電磁學講義
電磁學講義
References :
1. Applied Electromagnetics: Early Transmission Lines Approach ( Stuart M. Wentworth)
2. Introductory Electromagnetics ( Zoya Popovic’ and Branko D. Popovic’)
3. Engineering Electromagnetic ( Umran S. Inan and Aziz S. Inan)
Contents
期 中 考 期 末 考
1. The Electromagnetic Model 3. Static Electric Fields (cont.)
9. Theory of Transmission Lines and 4. Solution of Electrostatic Problems
Smith Chart 5. Steady Electric Currents
2. Vector Analysis 6. Static Magnetic Fields
3. Static Electric Fields
Office hours: Mon. periods 5&6; Tue. periods 5&6; Wen. periods 5&6
Chapter 1 The Electromagnetic Model
# Basic conception :
1. Charges (positive or negative) at rest static electric fields
2. Charges in motion a time-varying electric field
accompanied by a magnetic field
3. Time-dependent electromagnetic fields electromagnetic waves
(i.e. time-dependent electric field and time-dependent magnetic field)
1 /4
# Definitions of charge densities:
q
3. im ( c m) : line charge density
0
2 /4
# Definition of current densities:
*A current must flow through a finite area; hence it is not a point function.*
I A
1. J S im ( ) : surface current density.
l 0
m
I
2. J (or J v ) im ( A 2 ) : volume current density
s 0 s m
# Four fundamental vector field quantities in electromagnetics :
Symbols and units Field quantity Symbol Unit
for Field quantities
Electric Electric field intensity V/m
E
Electric flux density C/m2
(Electric displacement) D
Magnetic Magnetic field intensity A/m
H
Magnetic flux density T or
B Wb/m2
3 /4
# In free space (or vacum):
1. C : velocity of electromagnetic wave C = 3 108 m / sec
2. 0 : permittivity of free space 0
10 9
36
( F/m )
3. : 0
permeability of free space 0 4 10 7
(H/m)
Meanwhile, in free space (or vacum) relationship between D and E is
D 0E ,
whereas B and H is B 0 H
4 /4
Chapter 9 Theory and Application of Transmission Lines (T.L.)
9.1 Introduction
For effective point-to-point transmission of power and information the source
energy must be directed or guided. Usually, the transmission line (TL) is used to
guide the transverse electromagnetic (TEM) wave.
◆ Types of Transmission Lines
(a) parallel-plate TL (b) Two-wire TL (c) coaxial TL (d) microstrip-line TL (e) microstrip-line TL
(microwave) (low frequency) (high frequency) (microwave) (microwave)
Transmission line
R: Ω /m
G: Ω-1 /m
L: H /m
C: F /m
2
整理 正向波
dV ( z ) d
= [V0+ e −rz + V0− e rz ] = -rV0+ e −rz + rV0− e rz .... (A)
dz dz
and from eq. (3) :
dV ( z )
= −( R + jωL) I ( z ) = −( R + jωL)[ I 0+ e − rz + I 0− e rz ] = −( R + jωL) I 0+ e − rz − ( R + jωL) I 0− e rz .....(B)
dz
Comparing (A) with (B), we obtain
V0+ R + jωL R + jωL R + jω L
-rV0+ = −( R + jωL) I 0+ ⇒ = = = ≡ Z0
I 0+ r ( R + jωL)(G + jωC ) G + jω C
V0− R + jωL R + jωL V0+
rV0− = −( R + jωL) I 0− ⇒ − = = = Z ( = ) 注意:電流有方向性
I 0− G + jωC I 0+
0
r
here, Z 0 is defined as the " characteristic impedance" of the transmission line.
V0+ V0− R + jωL
整理: Z0 ≡ = − = (電流有方向性)
I0+
I0−
G + jωC
2 2
−
V
+ r − − r + r
1 + 0+ e − 2 r
V V V e + V0 e V0 e V0 1 + Γe − 2 r 1 + Γ
then, Z = = ( ) z =− = 0+ r − − r
= + r
⋅ −
= Z − 2 r
= Z0
I0 e + I0 e 1 − Γe 1 - Γ
0
I I I0 e I
1 + 0+ e − 2 r
I0
Z - Z0
here, Γ = Γe − 2 r = is the reflection coefficiency (反射係數) at z = -
Z + Z0
(Sol.)
For a lossless TL, r = α + jβ = jβ ( α = 0)
Z L - Z0 (25 - j25) - 50 - 25 - j25 - 1 - j − 1 2 5
(1). Γ == = = = = −j = ∠ tan −1 2
Z L + Z 0 (25 - j25) + 50 75 - j25 3- j 5 5 5
2π λ
(25 − j 25) + j 50 tan(
⋅ )
Z L + jZ 0 tan( β) λ 4 ≅ 50 50
(2). Z ( = λ / 4) = Z 0 = 50
jZ L tan( β) + Z 0 2π λ 25 − j 25
j (25 − j 25) tan( ⋅ ) + 50
λ 4
100
= = 50 + j 50 (note : β = 2π / λ ; tan(π/2) → ∞)
1− j
Z − Z 0 (50 + j 50) − 50 j 1 + j2 5
(3). Γ ( = λ / 4) = = = = = ∠ tan −1 2
Z + Z 0 (50 + j 50) + 50 2 + j 5 5
−1 2 −1 2 −2 j 2π ⋅ λ
another method : Γ ( = λ / 4) = Γe − 2 r = ( − j ) e − 2 jβ = ( − j ) e λ 4
5 5 5 5
− 1 − j 2 − jπ 1 + j 2 5
= e = = ∠ tan −1 2
5 5 5
j tan( β)
Case 3: For a length of λ/4 (quarter-wave line):
=λ/4 Z + Z 0 j tan( β)
Z in = Z ( = λ / 4) = Z 0 L
+ I Z L j tan( β) + Z 0
V Z0 ZL
- 2π λ
Z L + Z 0 j tan( ⋅ ) 2
Z= − Z=0 λ 4 ≅ Z 0 or Z ⋅ Z = Z 2
= Z0
2π λ ZL
in L 0
Z L j tan( ⋅ ) + Z 0 5
λ 4
Sandwitch rule
Case 4: For a length of λ/2 (half-wave line): Z + Z 0 j tan( β)
=λ/2 Z in = Z ( = λ / 2) = Z 0 L
Z L j tan( β) + Z 0
+ I
V Z0 ZL 2π λ
Z L + Z 0 j tan( ⋅ )
-
= Z0 λ 2 =Z
Z= − Z=0
2π λ L
Z L j tan( ⋅ ) + Z 0
λ 2
Case 5: For a length of nλ/2 : Z + Z 0 j tan( β)
=nλ/2 Z in = Z ( = nλ / 2) = Z 0 L
Z L j tan( β) + Z 0
+ I
V Z0 ZL 2π nλ
Z L + Z 0 j tan( ⋅ )
-
= Z0 λ 2 =Z
Z= − Z=0
2π nλ L
Z L j tan( ⋅ ) + Z 0
λ 2
Example 9.6 The open-circuit and short-circuit impedances measured at the input
terminals of a lossless transmission line of length 1.5 m, which is less than a quarter
wavelength, are –j54.6 Ω and j103 Ω, respectively.
(a) Find Z0 and r of the line.
(b) Without changing the oprtating frequency, find the input impedance of a
short-circuited line that is twice the given length.
(c) How long should the short-circuited line be in order for it to appear as an open
circuit at the input terminals ?
(Sol.)
For a lossless TL, r = α + jβ = jβ ( α = 0); tanh(r) = j tan( β)
Z + jZ 0 tan( β) Z0
(a). Z o = Z ( Z L → ∞) = Z 0 L = = − j 54.6(Ω)...( A)
jZ L tan( β) + Z 0 j tan( β)
Z L + jZ 0 tan( β)
Z S = Z ( Z L = 0) = Z 0 = jZ 0 tan( β) = j103(Ω)......( B)
jZ L tan( β) + Z 0
∴ Z 0 = Z o ⋅ Z S = (− j 54.6)( j103) ⇒ Z 0 = 54.6 × 103 ≈ 75(Ω)
2
103
Z S = jZ 0 tan( β) = j103(Ω) ⇒ j 75 tan( β × 1.5) ⇒ β × 1.5 = tan −1 ( ) ≈ 0.941
75
∴ β = 0.627 ⇒ r = jβ = j 0.627
Z L + jZ 0 tan( β)
(b). Z S = Z =3 ( Z L = 0) = Z 0 = jZ 0 tan( β) = j 75 tan(0.628 × 3) = − j 231(Ω)
jZ L tan( β) + Z 0
Z L + jZ 0 tan( β)
(c) Z S = Z ( Z L = 0) = Z 0 = jZ 0 tan( β) = j tan(0.628) → ∞
jZ L tan( β) + Z 0
∴ 0.628 = nπ − π / 2, n = 1, 2, 3, ..... ⇒ = (nπ − π / 2) / 0.628 = 5n − 2.5(m) = 2.5(m), 7.5(m), 12.5(m)....
f
Example 9.7 The measured attenuation of an air-dielectric coaxial transmission line at
400 (MHz) is 0.01 (dB/m). Determine the Q and the half-power bandwidth of a
quarter-wavelength section of the line with a short-circuit termination.
(Sol.)
This is a shorted lossy line with quarter - wavelength length.
c 3 × 10 8 2π 2 × 3.14159
λ= = = 0.75(m) ∴ β= = ≈ 8.38
f 400 × 10 6
λ 0.75
and, for z = 1m : 20 log e −α = −0.01 ⇒ log e −α = −0.0005
0.0005 0.0005
⇒α = = = 0.0001151
log e 0.43429
β 8.38 8.38 × 0.43429
Q= = = ≈ 3641
2α 0.0005 0.001
2×
0.43429
f 0 400 × 10 6
∆f = = ≈ 0.11 × 10 6 = 110 × 10 3 (Hz)
Q 3641
+ − + − - r V0− -2r
V = V ( z = -) = V e 0
- r(- )
+V e 0
r(- )
= V e +V e
0
r
0 = V e (1 + + e ) = V0+ e r (1 + Γe -2r )...(A)
0
+ r
V0
+ − I 0− -2r
I = I ( z = -) = I e0
- r(- )
+I e = I e + I e = I e (1 + + e ) = I 0+ e r (1 − Γe -2r )............(B)
0
r(- ) +
0
r − - r
0
+
0
r
I0
−
+ - r(0) − r(0) + − + V0 + 2 Z LV0+
VL = V ( z = 0) = V0 e + V0 e = V0 + V0 = V0 (1 + + ) = V0 (1 + Γ) = ........... ........(C)
V0 Z L + Z0
I 0− 2 Z 0 I 0+
I L = I ( z = 0) = I 0+ e -r(0) + I 0− e r(0) = I 0+ + I 0− = I 0+ (1 + ) = I +
(1 − Γ ) = ............................(D)
I 0+ Z L + Z0
0
Therefore,
VL I
(C) → (A) ⇒ V = V0+ e r (1 + Γe -2r ) = ( Z L + Z 0 )e r (1 + Γe -2r ) = L ( Z L + Z 0 )e r (1 + Γ e jθ Γ e -2r )
2Z L 2
IL
For a lossless TL : r = jβ ⇒ V = ( Z L + Z 0 )e jβ (1 + Γ e jθ Γ e - j2 β )
2
I
= L ( Z L + Z 0 )e jβ (1 + Γ e j (θ Γ − 2 β ) )..................9.135a
2
I
if θ Γ − 2β = −2nπ , n = 0, 1, 2,.... V = L ( Z L + Z 0 ) (1 + Γ ) = V max
2
2nπ + θ Γ
⇒ max = , n = 0, 1, 2,........ max : 在TL上最大電壓發生的位置(與Z L的距離)
2β
I I
(D) → (B) ⇒ I = I 0+ e r (1 − Γe -2r ) = L ( Z L + Z 0 )e r (1 − Γe -2r ) = L ( Z L + Z 0 )e r (1 − Γ e jθ Γ e -2r7 )
2Z 0 2Z 0
IL
For a lossless TL : r = jβ ⇒ I = ( Z L + Z 0 )e jβ (1 − Γ e jθ Γ e - j2 β )
2Z 0
IL
= ( Z L + Z 0 )e jβ (1 − Γ e j (θ Γ − 2 β ) )...............9.135b
2Z 0
IL
if θ Γ − 2β = −2nπ − π , n = 0, 1, 2,.... V = ( Z L + Z 0 ) (1 − Γ ) = Vmin
2
(2n + 1)π + θ Γ
⇒ min = , n = 0, 1, 2,........ min : 在TL上最低電壓發生的位置(與Z L的距離)
2β
Define "Standing Wave Ratio" , SWR, as the ratio of the maximum to the minimum voltages along the TL.
