unifodmy chaged
ditecio
Tine = Fo E= KQ E = KAda
alatL)
tan = Fo
mg
as>L, a +L a E = KQ
ASineTSine
det A=o
Nb mates what maga hvde o eah choige is,
(mt e4)
b) Along
JESino
bisecto
dn
line.
Tos
of
Far
Fel3
unymmelaico
chas qe d
symonelaical
is
Jed
1-D
pattion
Sxten Sion
&rlension
Exlension
]
3
E - 2RKA =
R
KQ
R²
2
TT
RA
(-5)
()
Feld is 2-D E = 2K)
R
aaecic eld due to conducig thin
Sphestcal Shell Solid sphese
any genexal positon. a) If x>R E = Ka/y2
my
E
tHodigonlal
Vestical
K Tos
rold
Geld
o - CoS O2 ) b)
Ir<R
9 8lectac feld
R E = KQ/R
E-
due
o
to
Emax
R
Ey = KA
b
Sin e,- SineJ non- Conducing sphete.
a) y>RE= PR = KQ
3 &o&2
b) &= R E = R = KGa= Ema
PR
3Eo R
Ecentse
2£0 b) Electic
S:fhex
E- vesy ladge
8heet is
ot
q unl
Sheet disc
2Eo
o sheet
cbject
ose to
is vely
Ex
)ma.o Value
T
dueto oo
Sheet
due to
(-o)
disc
Fot Ena€
E- 2K Ra6l2 = KQ Sih ol2 (-
aE(g(roa ) Cod 36)
R R o/2
2o 2Eo
2 -)
b) Alona bisector line. Symnmelacal
Fo Sxten Ston
E = 2 KA = KQ
JESinO
R²
Feld 18l-D Srlension 2)
Foy untymmelaiol potiton
R
d
d
of chasge d Jecl Exlension R
Feld is 2-0
E= KQ
E 2KR ?
a ektic ield due to conducing tin
sphetcal shell olid sphese
any gene al positon. a) If xR E = Ka/s?
JESine
m Hodigonlal Rreld
b) tR E = KQ/R
Ey = KA [oso- Cos0] c) r<R E o
Ema
b
my Vettical Reld 4 Slectaic feld due to R
chatge
Ey = 2KA = o] Slectic feld due to unifoamly chaaged
non con ducing cylinde
a) >R E= PR
Electaic eld doe to semi 2 &ot
(gfinite
Now,
R 2
ng yuasA theotem.
2&o
3
Ecentse
2&o b)Elecatc frel [incide the
Sther gheet ig sphese
2 Vedy ladge ot
) -/5
Eo
object is veby
0o heet loge
g dstonce dmatshi
1 Sletdic feld due to citulad ae
Value
1S
Fa
max.
Ena?E-
JE
d&
elecnè
=0 ke
Red
andat
intenity
da
R R 0/2
n
FoRCE ACTING ON FINITE IRE my Uon- unifodm feld ines
an isolated charged
2 m y= 2L9E
m Vo2
particle
t,
tue chaqe Eqvaion of tajectoy
chasge
sink of ield ELECTRIC POTENTIAL DIFFERENCE
&reld lneg ines The amount wora done by an er temal agcnt
point
nit
to
tve
ano
ot chage vey lowly
her n agiuen ed
uke charges Condition Roo neutial pornt&
2
JC aR VolE
Neutacd point Ig ya
Ve-O =
hga Depends on
) LIN ES
Ciqinale from tue chae & leminak to -ueRELATION
chaye ELE CT RIC
Blw
atoo, Vb-0
ELECTRIc
(Vecog)
FIELD
PoTENTIAL (Scalan)
Uo0
&
k) Dibetn
Cusve is
eledzic
guen by
ed
slope
lines at ang poind on
tangentto thet pant E= -dV
dx
my Ro enkta!
gtadient
+ In ditection
value cd
ef fela
Dolenkal dekaases
i)2 Eletic eld neves iatessect each otke
lines
non unitotn
IV:Tn a sgion, the pleahal is depseseniel
a
sface The
chasge
eleclsic
2 cowloumb
e eA pesenced
gituaed
byy
af
a
point
ui) vo f electre field lnes nognitule
(,,)is
ut) Elecic feld lines l chasge in Side
chotge
a 2
bgrelu
KE
z(1€)s
in
2
mu'o
E0
The
n bithg
amount
ingq a wnt tve
work done
foot chage
by an ertenad
vey tlowly
qqcnt
2
paint8
(om
VA -=ELECTRIC
Wagont = -AU JlC oR Volt
on
V-O = AU
hga. Derends
magnitude d chage 1o +TJ polentia is asked,
) LIN ES
Cagiaake
k) Disectn
.