IL
( Z L + Z 0 ) (1 + Γ )
V max
2 1+ Γ
SWR (or simply by S) = = = (dimensionless) ⇒ 1 ≤ S < ∞
Vmin IL 1− Γ
( Z L + Z 0 ) (1 − Γ )
2
A high SWR on a line is undesirable because it results in a large power loss.
1+ Γ S −1
S == ⇒Γ =
1− Γ S +1
Case discussion :
1+ 0
(1) if Γ = 0(i.e.Z L = Z 0 ) ⇒ S = =1
1− 0
1+1
(2) if Γ = 1(i.e.Z L → ∞) ⇒ S = →∞
1 −1
1+1
(3) if Γ = −1(i.e.Z L = 0) ⇒ S = →∞
1−1
Example 9.9 The standing-wave ratio on a lossless 50(Ω) transmission line terminated
in an unknown load impedance is found to be 3.0. The distance between successive
voltage minima is 20(cm), and the first minimum is located at 5(cm) from the load.
Determine (a) the reflection coefficient Γ, and (b) the load impedance ZL. In addition,
find (c) the equivalent length and terminating resistance of a line such that the input
impedance is equal to ZL.
(Sol.)
1- Γ S −1 2
(a) S = = 3.0 ⇒ Γ = = = 0.5
1+ Γ S +1 4
(Note : distance between successive voltage minima ⇐ 表示相鄰兩極小電壓的距離 = λ / 2)
θ + (2n + 1)π =1 =0 θ + (2 × 1 + 1)π θ Γ + (2 × 0 + 1)π 2π 2π λ
min = Γ ∴ nmin − nmin = Γ - = = =
2β 2β 2β 2 β 2 ⋅ 2π / λ 2
λ 2π 2π
⇒ = 20cm ⇒ λ = 40 cm = 0.4 m ⇒ β = = = 5π
2 λ 0.4
θ + (2 × 0 + 1)π
and, 0.05 = Γ ⇒ θ Γ = 0.5π − π = −0.5π
2 × 5π
∴ Γ = Γ e jθ Γ = 0.5e - j0.5π = 0.5[cos(−0.5π ) + j sin( −0.5π )] = − j 0.5 #
ZL − Z0 Z − 50 50 − j 25
(b) Γ = ⇒ − j 0.5 = L ⇐ ZL = = 30 − j 40 # 8
ZL + Z0 Z L + 50 1 + j 0.5
V V0+ e r + V0− e − r 1 + Γe −2 r 1 + (− j 0.5)e − j 2×5π
(c) Z = = + r = Z = Z ⇒ 50 = 30 − j 40
I 0 e + I 0− e − r 1 − Γ e − 2 r 1 − (− j 0.5)e − j 2×5π
0 L
I
◆ Transmission-line circuits
Vi = V g -I i Z g , and
Zg I L+ IL
+ + Ii From 9.135a : Vi (V ) = ( Z L + Z 0 )e r (1 + Γe − 2 r ).
Vg Vi Z0 ZL V L 2
- - I
Z= − Z=0 From 9.135b : I i ( I ) = L ( Z L + Z 0 )e r (1 − Γe − 2 r )
2Z 0
IL I
∴ ( Z L + Z 0 )e r (1 + Γe − 2 r ). = V g − L ( Z L + Z 0 )e r (1 − Γe − 2 ) Z g (對照 Vi = V g -I i Z g )
2 2Z 0
IL Z 0V g 1 IL Z 0V g 1
⇒ ( Z L + Z 0 )e r = [ ]= ( Z L + Z 0 )e r = [ ]
2 Z0 + Z g Zg − Z0 2 Z 0 + Z g 1 - Γg Γe − 2 r
1- Γe − 2 r
Zg + Z0
Zg − Z0
here, define Γg = (在generator端的反射係數)
Zg + Z0
求與訊號源相距 z的位置的電壓及的位置的電壓及電流大小為:
Zg I L+
+ + Ii
Vg Vi Z0 ZL V L 將式子V = I L ( Z + Z )e r (1 + Γe − 2 r ).中的改以z′帶入
L 0
- - 2
Z= − Z=0
IL IL
rz ′ − 2 rz ′
z ( ⇒ V (z′) =
Z L + Z 0 ) e (1 + Γ e ) = ( Z L + Z 0 )e r( -z) (1 + Γe − 2 rz′ )
z′ 2 2
Z 0V g e -rz 1 + Γe − 2 rz′
= ⋅( ) ..........9.153a (Note : z′ = − z )
Similarily, Z 0 + Z g 1 - Γg Γe − 2 r
I I
I (z′) = L ( Z L + Z 0 )e rz′ (1 − Γe − 2 rz′ ) = L ( Z L + Z 0 )e r( -z) (1 − Γe − 2 rz′ )
2Z 0 2Z 0
V g e -rz 1 − Γe − 2 rz′
= ⋅( ) ...............9.153b
Z 0 + Z g 1 - Γg Γe − 2 r
1 + Γe − 2 rz′
Z 0V g e -rz
Z 0V g e -rz
From. 9.153a ⇒ V (z′or z) = ⋅( − 2 r
)= (1 + Γe − 2 rz′ )(1 - Γg Γe − 2 r ) −1
Z 0 + Z g 1 - Γg Γe Z0 + Z g
Z 0V g e -rz
= (1 + Γe − 2 rz′ ) ⋅ (1 + Γg Γe − 2 r + Γg Γ 2 e − 4 r + Γg Γ 3 e −6 r + ............)
2 3
Z0 + Z g
Z 0V g
= [e -rz + (Γe − r )e − rz′ + Γg (Γe − 2 r )e − rz + .............]
Z0 + Z g
= V1+ + V1− + V2+ + V2− + V3+ + V3− + ............
and V1+ = VM e -rz , V1− = Γ(VM e -r )e − rz′ , V2+ = Γg (ΓVM e -2r )e − rz , V2− = (Γg Γ 2VM e -3r )e − rz′ , ..........
Z 0V g
here, VM =
Z0 + Z g
Discussions :
(1) If Z L = Z 0 and Z g ≠ Z 0 (i.e. load matching) ⇒ Γ = 0 ⇒ V (z′or z) = V1+
9
(1) If Z g = Z 0 and Z L ≠ Z 0 (i.e. line) ⇒ Γg = 0 ⇒ V (z′or z) = V1+ + V1−
Similarily, for I (z′or z)
1 + Γe − 2 rz′
V g e -rz Z 0V g e -rz
I (z′or z) = ⋅( − 2 r
)= (1 + Γe − 2 rz′ )(1 + Γg Γe − 2 r ) −1
Z 0 + Z g 1 + Γg Γe Z0 + Z g
V g e -rz
= (1 + Γe − 2 rz′ ) ⋅ (1 − Γg Γe − 2 r + Γg Γ 2 e − 4 r − Γg Γ 3 e −6 r + ............)
2 3
Z0 + Z g
Vg
= [e -rz − (Γe − r )e − rz′ + Γg (Γe − 2 r )e − rz − .............]
Z0 + Z g
= I 1+ − I 1− + I 2+ − I 2− + I 3+ − I 3− + ............
and I 1+ = I M e -rz , I 1− = Γ( I M e -r )e − rz′ , I 2+ = Γg (ΓI M e -2r )e − rz , I 2− = (Γg Γ 2 I M e -3r )e − rz′ , ..........
Vg
here, I M =
Z0 + Z g
Example 9.10 A 100 (MHz) generator with Vg=10∠0° (V) and internal resistance 50 (Ω)
is connected to a lossless 50 (Ω) air line that is 3.6 (m) long and terminated in a 25+j25
(Ω) load. Find,
(a) V(z) at a location z from the generator,
(b) Vi at the input terminals and VL at the load,
(c) The voltage standing-wave ratio on the line, and
(d) The average power delivered to the load.
Sol.
Known : f = 100 MHz; V g = 10∠0 = 10 (V); Z g = 50 (Ω); Z 0 = 50 (Ω); Z L = 25 + j 25 (Ω); = 3.6 (m)
c 3 × 10 8 2π 2π Z − Z 0 (25 + j 25) − 50 - 1 + 2j
∴ λ= = = 3 (m) ⇒ β = = ; Γ= L = =
f 100 × 10 6
λ 3 Z L + Z 0 (25 + j 25) + 50 5
Z g − Z0 50 − 50 Z 0V g 50 × 10
Γg = = = 0 , VM = = = 5 (V)
Z g + Z0 50 + 50 Z 0 + Z g 50 + 50
(a ) V (z) = V1+ + V1− + V2+ + V2− + V3+ + V3− + .............
= VM e − rz + ΓVM e − r e − r ( − z ) + Γg ΓVM e − 2 r e − rz + Γg Γ 2VM e −3r e − r ( − z) + .....
2π 2π 2π 2π 2π 2π
- 1 + 2j
−j z − j ×3.6 − j ×( 3.6- z) −j z −j ×7.2 j z
= 5e + 3
⋅ 5e 3 e 3 = 5e 3 + (-1 + 2j) e 3
e 3
5
(b) Vi = V (z = 0) = V1 + V1− + V2+ + V2− + V3+ + V3− + .............
+
R0 Z 0V0 V0
T= ; VM = ; IM =
u Z g + Z0 Z g + Z0
Z L -Z 0 R -R Z g -Z 0 R g -R0
ΓL = = L 0 ; Γg = =
(1) For voltage on the line Z L + Z 0 R L + R0 Z g + Z 0 R g + R0
VL = V1+ + V1− + V2+ + V2− + V3+ + V3− + V4+ + V4− + ..................
here, V1+ = VM ; V1− = V1+ Γ L = VM Γ L
V2+ = V1− Γ g ; V2− = V2+ Γ L
V3+ = V2− Γ g ; V3− = V3+ Γ L
..............................................
∴ VL = V1+ + V1− + V2+ + V2− + V3+ + V3− + V4+ + V4− + .................
= V1+ + V1+ Γ L + (V1+ Γ L ) Γ g + (V1+ Γ L Γ g ) Γ L + (V1+ Γ L Γ g ) Γ g + .............
2
= V1+ (1 + Γ L + Γ L Γ g + Γ L Γ g + Γ L Γ g + ..............)
2 2 2
1
= V1+ (1 + Γ L ) (if Γ L < 1 and Γ g < 1)
1− ΓL Γg
(2) For current on the line
I L = I 1+ − I 1− + I 2+ − I 2− + I 3+ − I 3− + I 4+ − I 4− + .................
here, I 1+ = I M ; I 1− = I 1+ Γ L = I M Γ L
11
I 2+ = I 1− Γ g ; I 2− = I 2+ Γ L
I 3+ = I 2− Γ g ; I 3− = I 3+ Γ L
..............................................
∴ I L = I 1+ − I 1− + I 2+ − I 2− + I 3+ − I 3− + I 4+ − I 4− + .................
= I 1+ − I 1+ Γ L + ( I 1+ Γ L ) Γ g − ( I 1+ Γ L Γ g ) Γ L + ( I 1+ Γ L Γ g ) Γ g − .............
2
= I 1+ (1 − Γ L + Γ L Γ g − Γ L Γ g + Γ L Γ g − ..............)
2 2 2
= I 1+ (1 − Γ L )(1 + Γ L Γ g + Γ L Γ g + ...........)
2 2
1
= V1+ (1 − Γ L ) (if Γ L < 1 and Γ g < 1)
1− ΓL Γg
R0
Z’ Z’ Z’
1 1 1 1
(1) For voltage ⇒ V1+ = VM = V0 ; V1− = V1+ Γ L = V0 ⋅ = V0
3 3 2 6
1 1 1 1 1 1
V2+ = V1− Γ g = V0 ⋅ = V0 ; V2− = V2+ Γ L = V0 ⋅ = V0
6 3 18 18 2 36
....................................... .................................................
1 1 1 1 3
∴V L = V1+ (1 + Γ L ) = V0 (1 + ) = V0
1− ΓL Γg 3 2 1 1 5
1− ⋅
2 3 12
V0 V0 1 V0
(2) For current ⇒ I1+ = I M = ; I1− = I1+ Γ L = ⋅ =
3R0 3R0 2 6 R0
V0 1 V V0 1 V
I 2+ = I1− Γ g = ⋅ = 0 ; I 2− = I 2+ Γ L = ⋅ = 0
6 R0 3 18 R0 18 R0 2 36 R0
.......................................
.................................................
1 V 1 1 V
I L = I1+ (1 − Γ L ) = 0 (1 − ) = 0
1 − Γ L Γ g 3R0 2 1 − 1 ⋅ 1 5 R0
2 3
Z’ Z’ Z’
◆ Reflection Diagrams
# Reflection diagram
Z1
Zg I L+
+ + IM
Vg VM Z0 ZL V L
- -
Z=0 Z=
13
Z1
Zg I L+
+ + IM
Vg VM Z0 ZL V L
- -
Z=0 Z= Time Range Current Voltage Discon
0 ≦ t< t 1 (t 1 = z 1 /u) 0 0
t 1 ≦ t< t 2 (t 2 = 2T - t 1 ) I 1+ I 1+ at t1
t 2 ≦ t< t 3 (t 3 = 2T + t 1 ) I 1+ − ΓL I 1+ - ΓL I 1+ at t 2
t 3 ≦ t< t 4 (t 4 = 4T - t 1 ) I 1+ − ΓL I 1+ + Γg (ΓL I 1+ ) Γg ΓL I 1+ at t 3
t 4 ≦ t< t 5 (t 5 = 4T + t 1 ) I 1+ − ΓL I 1+ + Γg ΓL I 1+ − ΓL (Γg ΓL I 1+ ) - Γg ΓL I 1+ at t 4
2
Example 9.11 A rectangular pulse of an amplitude 15 (V) and a duration 1 (µs)is applied
through a series resistance of 25 (Ω) to the input terminals of a 50 (Ω) lossless coaxial
transmission line. The line is 400 (m) long and is short-circuited at the far end.
Determine the voltage response at the midpoint of the line as a function of time up to 8
(µs). The dielectric constant of the insulating material in the cable is 2.25.
Pulse Excitation
sol.
Vg1 (t ) Vg2 (t )
15
Vg= + 1
0 t ( µs ) t ( µs )
-15
known : R0 = 50(Ω), R g = 25(Ω), R L = 0(Ω), = 400 (m), ε r = 2.25, µ r = 1
R L -R0 0-50 R g -R0 1
⇒ ΓL = = = −1; Γ g = =− ,
R L + R0 0 + 50 R g + R0 3
c 400
µ= = 2 × 10 8 (m/s) ⇒ T = = = 2 ( µs )
µγ ε γ µ 2 × 10 8
(1) For source V g1 :
R0 50
V1+ = V g1 ⋅ = 15 ⋅ = 10 (V)
R g + R0 25 + 50
∴ v a = V1+ + Γ LV1+ + Γ g Γ LV1+ + Γ g Γ L V1+
2
14
+ Γ g Γ L V1+ + Γ g Γ L V1+ + ......( Please see the red curve shown in the following reflection diagram.
2 2 2 3
)
(2) For source Vg2 :
R0 50
V1+ = Vg2 ⋅ = −15 ⋅ = −10 (V)
Rg + R0 25 + 50
∴ vb = V1+ + Γ LV1+ + Γ g Γ LV1+ + Γ g Γ L V1+ + Γ g Γ L V1+ + Γ g Γ L V1+ + ......(Please see the black curve
2 2 2 2 3
vm
15
9.6 The Smith Chart
◆ Developed in 1939 by P. W. Smith as a graphical tool to
characterize the performance of microwave circuits, and analyze
as well as design transmission-line circuits.
∴ r + jx = = = + j
1 − (Γr + jΓ) (1 − Γr − jΓi )(1 − Γr + jΓi ) (1 − Γr ) 2 + Γi 2
(1 − Γr ) 2 + Γi
2
1 − Γr − Γi
2 2
r = ........(1)
(1 − Γr ) 2 + Γi
2
⇒
x = 2Γi
.......(2)
(1 − Γr ) 2 + Γi
2
2r 1− r
from (1) ⇒ [ (1 − Γr ) 2 + Γi ] ⋅ r = 1 − Γr − Γi ⇒ Γr − Γr + Γi =
2 2 2 2 2
1+ r 1+ r
2r r 2 1− r r 2 r 2 1 2
Γr − Γr + ( ) + Γi = +( ) ⇒ (Γr − ) + Γi = (
2 2 2
)
1+ r 1+ r 1+ r 1+ r 1+ r 1+ r
Considering :
r = 0 ⇒ Γr + Γi = 12 ⇒ curve A
2 2
1 1 2 x
r= ⇒ (Γr − ) 2 + Γi = ( ) 2 ⇒ curve B
2
2 3 3 x x
1 1
r = 1 ⇒ (Γr − ) 2 + Γi = ( ) 2 ⇒ curve C
2
2 2 Psc Poc
2 2 1 2 ․-1 x
D ․1
r = 2 ⇒ (Γr − ) + Γi = ( ) ⇒ curve D
2
3 3 r C x r
r → ∞ ⇒ (Γr − 1) 2 + Γi = 0 ⇒ (Γr , Γi ) = (1, 0) ⇒ 點 POC
2
r x B r
x
from (2) ⇒ [ (1 − Γr ) + Γi ] ⋅ x = 2Γi ⇒ xΓr − 2 xΓr + x + xΓi = 2Γi
2 2 2 2
A
2 1 1
⇒ Γr − 2Γr + 1 + Γi = Γi ⇒ (Γr − 1) 2 + (Γi − ) 2 = ( ) 2
2 2
x x x
x
Z0 ZL
Γ x x
circle
z = − z=0
A
Psc Poc
․-1 x
O
․1
r
x r
r x r
x
Γ circle
sol :
Z L 100 + j50
Step1 : z L = = = 2 + j1 = r + jx ⇒ r = 2 ; x = 1 ⇒ 找出A點, 並延伸OA找出與
Z0 50
最外圓的交點後,讀出位置(角度)的值 ⇐目的在定出負載在傳輸線上的位置
Γi
求出 Γ (= Γr2 + Γi2 = OA (以OPOC = 1為基準)) 及 θ Γ (= tan -1 為OA與Γr 軸的夾角)
Γr
Step2 :以O點為圓心,OP為半徑畫出Γ - circle ⇒ 傳輸線上最大電壓會在 Γ - circle與正Γr 軸的
交點處(Pmax );最小電壓則在與負Γr 軸的交點處(Pmin 。
)
最大電壓與負載的距離則為d max (參考右上圖); 最小電壓與負載的距離則為d min (參考右上圖)
說明:On the T.L. the maximum voltage, Vmax is V0+ (1 + Γ ), whereas the minimum voltage isV0+ [1 + (- Γ )]
Step 3 : 讀出Pmax 點處的r值,即為此傳輸線的S (VSWR)值。
1+ Γ 1 + Γr
說明:S (VSWR) = = ( Γ = Γ r + j Γ i , 但在Pmax 處,Γ r > 0 且 Γ i = 0 ........(a)
1- Γ 1 - Γr
r 2 1 2 r 2 1 2
另外,(Γr − ) + Γi = ( ) , 在Pmax 處 Γ i = 0, 所以(Γr − ) =(
2
)
1+ r 1+ r 1+ r 1+ r
r -1 1 r -1 1 + Γr
⇒ Γr − = (or : 不合) ⇒ Γr = ⇒r= ..........(b)
1+ r 1+ r 1+ r 1+ r 1 - Γr
17
比較(a) 與 (b) ⇒ S (VSWR) = r
Step4 : 求傳輸線上任意位置( z = -)的Z℘及Γ 方法: Z0 ZL
在 Γ - circle上,由負載的位置順時針轉長度後,
z = − z=0
找出Z℘所在位置,讀出 r與x值 ⇒ Z = (r + jx) ⋅ Z 0
V V ( z = −) 1 + Γe − 2 r 1 + Γ
說明:Z = = = Z0 − 2 r
= Z ⇒ Γ = Γe − 2 r
I ( z = −) 1 − Γe 1 − Γ
0
I
for a lossless T.L. ⇒ Γ = Γe − j2 β = Γ e jθ Γ ⋅ e − j2 β = Γ e j(θ Γ − 2 β )
2π
⇒ Γ = Γ θ Γ = θ Γ − 2β = θ Γ - 2
℘
λ
Example 9.13 For a lossless T.L. with Z 0 =50 Ω, Z L =0 Ω (i.e. short-circuit load), please using Smith
chart to determine the input impedance Z i and Γ i of this line that is 0.1 wavelength
long.
P1
Z0 ZL
z = −0.1λ z=0
Psc
O
sol :
ZL 0
zL = = = 0 + j0 = r + jx
Z 0 50
⇒ r = 0 ; x = 0 ⇒ 找出P點 ⇒ 圖上之點PSC
Γ = Γr2 + Γi2 = OPSC = 1 ⇐ 即 Γi = Γ = 1 #
以O為圓心;OPSC為半徑順時針轉2 β
2π
⇒ 2⋅ ⋅ 0.1λ = 0.4π = 72 ⇒ 由180 轉至108 (或由0λ順時針轉至0.1λ處)
λ
到達圖上之P1點 ⇒ 讀出 (ri , x i ) ≈ (0, 0.725)
Zi
∴ zi = = 0 + j0.725 ⇒ Z i = (0 + j0.725) ⋅ Z 0 = j0.725 × 50 = j36.25 (Ω) #
Z0
18
Example 9.14 For a lossless T.L. with Z 0 =100 Ω, Z L =260+j180 Ω, please using Smith chart to
determine the Γ, S(VSWR), input impedance Z i, and the location d max of a voltage
maximum on the line of length 0.434 wavelength.
sol :
Z L 260 + j180
Step1 : z L = = = 2.6 + j1.8 = r + jx ⇒ r = 2 .6; x = 1 .8 ⇒ 找出P2點, 並延伸OP2 找出與
Z0 100
最外圓的交點P2' 後,讀出位置(角度)的值為0.22λ ⇐ 此為負載在傳輸線上的位置 .
Γi
求出 Γ ( = Γr2 + Γi2 = OP2 長度 (以OPOC = 1 為基準)) = 0.6 及 θ Γ ( = tan -1 為OA與Γr 軸的夾角) =
Γr
(0.25λ - 0.22λ ) × 4π ≈ 21 或用21 - 0 (正Γr 軸) ⇒ Γ = 0.6∠21
Step2 :以O點為圓心,OP2為半徑畫出Γ - circle ⇒ 傳輸線上最大電壓會在 Γ圓與正Γr 軸的
'
交點PM 處, 延伸OPM 找出與最外圓的交點POC 後, 最大電壓與負載的距離d max = 0.25λ - 0.22λ =
0.03λ
Step 3 : 讀出PM 點處的r值 = 4,此值即為此傳輸線的S(VSWR)值 ⇒ S = 4
Step4 : Z i處為 = 0.434λ:
由負載的位置順時針轉0.434λ後到達點P3' ( 0.434λ = 0.5λ - 0.22λ + 0.154λ,找出
) OP3' 與
Γ - circle 的交點P3後,讀出r = 0.69與x = 1.2 ⇒ Z i = (r + jx)Z 0
= (0.69 + j1.2) × 100 = 69 + j120 (Ω)
Example 9.15 For a lossless T.L. with Z 0 =50 Ω, S=3.0, λ=0.4 m, and first voltage minimum has a
distance of 0.05 m from the load. Please find Γ and Z L
(Homework)
19
9.7 Transmission line impedance matching
◆ Impedance matching by quarter-wave transformer
lossless
R0 R0′’ RL ⇒ R ′'0 = RL R0
λ/4
transformer
Example 9.17 A signal generator is to feed equal power through a lossless air transmission line with
a characteristic impedance 50 (Ω) to two separate resistive loads, 64 (Ω) and 25 (Ω),
depicted as figure. Determine the required characteristic impedances and standing
wave ratios of the two quarter-wave lines.