foom
o electeic ed
tue chasge & teminal to
chaye
~ue>RELATION
ELE CT RLC
Blw
POTENTIAL
ELECTRIC FIELD
(Scalan)
&
Cusve
r)2 lectic
is guen
Reld
by
linea
slope
neves
lines atang point
tong
ofha
on
E= -dv my
dx
Polenkt'a!
gtadient
+ In clitecton
value
ef fel4,
potentil decseases
magnetic Beld.
v) Alauaye move k to equipotential suface:
dx dy dz
ui) No f electre feeld lines rag nikude
vT) 8lectic eld Chotge
ine S chage inide Ne-Vi=- (EEs+Ezk).(dattdys + dzk
Conductor is aluays gero Hence, lonductos is
called sheld- then electic el4 line wil ente
G& leve oncucto t wl do it h to Susbce. fEadx - fEg dy -Ezde
y
SR
a) &>R
field & force wche velol quenlaty,' natvse d chasge
Veut KQ PR
not mentioned But, for elec toic polential 3Eo x
d chadge must be menlioned.
nghuse
b) 8= R Vs = R?
3&o
X
t<R
A c)
Vin- Vs= -[o dr- -5 3E%
(R )
6&o
)
-Vs
2 2
ELE CTROSTA TUC PoTENTIAL ENERGY
Conducdig ang (chaageunifasmy --Re total amt uwosk done n atleadt
bringnA
dislaibued)
2 point chages vey slocaly Jhom oo to he fredd
Ycene = Ka & ech o Rer to fom a elem
R attally q
too at oo
Electtic potential due to along ik 4T q93 ane uni ke u decs eases te: Ugyskem 20
axis
hing
dv= kdq
need
As for unlike
extenal
U1 to do
oil atoac q2,
coNk
no
)
chaages placed
ilectoic potential due to
equilotet al ide a
3 ko' 2Ui
8 Elecdic potental due to con ducting thin A 8u ace
which
u
o b) a12
24
bY=R Vsutlace
Ka
ELECTRIC PoTEN TIAL DUE TO
ELEC TRIC c) 8 <R Vi = KQ
POLNT cHARaE IN ITS R
FLELD dw=kqoQdr 4+Vconst E0
F J
diyen x lecdtie polenlial due to uniBtrnly chasged
Qe cppo in
A Va=- Kq 8-R
X a) &R
field & foe wese vecos quonkhy,. nahvse d hasge
not menhicned But, for electhic polenhial, 3 Eo &
natuse chatge
VA =
muot
Kq
be mentioned.
+ Kqz + k-93)
) b) &= R Vs = PR2
38o
X
A
2 t< R
,L
3&o
Yn =R (3R-)
6&o
Venbae = 3PR
2 3Eo
b) b
) Conducdi
Ycente
sog (chageuni feamy,
KO
R
dislaibued)
-The
ELE
total
2 poant chages
d
atoo
ech otRer
2
CTRO8TATIC
amt
to
vy
fom
wosk done
slocly
a
2
POTENTIAL
syelem
n b inging
fom oo to he
ENER GY
atleast
dd
paricle
Ycenbe aR
2&e
2Eo
. for n'
EQuIPOTENTIAL
no f chasses , no sysom
SURFA CE
=
= n (n-)
due con duclng thfn 2
8 Elecic
Spherical
potenial
solid sphexe
A
at
Buj ace
Tn
which
case
wh d
polenfial
d paint
is
at
t
evey
choag
to electaic
poin t is
feld
Same .
liney
a x>R Vet KQ
susface
equipoten Hial
Sphexical
b) X=R Vsukkr KQ
A uni Poam y choged hg tddiuo a 2
VVd cylindaic al
Suxface-,
equrpolen ial
SURFACE
i Ameunt
partcle
wrk done th
ftom one point
mowhg
to anothe
a ctha
Hhoaged
on
equipolential
Foo chageouthidFox unaymmetical poaihon
hr Youton gujoeehasge pas a giuen sugae
Enleing lux <o
Plur cil aliys be 9/£
.