sol :
Let Ri1 = Ri 2 and Ri1 // Ri 2 = R0
∴ Ri1 = Ri 2 = 50 (Ω) × 2 = 100 (Ω)
R × R = R ' 2 ⇒ R ' = R × R = 100 × 64 = 80 (Ω) #
i1
⇒
L1 01 01 i1 L1
2
Ri 2 × R L 2 = R02
'
⇒ R02
'
= Ri 2 × R L 2 = 100 × 25 = 50 (Ω) #
R L1 − R01
'
64 − 80 1 + Γ1 1 + 0.11
Γ
1 = = = −0.11 ⇒ S1 = = = 1.25 #
R −
+ R '
64 + 80 1 − Γ 1 − 0 . 11
⇒
L1 01 1
2 R +− R ' 25 + 50
2
1 − Γ2 1 − 0.33
L2 02
∴ g + jb = = = −j
1 + (Γr + jΓ) (1 + Γr + jΓi )(1 + Γr − jΓi ) (1 + Γr ) + Γi
2 2
(1 + Γr ) 2 + Γi
2
1 − Γr − Γi
2 2
g = ........(1)
(1 + Γr ) 2 + Γi
2
⇒
b = − 2Γi
.......(2)
+ Γ 2
+ Γ
2
(1 r ) i
2g 1− g
from (1) ⇒ [ (1 + Γr ) 2 + Γi ] ⋅ g = 1 − Γr − Γi ⇒ Γr +
Γr + Γi =
2 2 2 2 2
1+ g 1+ g
2g g 2 1− g g 2 g 2 1 2
Γr + Γr + ( ) + Γi = +( ) ⇒ (Γr + ) + Γi = (
2 2 2
) ....(A)
1+ g 1+ g 1+ g 1+ g 1+ g 1+ g 20
from (2) ⇒ [ (1 + Γr ) 2 + Γi ] ⋅ b = - 2Γi ⇒ bΓr + 2bΓr + b + bΓi = −2Γi
2 2 2
−2 1 1
⇒ Γr + 2Γr + 1 + Γi = Γi ⇒ (Γr + 1) 2 + (Γi + ) 2 = ( ) 2 ........(B)
2 2
b b b
Sol :
General method :
1 95 − j 20
YL = 1 / Z L = ⇒ 2 ≈ 0.01 − j 0.002 (Ω -1 )
95 + j 20 95 + 20 2
Z 95 + j 20
Smith − chart method : z L = L = = 1.9 + j 0.4
Z0 50
⇒ Find z L as point P1 on the Smith chart. ⇒ Plot the Γ - circle
⇒ Move point P1 along the Γ - circle by 180 (i.e. the opposite
position with respect to the center pount O) to point P2
⇒ Read g (r ) = 0.5, b ( x) = −0.1 ∴ y L = 0.5 − j 0.1
1
⇒ YL = y L ⋅ Y0 = (0.5 − j 0.1) × = 0.01 − j 0.002 (Ω -1 )
50 21
Example 9.19: Find the input admittance of an open-circuited line of characteristic impedance 300 Ω
and length 0.04 λ.
Sol :
Smith − chart method 1 :
For an open - circuited line, z L is located at point POC ⇒ Plot Γ - circle ⇒ Move point POC
along Γ - circle in clockwise direction by a length of 0.04λ to point P3 , which is the position
of z i ⇒ Move point P3 along Γ - circle in clockwise direction by 180 to point P3' ⇒ Read
1
r (g) = 0 and x (b) = 0.26 ∴ y i = 0 + j 0.26 ⇒ Yi = y i ⋅ Y0 = (0 + j 0.26) × = j 0.00087 (Ω -1 ) #
300
◆ Single-stub matching
1 1 1
If circuit matched ⇒ Z s //Z B = R 0 ⇒ + = ⇒ Ys + YB = Y0
Z s Z B R0
Ys YB Y0
⇒ + = ⇒ ys + y B = 1
Y0 Y0 Y0
Becauset the stub is shorted, its input impedance Z s is purely imaginary.
1 + (-1)e - j2 β
(說明:Z s = R 0 = j R 0 tan( β ) , note Γ = -1 for short - load)
1 - (-1)e - j2 β
Assume y s = -jb B , then y B = 1 + jb B .
(Here, b B can be either positive or negative. )
IfTherefore, for matching this circuit, it is necessary to ;
1) find d such that y B has a unity real part, and
22
2) find such that the stub can cancel the imaginary part of y B .
Example 9.20: A 50 (Ω) transmission line is connected to a load Z L =35-j47.5 (Ω). Find the position
and length of a short-circuited stub required to match the line.
=50 Ω =35-j47.5 Ω
PSC POC
Sol :
Z L 35 - j47.5
Step 1 : z L = = = 0.7 - j0.95 ⇒ Find z L on the Smith chart → point P1
R0 50
Step 2 : Plot the Γ - circle (以O為圓心, OP1為半徑畫圓)
Step 3 : Move P1 along Γ - circle by 180 to the point shown as P2 . ⇒ Point P2 reprents the y L .
Step 4 : Plot the unit circle of r = 1 and then find out the two points of intersection with Γ - circle
P3 ⇒ Read at P3 : y B1 = 1 + j1.2 = 1 + jb B1
⇒
P4 ⇒ Read at P4 : y B2 = 1 - j1.2 = 1 + jb B2
Step 5 : Solutions for the position of the stub :
Extend OP2 , OP3 and OP4 to the outer circle with the points of P2' , P3' and P4' , respectively.
⇒ Read the position parameters : P2' = 0.109 λ ; P3' = 0.168 λ ; and P4' = 0.332 λ
⇒ 傳輸線上並接stub的位置可有兩處,與負載的距離分別為:
For P3 (from P2' to P3' ) : d 1 = 0.168 λ - 0.109 λ = 0.059 λ #
For P4 (from P2' to P4' ) : d 2 = 0.332 λ - 0.109 λ = 0.223 λ #
Step 6 : Solutions for the length of short - circuited stubs :
1) For P3 its imaginary part, b B1 , has to be canceled by adding the short - circuited stub. Therefore
the y s1 for this stub is 0 - j1.2 ⇒ y s1 = -j1.2 ⇒ position of the input terminal of this stub is P3'' (= 0.361 λ ).
⇒ length of the stub is : B1 = 0.361 λ - 0.250 λ (因為負載短路,所以導抗為開路 ⇒ POC ) = 0.111 λ #
2) For P4 its imaginary part, b B2 , has to be canceled by adding the short - circuited stub. Therefore
the y s2 for this stub is 0 + j1.2 ⇒ y s2 = j1.2 ⇒ position of the input terminal of this stub is P4'' (= 0.139 λ ).
⇒ length of the stub is : B2 = 0.5λ - 0.250 λ + 0.139 λ = 0.389 λ # 23
Cheapter 2 Vector Analysis
2-1~2-3 Vector algebra and formula
Scalar : completely specified by a magnitude charge、current、
(有極性) (有極性)
energy.
Parallelogram rule
1
(4) Products of Vectors
(a). k A = ka A A a A (kA) , here k is a constant
hence,
(a). A A =AAcos 0 = A 2 A= A A
(b). A B = B A commutative law (交換率)
(c). A ( B + C )= A B + A C distributive law (分配)
B
B sin AB
AB
A
an : the unit vector perpendicular to the plane containing A and B
2
Hence,
a. B A = - A B not commutative
b. A ( B + C ) = A B + A C distributive law
c. A ( B C ) = B ( A C )- C ( A B ) ( A B) C not associative (結合)
C.
or A ( B C ) A (C B ) B ( A C ) C ( B A)
BAC - CAB
3
2-4 Orthogonal Coordinate Systems
directions.
Chain rule : au au au
1 2 3
au1 au2 au3 au2 au3 au1 au3 au1 au2
au1 au2 au2 au3 au3 au1 0
au1 au1 au2 au2 au3 au3 1
Any vector A can be written as the sum of its components in
the three orthogonal directions, as follows:
4
A au1 Au1 au 2 Au 2 au 3 Au 3
1
A A ( Au1 Au2 Au3 )
2 2 2 2
A Au1 Au Au
aA au1 2 au2 3 au3 )
A A A A
Given vectors A, B and C, and let
A au1 Au1 au2 Au2 au3 Au3
B au1 Bu1 au2 Bu2 au3 Bu3
C au1 Cu1 au2 Cu2 au3 Cu3
therefore,
(i) A B ( A au Au au Au au Au ) (au1 Bu1 au 2 Bu 2 au 3 Bu 3 ) Au1 Bu1 Au 2 Bu 2 Au 3 Bu 3
1 1 2 2 3 3
A C Au1C u1 Au 2 Cu 2 Au 3C u 3
B C Bu1C u1 Bu 2 Cu 2 Bu 3C u 3
(ii) A B (au1 Au1 au 2 Au 2 au 3 Au 3 ) (au1 Bu1 au 2 Bu 2 au 3 Bu 3 )
= au1 ( Au 2 Bu 3 Au 3 Bu 2 ) au 2 ( Au 3 Bu1 Au1 Bu 3 ) au 3 ( Au1 Bu 2 Au 2 Bu1 )
formula :
base vectors
au1 au 2 au 3
A B Au1 Au 2 Au 3 components of A
Bu1 Bu 2 Bu 3 components of B
5
(iii)
a u1 au 2 au 3 a u1 au 2 au 3
C ( A B) C Au1 Au 2 Au 3 (au1C u1 au 2 C u 2 au 3 C u 3 ) Au1 Au 2 Au 3
Bu1 Bu 2 Bu 3 Bu1 Bu 2 Bu 3
C u1 Cu 2 Cu 3
Au1 Au 2 Au 3
Bu1 Bu 2 Bu 3
r 通式
d i r d i d i hi d ui
d i
a. differential length
d au1d1 au2d 2 au3d 3 au1 (h1du1 ) au2 (h2du2 ) au3 (h3du3 )
1 1
d (d 1 d 2 d 3
2 2 2 2
) [(h1du1 ) (h2 du 2 ) (h3 du3
2 2 2 2
) ]
b. differential area ds
ds a n ds
an : the unit vector normal to the surface of dS
here, ds 3 d 1 d 2 h1 du1 h2 du 2 h1 h2 du1 du 2 ds 3 a u3 h1 h2 du1 du 2
ds1 d 2 d 3 h2 h3 du 2 du 3 ds1 a u1 h2 h3 du 2 du 3
ds 2 d 3 d 1 h3 h1 du 3 du1 ds 2 a u 2 h1 h3 du1 du 3
c. differential volume dv
dv d 1 d 2 d 3 h1du1 h2 du2 h3du3 h1h2 h3du1du2 du3
6
(2) The three most common and useful orthogonal coordinate
systems Cartesian coordinate、 Cylindrical coordinates
h1 1, h2 1, h3 1
dS x dydz dS x a x dydz
dS y dxdz dS y a y dxdz dv dxdydz
dS z dxdy dS z a z dxdy
Example 2 - 5 Given A ax 5-a y 2 az , find a unit vector B such that
(a) B//A (b) B A, if B lies in the xy - plane.
(sol)
cylindrical coordinates :
let A a r Ar a A a z Az
ar cos a x sin a y a sin a x cos a y az az
8
A Ar (cos a x sin a y ) A ( sin a x cos a y ) Az a z
= ( Ar cos A sin ) a x ( Ar sin A cos ) a y Az a z
Ax cos sin 0 Ar
0 A
A y sin cos
Az 0 0 1 Az
here, x r cos , y r sin , z z
and, r x 2 y 2 , tan 1 t , z z
Example 2 - 9 Express the vector A ar (3 cos a 2r a z 5 in Cartesian coordinate s.
(sol):
x y
and, cos , sin
x y
2 2
x y2
2
3x 2 y y x x
A ax ( 2 2 x2 y2 ) a y (3 2 x2 y2 ) az 5
x y 2
x y2 2
x y
2 2
x y
2 2
x y 2 2
3x 2 3 xy
ax ( 2 2 y) a y ( 2 2 x) a z 5
x y 2
x y 2
9
dS R Rd sin d R 2 sin dd dS R a R R 2 sin dd
dS dR R sin d R sin dRd dS a R sin dRd
dS dR Rd RdRd dS a R RdRd
1 x2 y2
y r sin R sin sin tan
z
y
z R cos tan 1
x
then
dv
v
F (a
v
x F x a y F y a z F z ) dxdydz (for Cartesian coordinate )
(a
v
r Fr a F a z F z ) rdrd dz (for cylindrica l coordinate )
(a
v
R F R a F a F ) R 2 sin dRd d (for spherical coordinate )
c
Vd V
c
( x , y , z )( a x dx a y dy a z dz ) (for Cartesian coordinate )
V ( r , , z )(a r dr a rd a z dz ) (for cylindrica l coordinate )
c
V ( R , , )(a R dR a Rd a R sin d ) (for spherical coordinate )
c
10
d ( a x Fx a y Fy a z Fz ) ( a x dx a y dy a z dz ) (for Cartesian coordinate )
c
F
c
( a r Fr a F a z Fz ) ( a r dr a rd a z dz ) (for cylindrica l coordinate )
c
( a R FR a F a F ) ( a R dR a Rd a R sin d ) (for spherical coordinate )
c
s
A d s s
( a x Ax a y Ay a z Az ) a n ds (for Cartesian coordinate )
( ar Ar a A a z Az ) an ds (for cylindrical coordinate )
s
( a R AR a A a A ) an ds (for spherical coordinate )
s
Here, is the unit vector of the surface ds
an
a
** How to decide the positive direction of n or ds ?
a. If S is a closed surface enclosing a volume, then the positive direction for a n
11
B
Example 2 - 14 Given F a x xy a y 2 x, evaluate F dl , along the quarter - circle
A
y shown as following.
B B
B (sol) F dl ( a x xy a y 2 x ) ( a x dx a y dy a z dz )
A A
r =3 B 0 3
o A
x ( xydx 2 xdy ) x 32 x 2 dx 2 32 y 2 dy
A 3 0
1 0 3
(9 x 2 ) 3 / 2 [ y 9 y 2 9 sin 1 3y ] 9(1 )
3 3 0 2
Example 2-15
F ar k1 / r a z k 2 z evaluate the scalar surface integral F ds
s
(Sol)
z
F d S
S
an ds
F
top
an ds
F
bottom
an ds
F
side
3 face face face
2
k k
top
( ar 1 a z k 2 z ) a z ( rdrd ) ( ar 1 a z k 2 z ) ( a z )( rdrd )
r bottom
r
y face face
k1
x -3 side r
( a r a z k 2 z ) ( a r rddz )
face
2 2 2
2 2 3
k zrdrd
0
0
2 z 3
0 (k zr )drd
0
2 z 3
3 k ddz
0
1
3k 2 2 2 3k 2 2 2 k1 2 6
24k 2 12k1
V V V V V V
V au1 au 2 a u3 a u1 au 2 au 3
1 2 3 h1u1 h2 u 2 h3 u 3
au1 au2 a u3
h1u1 h2 u 2 h3 u 3
a r a
* a , a r (自行證明)
Example 2 - 16 For E V , determine E at the point (1, 1, 0), if
y
(a) V V0 e x sin( ) (b) V V0 R cos θ (課本有誤)
4
(sol)
V V V
(a ) E V (a x ay az )
h1x h2 y h3 z
y y y
[V0 e x sin( )] [V0 e x sin( )] [V0 e x sin( )]
4 4 4
( a x ay az )
x y z
y y
[a x (V0 e x sin( ) ) a y ( V0 e x cos( )) a z (0)]
4 4 4 ( x, y, z ) (1,1,0)
2 2 2
a xV0 e 1 a y V0 e 1 V0 e 1 (a x a y )
2 4 2 2 4
V V V
(b) E V (a R a a )
h1R h2 h3
(V0 R cos θ ) (V0 R cos θ ) (V0 R cos θ )
( a R a a )
R R R sin
[a RV0 cos ) ) a V0 sin a (0)]
( x, y, z ) (1,1,0) ( R, , ) ( 2 , 2, 4)
a V0 -a zV0 (在 /2的位置,a -a z )
13
2-7 Divergence of a Vector Field
div A A im
A ds
s
v : the divergence of a vector field A at a
v 0
point as the net outward flux of A per unit volume as the volume about the
Example 2-17 Find the divergence of the position vector to an arbitrary point.
(Sol)
OP a x x a y y a z z a r r a z z a R R
a. Cartesian coordinates
OP (a x ay a z ) (a x x a y y a z z )
x y z
x y z
3
x y z
b. Cylindrical coordinates
1 1
OP [ (r 1 r] (1 1 0) (1 r z)] 3r 3
1 r 1 r z r
c. Spherical coordinates
1
OP [ (R R sin R] (1 R sin 0) (1 R 0)]
1 R R sin R
1
3R 2 sin 3
R sin
2
14
2-8 Divergence Theorem
A dv A ds (背)
v s
A im
A ds
s
hint: v
v0
2
Example 2 - 19 Given A a x x a y xy a z yz , verify divergence
theorem over a cube with one unit on each side.
(sol) Divergence theorem : A dv A ds , 已知 A a x x 2 a y xy a z yz
v s
1 (1 1 x ) (1 1 xy ) (1 1 yz )
2
(a ) A dv [ ]dxdydz
v v1 1 1 x y z
1 1 1 1 1 1 1 1 1 3 1
(3 x y )dxdydz 3 xdxdydz ydxdydz 2
0 0 0 0 0 0 0 0 0 2 2
(b) A ds A ds A ds A ds A ds A ds A ds
s front face back face left face right face top face bottom face
1 1 1 1
(a x x 2 a y xy a z yz ) a x dydz (a x a y xy a z yz ) ( a x )dydz
2
x
0 0 x 1 0 0 x0
1 1 1 1
(a x x 2 a y xy a z yz ) ( a y ) dxdz (a x x
2
a y xy a z yz ) a y dxdz
0 0 y0 0 0 y 1
1 1 1 1
(a x x 2 a y xy a z yz ) a z )dxdy (a x x 2 a y xy a z yz ) (- a z )dxdy
0 0 z 1 0 0 z0
1 1
1 0 0 0 2 (a) (b) 故得證
2 2
Example 2 - 20 Given F a R kR, verify divergence theorem for the
shell region enclosed by spherical surface at R R 1 and R R 2
(R 2 R 1 ) centered at the origin. (自己試看看)
15
2-9 Curl of a Vector Field
[an A d]max
curl A A im c
S 0 S
The component of A in other direction au is au ( A)
1
( A) u a u ( A) Sim
u 0 S
(
u cu
A de )
Where the direction of the line integral around the contour Cu bounding
S u and the direction au follow the right-hand rule.
ax ay az
A
行列式法 x y z
Ax Ay Az
(A) (B)
16
im j 1
N
from (A) ( A ) j S j ( A ) S ..........(2)
S j 0 S
im j 1 d ............(3)
N
from (B) A d A
S j 0 cj c
OABO
xydx
OABO
2 xdy xydx xydx xydx ( 2 xdy 2 xdy ) 2 xdy )
OA AB BO OA AB BO
3 0 0 0 3 0
x 0 dx x 32 x 2 dx 0 ydx ( 2 xdy 2 32 y 2 dy 2 0 dy )
0 3 0 0 0 3
0 ( 9) 0 ( 0 9 0) 9(1 ) .......(B) (A) (B) 故得證
2 2 17
2-11 Two Null Identities
(1) Identity I : the curl of the gradient of any scalar field is identically zero.
(V ) 0 (記)
here, V d dV 0
c
(2) Identity II : the divergence of the curl of any vector field is identically
zero.
( A) 0 (記)
here,
( A ) ds ( A) a n1 ds ( A) a n 2 ds
S S1 S2
A d d 0...( C1與C 2 相同迴路但是方向相反)
A
C1 C2
18
(ii) A vector field F is irrotational when the curl of this field is egual to
zero F 0
Therefore, a vector field F is
1. Solenooidal and irrotational if F 0 and F 0
2. Solenooidal but not irrotational if F 0 and F 0
3. Irrotational but not solenooidal and if F 0 and F 0
4. Neither solenooidal nor irrotational if F 0 and F 0
i.e.
F Fi Fs
Fi g Fs 0
with
Fi 0 Fs G
where g and G are assumed to be known. We have
F ( Fi Fs ) Fi Fs g
and
Fi ( Fi Fs ) Fi Fs G
in view of identity 1, Fi 0 Fi V
in view of identity 2, Fs 0 Fs A Thus F V A
19
Example 2 - 23 Given F a x (3 y c1 z ) a y (c2 x 2 z ) a z (c3 y z ),
(a) If F isirrotational, please determine c1 , c2 , and c3
(b) If F V , please find V .
(sol)
1 a x 1 a y 1 a z
1
(a) F 0
1 1 1 x y z
1 (3 y c1 z ) 1 (c2 x-2 z ) 1 (c3 y z )
c3 a x - c1a y c 2 a z - 3a z 2a x 0a y 0 c1 0 ; c 2 3 ; c 3 2
V V V
(b) F V 3 ya x (3x - 2z)a y (2 y z ) a z -(a x ay ax )
1 x 1 y 1 z
V
x 3 y V 3 xy k1 ( y, z )
V
3 x 2 z V 3 xy 2 yz k 2 ( x, z )
y
V 1
2 y z V 2 yz z 2 k 3 ( x, y )
z 2
1
V 3 xy 2 yz z 2 k , k is a constant, which can be determinted
2
by the boundary condition such as V 0 at infinity (無窮遠處).
20
Chapter 3 Static Electric Fields
3-1 Introduction
# In electrostatics, electric charges (or electric sources) are at rest, and
electric fields do not change with time . Therefore there are no magnetic
fields.
# For two fixed positioned point charge q1 and q 2 , from Coulomb’s law the
vector force F12 exerted by q1 on q 2 can be written mathematically as
q1 R12
q2
qq
F12 a R12 K 1 22 .......( 1 )
R12
R12
a
here R12 R
12
V
F E
D
R4 . 3 (V / m )
' . k 1 4 R R '
0 k
O R n qn
y
3
x
Example : There is an electric dipole with two charges, +q and –q, and a
distance d between them. Find E at point P if R>>d.
d d
q (R 2 ) q
(R )
2
E 3 3
4 0 d 4 0 d
R R
2 2
d d
(R ) (R )
q 2 2
{ 3 3}
4 0 d d
R R
2 2
Consider if R>>d,
3 3 3
d d d 2 2 d 2
2
R ( R ) ( R ) R R d
2 2 2 4
R d 3 3 R d
R 3 [1 2 ] 2 R 3 [1 ]
R 2R 2
Similarly,
3 3 3
d d d 2 d 2 2
R ( R ) ( R ) R 2 R d
2 2 2 4
Rd 3 3R d
R 3 [1 2 ] 2 R 3 [1 ]
R 2R 2
q 1 d 3R d d 3R d
E [( R )(1 ) ( R )(1 )]
4 0 R 3 2 2R 2 2 2R 2
q 3R d
[ R d ] (V / m)
4 0 R 3 R 2
1
4 0 v ' R 2
E a R dv'
or 1 R
4 0 v ' R 3
dv'
5
3-4 Gauss’s Law and Applications
Gauss’s Law: E : differential form
0
total outward flux of the electric-field intensity
Q
or
S
E ds : integral form
0
Example 3-5 :
Known: (1). infinite long line (2)uniform charge density
r (Sol):
from Gauss’s Law: (先取一長度為 L 的圓柱高斯面 S)
L
L
Q 2 2
E ds
s
0
L 0
a r E r a r rd dz
0
L
infinite long line E r 2rL L
0
E Er ar a r (V / m)
2 0 r
(Sol.)
Q
from E ds (先取高斯面 S,長方體、立方體或圓柱體皆可)
0
E E z a z , ds a z ds
(i)on the top face :
E ds E z a z a z ds Eds
E E z a z , ds a z ds
(ii)on the bottom face :
E ds ( E z a z ) (a z ds ) E z ds
6
(iii)on the side faces, because the plane is infinite E 0
Summarize (i)(ii)and (iii) to obtain :
Q
E ds Ez ds
s
top
face
E z ds bottom
face 0
, and ds A, Q s A
s A
2Ez A Ez s
0 2 0
s
E s az , z 0 ; E az , z 0
2 0 2 0
Example 3.7 Known: volume charge density =-0 for 0Rb, and =0
for R>b; find E ?