g
Cnked
THROU
FvY DUE
aH A
To
DISC
PoNT CHARAE
linos nevet Pnlea Set, 0
tquipolenlal suyfoCd neves ntessect each ohes
GAUSS THEDREM o= Q(-Cos ox)
2&o
AREA VECTOR
2
poiat i
=
3€%
3(7-) Tnside covtye
Cauity chaged
it Cc untbsmly
non conducka
,rana?
lux
gauHian Susloce ylncles
EdA As this is oo'ly lage,choqe
g) abx5
dislalbuhon
wil behaue
is unifdm
ao
2 this Sofoce
)
= equipotential
dinked lux Rtough Sufeae
= EA o E
30 to
baaythaough the
PindRux, E must pass
adea of suaface
wved part =0
A/So E
moue
=
h
Sl2
Sm ofor 2 sheet
jdg = f(2n43). sdh given
=4As
one Jace
, it
whateve
Pout = EL'os o = E
capaatos oube 9
68
Dio = E-A = 10 Cod 180 = -l0L2 ELECT Chegge placed at cotnes ube.
Pnet = bin t oat = -IaL + loc = o Asume thot l culbf
i8 Sunou nded by
Slalement yau8 Reotem PLATE
E
The total linked Plux wikPh a dosed Sus face bg cube.
Eo
ENERAL AnVALYSIS BASED ON
In cage fa theet aAUsS
fox Bymmelhicl potitton
linked
Plana equpolenhal 93 A f chage for ang
nt prt 3
Sut face Plox Por each
44
PRoPERTIE S oF EQUIPOTENTINL
Fos chage outidFox unymmetaical potihon
SURFACE for sufae ,nked
{he ypouin bujo hasge a given
i Ameuef wctk done ih moung a ctaaged Plux wil aliaye be? 9/Eo
panktle from one point to anoker on equipolenip olal flox enteig- evig - -EA +EA
Suyfoce is geso. =0
iiFsum an cquipoential unace, electit eld linesAU DuE To PoINT CHARAt
always moue h to tuxface dv-Erda THROU aH A DISC
cld ines neves 0
iii As
equipoenlial
electhic
38o 3 &o
As dscpe we
chosge
-ve
ha,
= lmg UT iesadian.
polat in =R(i-) Tnsde cevikye
cauity unibtmly
FLUX e
inked
prduc
wifh
d any
any
phghcal
pazthiaular g'uen
quadihy
>
3&0
ELECT RIC FIELD DuE
wil be unifotm
and non zeto
T0 ao'y
wved paat
iac
= EA Co 30°
E= fa3)pthsough
the
to find Aox, E must pass
adea o susface
o Fo
ot
| Sheet
2 sheet
EA +EA = SAlSo F
given
f(2nt3).sd kept paxall el
-Tuis feld is independent dis lance; So,
.t
whateve Re distonce blw plales
capaatots, the freld wil be 8ame
RAt RAS =
230 Sine
is
ELECTRIC DIPOLE ohen 2 equal & h tofield omin (o) wken d'pde i8 pazallel
equil bium
poikon, eqn (pE=tue)
2kp Una toble
(Uiys>o)
+9
eçuatoyal
F= -6R PP
-9
B Vequatral =0 -ve &gn indicate Pose is a Haachve in
nohe
Aeuabral potilion, disechien E is oppoSile But far
to disechon dipcle moment
Enio =-2E equateaial
Due to A'B'
F= PdE
TORQUE ACTING oN SMALL
OIPOLE PLACED i AN UIFoRM
ELECTRIC AELD
PRESSURE EXERTIoN EFFECT
P= dF = Dueto mutual
dA Eo sepulsion
chovge on a bady
sujoce,
an
evey part d bidy expeiendes
outword pse*sude whch scalled
electic Ptess ue
> PROPER TIES OF CoN DUC TOR
(
chage & feld Rstde a
always a emaind gero)
condochig kndy
Chasge at contse
Distaibution d
chotge net at
..Non
cenhe
Unífoam
i) AE elechao&latic tate chog Jig fai butíon indide
,eld Pnde a and innex &usfou
Con ducto
become gedo. &o fhese wrl But uniPoom outtide.
uni Pom.
movement be
ang tue o -ve ion This
phenomenon is caled
thielding
.
ec.
no
i8
) The elecdtic
Conductor is E=at
feld
G
Eo
sufoce the
OK 8 = Conytanf