(sol)
(a). for 0 R b
Q
: Gauss Law and, Q dv
2
E d s E a a dS E 4 R
s Si
R R R R
0 v
4 3
0 dv 0 R E E R a R a R 0 R (V / m)
v
3 3 0
(b). for R b
4 3
s S R R R v v 0
2
E d s E a a dS E R 4 R and, Q dv dv 0 b
i
3
0b 3
E E R aR aR (V / m)
3 0 R 2
7
3-5 Electric Potential
# For a curl–free vector E E 0 , from Identity I
E can be defined as the grdient of an arbitrary scalar quantity like:
EV ……….(A)
Here, V is a scalar quantity and called electric potential.
p2
W
p2
W qE d E d
p1
q p1
W : 反抗電場所作的功 (與能量相同)
p2
Example 2 : For two exist charges, +q and –q, with a distance of d, the
potential at point P can be written as V, thus
q 1 1
V ( )
4 0 R R
if R>>d, we have :
8
d 1 d d
R ( R cos ) ( R cos ) 1 R 1 (1 cos )
2 R 2 2R
d 1 d d
R ( R cos ) ( R cos ) 1 R 1 (1 cos )
2 R 2 2R
q d d
V [ R 1 (1 cos ) R 1 (1 cos )]
4 0 2R 2R
qd cos qd a a P aR
z R
(V ) ..........................................( D )
4 0 R 2 4 0 R 2 4 0 R 2
V V V
E V ( a R a a )
h1R h2 h3
qd cos qd cos qd cos
aR ( ) a ( ) a ( )
R 4 0 R 2
R 4 0 R 2
R sin 4 0 R 2
2qd cos qd sin p
a a ( 2 cos a sin a) (V / m )
4 0 R 3 4 0 R 3 4 0 R 3
R R
(無法訂出高斯面的例子)
9
Example 3-9 There is a disk with radius b and carying a uniform
surface charge density s , please find E on the axis.
(無法訂出高斯面的例子)
( Sol ) 先假設要求電場強度的點位在在disk中心上方Z的位置)
R Z 2 r ' 2 , ds ' r ' ddr '
2 b
1 s 1
V
4 0 R
ds ' s
4 0 1
r ' dr ' d
s' 0 0
(Z r ' )
2 2 2
s 1
[( Z 2 b 2 ) Z ]
2
(V )
2 0
s 1
a [1 z ( z b ) ], z 0
2 2 2
V z 2 0
E V a z 1
z s
a [1 z ( z b ) ], z 0
2 2 2
z 2 0
1 1
b2 2 b2 b2
and z ( z b ) (1 2 ) 1 2 , if z 0 or 1 2 , if z 0
2 2 2
z 2z 2z
thus
s b2 sb2 b 2 s Q
az [1 (1 2 )] a z az az , z0
2 0 2z 4 0 z 2
4 0 z 2
4 0 z 2
E
a s [1 ( 1 b )] a s b a b s a
2 2 2
Q
, z0
z
2 0 2z 2 z
4 0 z 2 z
4 0 z 2 z
4 0 z 2
L
z
2 ], z L
ln[
4 0 z
L 2
2
dV s L L
E V a z az ,z
dz L 2
4 0 [ z 2 ( ) 2 ]
2
10
3.6 Conductors in Static Electric Field
According to their electrical properties, the material can generally be
classified into three types: conductors , semiconductors, and insulators (or
dielectrics)
說明:
Introduce some positive (or negative) charge in
the interior of a conductor, three will be no
charge in the interior of a conductor ( =0) and
the all charge will reach the conductor surface to
produce an electric field normal to the surface .
E 0
E d Et w 0 Et 0 (E t : tangential component)
abcda
s s
E E ds E n s 0 s s E n s s
0 S
0 0 s 0
s
En a n , (a n : unit vector normal to the surface)
0
Summary:
Boundary conditions at a conductor /free space interface:
(1) Tangent component Et=0 (2) Normal component E n 0
Example 3-11 (重要)
Ro
Q Ri
air
air Conducting
shell 11
3.7 Dielectrics in Static Electric Field
# For a dielectric material, an external electric field
will polarise the material and creat electric dipoles.
Define the volume density of electric dipole moment P as :
nv
Pk k
P im k 1
(c / m 2 )
v 0 v
P aR
from eq. (D) (see page 9) dV dv'
4 0 R 2
1 P aR
V ' 2 dv'
4 0 R
v
and 1 aR
' ( )
R R2
1 1
V P ' ( )dv'
4 0 v ' R
' ' P 1 1
[Note: ' ( f A ) f A A f ' ( ) 'P P ' ( ) ]
R R R
1 P 1 1
4 0 v ' 4 0 v ' R
V ' ( )dv' ( )'P
R
1 P 1 ('P)
4 0 s ' R 4 0 v ' R
V a n ' ds' dv'
Summary :
(1) P a n ' ps : polarization surface charge density
(2) P p : polarization volume charge density
where r 1 xe : the relative permittivity(or the dielectric constant)
0
: the absolute permittivity
If r is independent of position, the medium is said to be homogenous.
simple medium.
13
For an anisotropic material:
Dx 11 12 13 Ex
D E
y 21 22 23 y
Dz 31 32 33 Ez
The maximum electric field density beyond causing the dielectric material
becoming conducting and resulting large current (i.e. dielectric breakdown )
is called the dielectric strength.
Example 3-12 :
Ro (sol)
Q Ri
then then
air (提示) Find E V ( E V ) D ( D E )
air Dielectric then
shell P ( D P 0 E )
R R
Q
(ii) V R V E d V R a dR ' a
2 R R
4 0 R '
Q R Q Q
(V ) V R0 (V )
4 0 R' 4 0 R 4 0 R0
14
Q
(iii) D 0 E a R (c / m 2 )
4R 2
(iv) P D 0 E 0 (c / m 2 )
(b) for R R R (i.e. in dielectric shell)
i 0 r 0
R R
Q
(ii) VR VR0 E d VR VR0 4 a R dR' a R
R0 R0 r 0 R'2
Q R Q Q 1 1 Q 1 1 1
VR0 ( ) [(1 ) ] (V )
4 r 0 R ' R0 4 0 Ro 4 r 0 R R0 4 0 r R0 r R
Q 1 1 1
and VRi VR ( R Ri ) [(1 ) ]
4 0 r R0 r Ri
Q Q
(iii) D r 0 E r 0 a aR (c / m 2 )
4 r 0 R 2 4R 2
R
Q Q Q 1
(iv) P D 0 E aR 0 aR (1 )aR (c/m 2 )
4R 2
4 r 0 R 2
4R 2
r
Q Q
(i) E ds E aR (V / m)
s 0 4 0 R 2
15
R
(ii) VR VR E d
i
Ri
R
Q
VR VR a dR ' a
4 0 R '2
i R R
Ri
Q 1 1 1 Q 1 1
[(1 ) ] ( )
4 0 r R0 r Ri 4 0 R Ri
Q 1 1 1 1 1
[(1 ) (1 ) ] (V )
4 0 r R0 r Ri R
Q Q
(iii) D 0 E 0 aR aR (c / m 2 )
4 0 R
2
4R 2
Q Q
(iv) P D 0 E a aR 0
4R 2 4 0 R 2
R 0
1 1
2 (1 ) (c / m 2 )
4Ri r
(ii)on the outer shell surface
1 1
sp P ( R R0 ) an 2 (1 )a a
4R0 r R R
R R0
1 1
(1 ) (c / m 2 )
4R0 r
2
16
(e)Volume charge density:
Q 1
p P [(1 aR ] )
r 4R 2
1 1 Q
2 [ R 2 sin (1 ) ]0
R sin R r 4R 2
(i) V1 V E d
b1
Q1 Q1 b1 Q1
V1 aR dRaR
4 0 R 2 4 0 R 4 0b1
b2
Q2
V2 V aR dRaR
4 0 R 2
b2
Q2 Q2 b2 Q2
V2 dR
4 0 R 2
4 0 R 4 0b2
Q1 Q2 Q1 Q2
V1 V2
4 0b1 4 0b2 b1 b2
b1 b2
and Q1 Q2 Q Q1 Q, Q2 Q
b1 b2 b1 b2
17
Q1 1 b1Q Q
(ii) E1 a a a
4 0b1 4 0b1 b1 b2 4 0 (b1 b2 )b1
2 R 2 R R
Q2 1 b2Q Q
E2 2 aR aR aR
4 0b2 4 0b2 b1 b2 4 0 (b1 b2 )b2
2
E1t w E 2t w 0
E1t E 2t ; E1t , E 2t : the tangential components of E1 and E 2
This means that the tangential component of an E field is continuous
across an interface.
(b) for a small pillbox
let h be vanishingly small (i.e. h 0)
then s
D ds D1 a n2 s D2 an1s s s
an 2 ( D1 D2 ) s ( an1 - an 2 )
an 2 ( D1t D1n D2t D2 n ) D1n D2 n s 1 E1n 2 E2 n s
此處D1的方向是射入medium 2; 與課本3.121b所定的方向相反
18
Boundary conditions :
tangential components E1t E2 t
normal components a n 2 ( D1 D2 ) s
Cases:
Example 3-15:
19
3.10 Capacitance and Capacitors
# Introduction
Inside the conduction :
free space E0 ; 0
En At the interface :
Et s
Et 0 ; E n
conductor 0
說明:對一導電體(conductor)而言,導體內部維持等電位(因此內部沒
有電場),自由電荷將累積在導體的表面上而對外形成電場。外加電
Q
C
V12
steps:
20
1. Choose an appropriate coordinate system for the given
geometry;
2.Assume charges +Q and –Q on the conductors :
3.Find E from Q (use Gauss law);
1
4.Find V from E (use V E d );
2
Q
5. C .
V
b a
L
21
(Sol)
Put Q and - Q on the inner and outer conductors , respective ly,
-Q
b a
for a r b +Q
r
Q
From Gauss law d s E 2r L
s
E
L
Q Q a
a
Q Q b
E ar E ar and, Vab E d r a r a r dr ln
2r L b b
2r L 2 L a
2 L
for Q CV ab C (F)
b
ln
a
E 4R 2
E aR E aR and, Vio E d R
4 R 2 Ro
Ri
Q Q 1 1
aR a R dR ( )
Ro
4 R 2
4 R i R o
4
for Q CV io C (F)
1 1
Ri Ro
22
Q1
*To bring the charge Q from infinity against the field of the charge Q
2 1
1 '
2 v '
# For a continuous charge distribution of density : We Vdv
Example 3-22 :
dR
R
b
23
(sol)
R 2
QR 1 R3
R sin dddR 2 ( cos ) 0
2
VR ' '
4 0 R 4 0 R 0 0 0
4 0 R 3
R 3 2 2 R 2
4 0 R 3 3 0
1 '
2 v '
** Example 3-23 同 Example 3-22,但改用 We Vdv 法來求.
Consider: 1
V
R 1
1 V D ds
D, E 2 s R
R
if R , then VD ds 0
S R2
1 ' 1 '
2 v '
We D E dv E E dv ( if for a linear medium)
2 v'
1 or 1 D ' 1 D2 '
E dv D dv
2 '
dv
2 v' 2 v' 2 v'
24
1 1 2 D2
Let We we dv we D E E
'
( J/m 3 )
v'
2 2 2
we : eletrostat ic energy density
Example 3-24: Find the electrostatic energy stored in the folloing
Area S
parallel-plate capacitor.
(sol> +Q
V d
V -Q
E (a Z )
d
1
d
1 V 1 S 1
We E Edv ( ) 2 Sdz ( )V 2 CV 2
2 v' 20 d 2 d 2
1
or or Q 2
QV
2 2C
電路方法:
dw e (t ) dq (t )
p (t ) v(t ) i (t ) v(t ) dwe (t ) v(t ) dq (t )
dt dt
1 Q2
dwe (t ) v(t ) dq (t ) We VQ
2 2C
b a
(Sol) L -Q
b a +Q
r
for a r b
L
Q Q Q
From Gauss law E d s E 2r L E a r E a r
s
2r L
1
b
1 1 Q
and, W e E E dv E dv (
2 '
) 2 2r Ldr
2 v' 2 v' '
2 a 2r L
2 L
b
Q2 1 Q2 b Q2
4 L a r
dr ln ,
4 L a
Compared to W e
2C
C
b
ln 25
a
Chapter 4 Solution of Electrostatic Problems
4.2 Poisson’s and Laplace’s Equations
# For electrostatics :
D ....(1)
E 0 ....(2) : irrotational
E V ......(3)
In a linear and isotropic medium D E ... ( 4)
Substitution of eq.(3) and (4) into eq.(1)
( E )
( V )
x y z x y z
( Note : au1 au2 au
h1u1 h2 u 2 h3 u 3 3
1 h h A h h A h h A
A [ 2 3 1 1 3 2 1 2 3] )
h1 h2 h3 u1 u 2 u 3
For charge free medium (i.e. 0 ) (or no free charge in a simple medium)
2
Example 4-2 Known: volume charge density =-0 for 0Rb, and =0 for
R>b; Find V by solving Poisson’s and Laplace’s equations.
free space =0
3
4.3 Uniqueness of Electrostatic Solutions
Uniqueness theorem: A solution of Poisson’s equation that satisfies the given
boundary conditions is a unique solution.
3. V 0 as R ( x , y , z )
4. V(x, y, z)= V(-x, y, z) ; V(x,y,z)= V(x, y, -z)
(0,-d,0)
4
Step2: Find V
Q Q Q 1 1
V(x, y, z)= ( )
4 0 R 4 0 R 4 0 R R
R ( x 0) 2 ( y d ) 2 ( z 0) 2
here,
R ( x 0) 2 ( y d ) 2 ( z 0) 2
Step3: Find E
V V V
E V = ax ay az
x y z
Note: In this problem the point charge +Q and –Q cannot be used to calculate the V
or E in the y<0 region.
Example 4-3
For the net force on Q F F1 F2 F3
Q2
where F1 (a y )
4 0 (2d 2 ) 2
Q2
F2 (a x )
4 0 (2d1 ) 2
Q2 2d 1 a x 2d 2 a y
F3 ( )
4 0 (4d1 4d 2 )
2 2 2 2 2 2
4d 1 4d 2 4d 1 4d 2
Q2 d1 1 d2 1
Therefore, F [a x ( ) ay ( )
16 0 2 2
3
d1
2
2 2
3
d2
2
(d1 d 2 ) 2
(d1 d 2 ) 2
5
The image line charge must lie somewhere along op say at point Pi ,
which is at a distance d i from the axis.
Let us assume : i
The E and V of point M produced by the source line charge are :
E a r , where r is the distance from line charge of density
2 0 r
r r 1 r
V E a r dr dr ln 0
r0
2 0 r0 r 2 0 r
r r r
VM V V i ln 0 ln i ln i
2 0 r 2 0 r0 2 0 r
Because the surfaces of the conducting cylinder should be equipotential, therefore
ri
choosing =constant such that the located point Pi has to be chosen to make
r
OMPi OPM .
Pi M OPi OM r d a a2
or i i cons tan t d i (image charge 位置選定公式)
PM OM OP r a d d
Example 4-4 Determine the capacitamce per unit length between the
two long, parallel, circular conducting wires of radius a. The axes of the
wire are separated by a distance D.
<sol>
from the method of images
a a
-l l
d
i
di
d
D
a a
V2 ln , V1 ln ,
2 0 d 2 0 d
6
a2 D D 2 4a 2
Where d D - d i D d
d 2
0 0
C
V1 V2 a a d D D 2 4a 2
ln ln ln( ) ln[ ]
2 0 d 2 0 d a 2a
0 0
( ln[ x x 2 1] cosh 1 x )
D D D
ln[ ( ) 2 1] cosh 1 ( )
2a 2a 2a
Another example:
Advanced examples:
Example1 : y
a1 a2
- O l
l x
b b
c1 c2
D
7
2 2
we have b 2 c1 a1
2 2 1
and b 2 c 2 a 2 c1 ( D 2 a12 a 22 )
2D
1
But c1 c 2 D c2 ( D 2 a 22 a12 )
2D
Example 2 :
2 2
here b 2 c1 a1
2 2 1
b 2 c2 a2 c1 (a 22 a12 D 2 )
2D
1
and c 2 c1 D c2 (a 22 a12 D 2 )
2D
The E and V of point M produced by the point charge Q are ,
Q
EQ a r where r is the distance from Q
4 0 r 2
8
r r
Q 1 Q 1 1 Q 1
VQ EQ a r dr r dr ( ) ,
r0
4 0 r0
2
4 0 r r0 4 0 r
Similarly, the E and V of point M produced by the point image charge Qi are,
r Qi r
1 Qi 1 1 Qi 1
VQI i E Qi a r dr r dr ( )
r0
4 0 r0
2
4 0 r r0 4 0 r
1 Q Qi Q Q
and VM VQ VQi ( ) 0 ( grounding) i 0,
4 0 r ri r rI
ri Qi ri a d i a2 a
constant, di Qi Q
r Q r d a d d
Example 4-5
(4). Charge Sphere and Grounded Plane
image
a a a a2 a2
Q1 Q0 Q0 kQ 0 ( k ), di
d 2c 2c d 2c
2 2
a a k a a2
Q 2 Q1 Q1 Q 0 , d i '
d' a2 1 k 2 d' a2
2c 2c
2c 2c
a a aQ 2 k k2
Q3 Q2 Q 2 Q0
di '' 2c d i' a2 k3 1 k 2
2c 1
a2 1 k3
( 2c )
2c
3
k
Q0
k3
(1 k )(1
2
)
1 k3
.......... .......
k2
The total charge on the sphere is Q Q 0 Q1 Q 2 Q 0 (1 k )
1 k 2
Since the charge pairs ( Q0 , Q1 ),( Q1 , Q2 ),( Q2 , Q3 )….yield a zero potential on the
9
sphere, only the original Q0 contributes to the potential of the sphere , which is
k2
Q0 (1 k )
Q0 Q 1 k 2 k2
Hence, V0 , hence C 4 0 a(1 k )
4 0 a V0 Q0 1 k 2
4 0 a
V ( x, y, z ) X ( x)Y ( y ) Z ( z )
d 2 X ( x) d 2Y ( y ) d 2 Z ( z)
Thus Y ( y ) Z ( z ) X ( x ) Z ( z ) X ( x )Y ( y ) 0
dx 2 dy 2 dz 2
1 d 2 X ( x) 1 d 2Y ( y ) 1 d 2 Z ( z)
0
X ( x) dx 2 Y ( y ) dy 2 Z ( z ) dz 2
1 d 2 X ( x) 2 1 d 2Y ( y ) 1 d 2 Z ( z) 2
Now let 2
k x , 2
k y
2
, 2
k z
X ( x) dx Y ( y ) dy Z ( z ) dz
1 d 2 X ( x) d 2 X ( x)
then k x k y k z 0 , and
2 2 2
2
2
k x 2
2
k x X ( x) 0
X ( x) dx dx
d 2 X ( x)
The possible solution of 2
k x2 X ( x) 0 is shown as following.
dx
kx2 kx X(x) Exponential forms of X(x)
0 0 A0x+B0
+ k A1sinkx+B1coskx C1ejkx+D1e-jkx
- jk A2sinhkx+B2coshkx C2ekx+D2e-kx
d 2Y ( y ) d 2 Z ( z)
Similar method for solving 2
k y Y ( y ) 0 and
2
2
k z2 Z ( z ) 0
dy dz
10
Example 4-6 Determine the potential distribution in the region enclosed
by the three electrodes.
(sol)
In this structure, V is independent of z. k z 0 Z ( z ) B0 V(x, y, z) B0V(x, y) B0 X ( x)Y ( y )
All boundary conditions :
For x - direction : V( 0 , y) V0 , V(, y) 0 ; For y - direction : V(x, 0 ) V(x, b) 0
k k k 0 k k
2
x
2
y
2
z
2
y
2
x ( k z 0) let k k 2 k x2 k 2
2
y
d 2 X ( x)
2
k 2 X ( x) 0 X ( x) C 2 e kx D2 e kx (C 2 0, as X( x ) 0 )
dx
d 2Y ( y )
and 2
k 2 X ( x) 0 Y ( y ) A1 sin( ky ) B1 cos( ky ) ( B1 0, as Y(y 0) 0)
dy
V(x, y) B0 D2 e -kx A1 sin (ky) Ce -kx sin (ky ), C B0 D2 A1
from boundary condition : V ( x, b) 0 sin( kb) 0 kb n k n / b, n 1, 2 , 3,......
π 2π nπ
sin ( y ) C 2 e sin ( y ) ...... C n e sin ( y ) Vn ( x,y )
- πb x - 2bπ x - nπ x
V(x, y) C1e b
b b n 1 b n 1
nπ
x nπ nπ
Here, Vn(x, y) C n e b
sin ( y), Meanwhile, V (0 , y ) C n C n sin ( y ) V0 , 0 y b
b n 1 n 1 b
nπ
here, C
n 1
n sin (
b
y ) V0 , 0 y b is essentially a Fourier - series expansion,
mπ nπ mπ
y) C n sin ( y )dy V0 sin (
b b
Therefore,
0
sin (
b n 1 b 0 b
y)d y
Cn 4V0
b mπ
nπ b, if m n mπ , if n is odd
y) C n sin ( y )dy 2
b
sin ( , 0 V0 sin ( b y)dy n
0 b n 1 b 0 , if m n 0 , if n is even
nπ 4V0 - nπb x nπ
V(x, y) C n e y)
- nπ x
b
sin ( e sin ( y ), x 0 and 0 y b
n 1 b n odd n b
V=0
a 11
(sol)
In this structure, V is independent of z. k z 0 Z ( z ) B0 V(x, y, z) B0V(x, y) B0 X ( x)Y ( y )
All boundary conditions :
For x - direction : V( 0 , y) V0 , V(a, y) 0 ; For y - direction : V(x, 0 ) V(x, b) 0
k x2 k y2 k z2 0 k y2 k x2 ( k z2 0) let k y2 k 2 k x2 k 2
d 2 X ( x) d 2 X ( x)
from 2
k 2
x X ( x ) 0 2
k 2 X ( x) 0 X ( x) C 2 e kx D2 e kx
dx dx
or
A2 sinh (kx) B2 cosh (kx)
sinh (ka)
as X ( x a ) 0 A2 sinh (ka) B2 cosh (ka) 0 B2 A2 X ( x) A2 sinh (kx)
cosh (ka)
sinh (ka) 1
A2 cosh (kx) X ( x) A2 [cosh (ka) sinh (kx) sinh (ka) cosh (kx)]
cosh (ka) cosh (ka)
A3 sinh ( k ( x a ))
d 2Y ( y )
from 2
k 2 X ( x) 0 Y ( y ) A1 sin( ky ) B1 cos( ky ) ( B1 0, as Y(y 0) 0)
dy
V(x, y) B0 A3 sinh (k ( x a )) A1 sin (ky) C sinh (k ( x a )) sin (ky ), C B0 A3 A1
from boundary condition : V ( x, b) 0 sin( kb) 0 kb n k n / b, n 1, 2 , 3,......
nπ nπ
V(x, y) C n' sinh ( ( x a )) sin ( y ) Vn ( x,y )
n 1 b b n 1
nπ nπ nπ nπ
Here, Vn(x, y) C sinh ( ( x a )) sin ( y), Meanwhile, V (0 , y ) C n' sinh (- a ) sin ( y )
'
n
b b n 1 b b
nπ nπ nπ
C n sin ( y ) V0 , 0 y b, here, C n C n' sinh (- a ) C n sin ( y ) V0 , 0 y b
n 1 b b n 1 b
is essentially a Fourier - series expansion,
mπ nπ mπ
y) C n sin ( y )dy V0 sin (
b b
Therefore, 0
sin (
b n 1 b 0 b
y)d y
Cn 4V0
mπ
nπ b, if m n mπ , if n is odd
y) C n sin ( y )dy 2
b b
sin ( , 0 V0 sin ( b y)dy n
0 b n 1 b 0 , if m n 0 , if n is even
4V0 nπ 4V0 4V0
Cn C n' sinh (- a ) C n' , if n is odd
n b nπ nπ
n sinh (- a ) n sinh ( a )
b b
nπ nπ
V(x, y) C n' sinh[ ( x a )] sin ( y )
n 1 b b
4V0 nπ nπ
sinh[ ( x a )] sin ( y ), 0 x a and 0 y b
nπ b b
n odd
n sinh ( a )
b
12
4.6 Boundary-Value Problem in Cylindrical Coordinates
r d dR ( r ) 1 d 2 ( )
V (r , , , z ) Z 0 R (r ) ( ) [r ] 0
R ( r ) dr dr ( ) d 2
r d dR ( r ) 1 d 2 ( ) d 2 ( )
Now let [r ] k , then
2
k
2
k 2 ( ) 0
R ( r ) dr dr ( ) d 2
d 2
d dR ( r ) d 2 R(r ) dR ( r )
r [r ] k 2 R(r ) r 2 2
r k 2 R (r ) 0 R ( r ) Ar r k Br r k
dr dr dr dr
1 d ( )
2
d ( )
2
Similarily for : k 2
k 2 ( ) 0 ( ) A sin( k ) B cos( k )
( ) d 2
d 2
0 2
-V0 -V0
4V0
V0 for 0 if n is odd
V (b, ) An b sin( n )
n
An nb n
n 1 V0 for 2 0 if n is even
4V r n
V (r , ) 0 sin( n ), r b
n odd nb n
(2) Inside the tube ( r b)
Because the region includes r , the r k factor can not exist.
V (r , ) r k [ A sin( k ) B cos( k )] Moreover, since V (r , ) is an odd function of ,
the cos( k ) factor can not exist. Therefore, V (r , ) A r k sin( k ), k is integer
For this case, V (r , ) should be composed by a lot of such terms V (r , ) An r n sin( n )
n 1
4V0 b n
V for 0 if n is odd
V (b, ) An b n sin( n )
0
An n
n 1 V0 for 2 0 if n is even
n
4V b
V (r , ) 0 sin( n ), r b
n odd nr n
14
4.7 Boundary-Value Problem in Spherical Coordinates
Laplace's equation in spherical coordinates :
1 2 V 1 V 1 2V
(R ) 2 (sin ) 2 2 0 ( 0)
R 2 R R R sin R sin 2
For simplifying the problem, we limit discussion to cases in which potential V is independent of .
1 V 1 V
(R2 ) 2 (sin ) 0 Assume V ( R, θ ) Γ( R ) Θ(θ )
R R
2
R R sin
1 d dΓ( R) 1 d dΘ(θ )
(R2 ) (sin )0
Γ( R) dR dR Θ(θ ) sin d d
1 d dΓ( R ) 1 d dΘ(θ )
Let (R2 ) k 2 , then (sin ) k 2
Γ( R ) dR dR Θ(θ ) sin d d
d 2 Γ( R) dΓ( R)
(1) R 2 2
2R k 2 Γ( R) 0 Γ n ( R) An R n Bn R -(n1 ) , here n(n 1 ) k 2 ,
dR dR
n 0,1,2,3,...positive integer
1 d dΘ(θ ) d dΘ(θ )
(2) (sin ) n(n 1) (sin ) n(n 1)Θ(θ ) sin 0
Θ(θ ) sin d d d d
It' s a form of Legendre's equation. The solutions for this eq. are called Legendre function.
Θ n (θ ) Pn (cos ) : Legendre polynomials
Finally,Vn ( R, θ ) Γ n ( R) Θ n (θ ) [ An R n Bn R -(n1 ) ]Pn (cos )
V ( R, θ ) Vn ( R, θ ) [ An R n Bn R -(n1 ) ]Pn (cos )
n 1 n 1
Example 4 - 10
15
Chapter 5 Steady Electric Currents
5.1 Introduction
Conduction currents : caused by drift motion of conduction electrons and/or
holes in conductors and semiconductors.
Electrolytic currents : the result of migration of positive and negative ions.
Convention currents : result from motion of electrons and/or ions in a vacuum..
Q Nqu a n st (c)
Q
I Nqu a n s Nqu s
t
( here, s a n s )
Let J : volume current density (or simply current density)
Define
J : in amperes per square meter
J Nqu u ( here, Nq : volume charge density )
I J s I J ds
s
Example 5-1
1
dV
E (0) a y E ( y ) y 0 a y y 0 0
dy
J a y J a y ( y )u ( y ) (Note : (y) is negative )
du ( y ) dv( y )
m eE ( y ) e
dt dy
Noting that :
du du dy du d 1
m m mu ( mu 2 ) (Note : dy/dt=u )
dt dy dt dy dy 2
1
d 1 dV 1 2eV 2
( mu 2 ) e mu 2 eV u ( )
dy 2 dy 2 m
1
J m
now, J u J V 2
u 2e
c : an arbitrary constant
1
dV 4J m 2
at y 0 V 0, and 00 0 c c 0
dy 0 2e
2
1 1 1
dV 4J m
( )2 ( )4V 4
dy 0 2e
1 1 1
m J
V dV 2( ) ( ) 4 dy
4 2
0 2e
3 1 1
4 J m
V 4 2( ) 2 ( ) 4 y c '
3 0 2e
V0 4 2( ) 2 ( ) 4 d J 02 V0 2
3 0 2e 9d m
Child-Langmuir Law
For more than one kind of charge carriers (electrons, holes and ions)
J N i qi u i
i (A / m2 )
For metallic conductors the main kind of charge carriers is electrons.
J N e qe u
由分析可知: u u e E 亦即電荷移動速度與所受電場強度成正比
e u e h u h
3
2
Because V12 E d V12 E
1
I
E
S
I
V12 V12 I R ; R ( )
S S
1 S
Conductance : G (S )
R
Example 5-2
Copper (radius =1 mm) Aluminum (radius=1 mm)
(a). (b).
Find R ?
1 km 1 km
<sol>
(a) from R and copper 5.8 10 (查表B4,Page 675)
S
10 3
R 5.49()
5.8 10 7 (10 3 ) 2
(b) from R and alu min um 3.54 107 (查表B4,Page 675)
S
10 3
R 8.99()
3.54 10 7 (10 3 ) 2
4
5.4 Equation of Continuity and Kirchoff’s Current law
Consider : S, V
Q
I
I J ds I Jdv...(1)
s r
5
dQ d
dt v
and I dv...(2)
dt
d
Jdv dv dv
v
dt v v
t
J ( A / m 3 ) : the equation of continuity
t
For stendy currents charge density does not very with time 0,
t
or for no flow source 0
of continuity
J
t
E
t
in a simple medium E
0
6
t
t
0 0e where 0 is the initial charge density at t 0 ,
t
As t 0 e 0 e 1 0.368 0
, : called the relaxation time
7
P E Jdv
v
E d J ds
L s
VI I 2 R
Example 5-3
8
<sol>
J 1n J 2 n
J1n J1 cos1 J1t J1 sin 1
J 1t 1
J 2 n J 2 cos 2 J 2t J 2 sin 2
, and
J 2t 2
2
J2 J 2t J 2 n ( J1 sin 1 ) 2 ( J1 cos1 ) 2
2 2
1
2
J1 ( sin 1 ) 2 cos1
2
1
9
J 1n J 2 n 1 E1n 2 E 2 n
D1n D2 n s 1 E1n 2 E 2 n s
2 E 2n
s 1 2 E 2n ( 1 2 2 ) E 2n
1 1
E
or s 1 E1n 2 1 1n ( 1 2 1 ) E1n
2 2
21
s (1 )E1n 1 E1n D1n
2
Example 5-4
<sol>
(b). V E1 d 1 E 2 d 2
and 1 E1 2 E2 ( J 1n J 2 n )
2V 1V
E1 (V / m) , E 2 (V / m)
2 d1 1d 2 2 d1 1 d 2
1 2V 2 1V
si 1 E1 2 E 2
2 d1 1 d 2 2 d1 1 d 2
2 1 2V
( 1 )
2 2 d1 1 d 2
Sum :
s1 s 2
s1 s 2 si 0
11
Q
ds
D E ds
C s s
V E d E d
L L
E d E d
V
R L
L
I J ds E ds
s s
V Q Q
E d
E ds
RC L s
I V I E ds E d
s L
C
RC
G
Example 5-5
<sol>
(a).
from Gausss Law : E ds d
s
E 2r E ar
2r
a a
b
Vba E dr a r a r dr ln
b b
2r 2 a
2
c1 ( F / m)
Vba b
ln
a
12
and
b b
ln ln
R1C1 R1 a a ( / m )
c1 2 2
(b). In example 4-4 the analysis results show the capacitance per unit
length for the parallel-wire transmission line is :
C1 '
cosh 1 ( D / 2a)
1 cosh 1 ( D / 2a ) 1
therefore R1 ' cosh 1 ( D / 2a )
C1 '
1 D D
ln[ ( ) 2 1 ( / m )
2a 2a
Summary:
The procedure for computing the resistance of a piece of conducting
material between specified equipotential surface ( or terminal ) is as
follows:
1. Choose an appropriate coordinate system for the given geometry.
2. Assume a potential difference V0 between conductor terminals.
2
3. Find E ( from V 0 V E V)
13
4. Find I ( from I J ds E ds )
s s
Example 5-6
14
Chapter 6 Static Magnetic Fields
6.1 Introduction
D B 0
and D E and B H
Fe q E Fm qu B
F Fe Fm q E qu B q E u B :called the Lorentz’s force equation
Spaces
B 0
here, 0 4 10 7 H / m
B 0 J
Bdv B d S 0
v s
B ds
s s
0 J d s B d l 0 J d s 0 I : Amphere' s circuital law
c s
Summary:
Postulates of Magnetostatics in Free Space
Differential Form Integral Form
B 0 Bds 0
s
6- 1
B 0 J B dl
C
0 I
Example 6-1
<Sol>
(a) Inside the conductor
r1 2
B1 a B1 , d l a r1 d , I1 I
b 2
r1 2
B1 d l 0 I 1 a B 1 a r1 d 2 I , r1 b
C C1 b
2 2
2 r r
B 1 r1 d 0 1 I B 1 r1 2 0 1 I
0
b b
0 r1 I rI
B1 B1 0 12 a
2b 2
2b
(b) Outside the conductor
B2 a B 2 , d e a r2 d , I 2 I
B2 d l 0 I 2 a B 2 a r2 d 0 I , r2 b
c2
2 0 I
B 2 r2 d 0 I B 2 r2 2 0 I B 2
0 2r2
0 r1 I
B a , rb
2b 2
0 I
a , r b
2r2
Example 6.2
(Sol)
For b a r b a
B d 0 NI
B a r a d 0 NI
C
6- 2
2
B rd 0 NI
0
0 NI NI
B 2r 0 NI B B 0 a
2r 2r
Example 6.3
<Sol>
Applying Ampere’s circuital law :
B d I
0 total
BL 0 ILn B 0 NI
From right-hand rule,the direction of B goes from right to left.
How do we choose 、 A ?
2
Because : B 0 J ( A) 0 J ( A) A 0 J
2
Comparing to V ,we can choose A 0 such that
0
2
A 0 J
6- 3
2
AX 0 J X
2
Ay 0 J y
2
Az 0 J z
2
The solution form of V is
0
1
V
4 0
V' R
dv '
2 0 J '
The solution form of A 0 J is A
4
V '
R
dv
I d l ' 0 I dl '
then, B A 0
4
C ' R 4 C '
R
........( A)
Note:
1. The unprimed curl operation implies differentiations with respect to the
space coordinates of the field point.
2. The integrand operation is with respect to the primed source coordinates.
0 I d l ' 0 I 1 1 '
Continue ( A) B R d l ( R ) d l
'
4 C '
R 4 C'
'
'
I aR 0 I d l aR
0
4 C R 2
0 d l C ' R 2 (T):Biot-Savart Law
4
'
( Applying ( f G ) f G f G )
6- 4
Sometimes,it is convenient to write Biot-Savart Law in two steps:
B ' dB
C
0 I d l a R I dl ' R
'
dB 0
4 R 2 4 R 3
Example 6.4
<Sol>
'
A typical element on the wire is d l a Z dz '
'
I dl 0 I L a Z dz ' az 0 I ln( z ' z ' 2 r 2 ) | L
(a) A 0
4 C ' R 4 L '2
4 L
z r2
0 I L2 r 2 L
az ln a z Az
4 L2 r 2 L
1 Az A
Therefore, B A (a z AZ ) a r a Z
r r
0 I L2 r 2 L 0 IL
a ln( ) a .......( A)
r 4 L r L
2 2
2r L r
2 2
0 IL 0 I
if r L B a a
2r L r 2 2 2r
(b) By applying Biot-Savart Law:
R a1 r a z z '
'
d l R a z dz ' (a r r a z z ' ) a rdz '
6- 5
'
I dl R
L I L rdz '
B dB 0 a 0
L 4 3
4 L 2
R (z ' r 2 )3/ 2
0 IL
a .......( B)
2r L2 r 2
Finally, (B)=(A)
6- 6