0% found this document useful (0 votes)
43 views11 pages

Maths - (Indefinite Integration)

Indefinite Questions

Uploaded by

dashboom14
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
43 views11 pages

Maths - (Indefinite Integration)

Indefinite Questions

Uploaded by

dashboom14
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 11
NARAYANA IIT ACADEMY (G\ NARAYANA or excuience T - JEE ACADEMY - INDIA APEX_PT-4_ MATHS ASSIGNMENT 1. The integral /- is equal to: tan (4) ee be {an'(e+3)) +0 A) . B) ‘ af iw RY), ome ele (eel) = J axdx 2. The integral ave equal 5) log) +V2+"] +0 py eel 2= +6 eS ~loglt-V2=" +0 A, «log|t— bees 3. TE s(x)= (= a a xdvand f (0)=0,then f (1) equal Le = z A)tan 4 B) tanl+1 G4 D)1-4 4 Saamesaa 7 “aot +C Pram Omens te Daciag te 5. Let I(x)=f A) 6v3 B) V3 oO D) 3V3 (sin"?+cos*?0)d0 = sin’ 8.cos’ @.sin(0 +c) 2 : 2 vleosar.tand +sina ~-—— cosa + cot8.cosa +e a sina dx. 1f KO) = 3, then (Bs equal to 6. The value of J Eee NARAYANA IIT ACADEMY 2 : 2 B) Veosq.tand + sina -—~—eosa + cot@.sina +¢ cose sina 2 2 Cc) Vsina.tan@ + cosa -—— cosa + cot @.cosa +¢ cosa sina a - Vcosa.tan@ + cosa -——Vcosa@ + cot@.cosa +e cosa sina 1 1 1 7 A 7. I fdr = — tan" (3 tan x) + constant, then the maximum value of a sin @sin'x+B cos'x 12 x +b cos.x, is D) A) V2 B) Var ©) V9 D) V40 x'(x'+x°—1)dx | zs 8 El Geaareay Oro f(x) (where ¢ is integration constant) whe) B) F(x? +x ©) -2 2x 43x 42°)" (= EN By 6 25°20 10 a <7 is equal to (Where C is a constant of integration) 9. The integral eae x4) (x \ \ 3 (3 ay +e ») (23) "+e o(B)re mas) +C x+4 x+4 2la+4 13x44 smfart) 10. if f R be a differentiable function such that O41. eri I x(cos x—sinx) A g(xi(e +1—xe") i e+ (e+ for all ¥>0, where c is an arbitrary constant. Then Eee NARAYANA IIT ACADEMY. B) 8" is increasing | C) & is increasing in D) &* & is increasing in | 12. The integral dv is equal to J sin’ (sin’ x-+cos? xsin? x +-sin’ xcos? x-+cos* x)" tse — TG mg | A) root's p) 30+) Cy MF eM py Treot's +€ 13. Let / bea differentiable function such that {0 =? and /= S09 forall ER If Wx)= (£0) then *'C) is equal to A) 4e B) 4° ©) 2 D) 2e° 3a ae 14. The integral J dx,x> 0, is equal to: (where c is a constant of é Fm some ae integration) A) log, |x? +5x—7| +e log, |x? +5x—7|+¢ B) dog, |x? +5 a+ oa er x 1+ D) be. we 45x—-T+e (5 (cosx—sinx) 15, ‘The integral. f oe is equal to (where C is a constant of integration) 1+ sin2x [epee fn xi 1 (5 ml ‘| Frog, +¢ —tiog +c tan 42 2 tan 4% A) a B) De Eee NARAYANA IIT ACADEMY +c diog, c 2 D) 16. = Aftan{2—! coum +C, where C isa constant of 3) x —2x410 integration, then 64+ Bis equal to 20 i 5 28 A) 9 B) 6 C6 D) 9 1 S(m)=-5 17, {x)= f O522E= Asin’ xeos.e— Asindeos!2r— sind, g Oa ee 1—4sin” x-+2sin? 2x—2cos2x of the following is true . : “(| a By 2 (@)/>1 co 4) 2 D) none 18. If f(x +242") Jeet 43x46)" ar" (p+ qr! +r)" 40 Where c is constant of integration a,b,p,q,t are integers then @+5—P +9 A)35 B)30 ©)25 D)20 19. f (Vian + Jeots) dr is a V2sin-(sinx -cosx)+e py V2sin- "(sins Heosx) +e ¢) sie "sin —cosx) +e py sin" (sine +0981) +6 (where c is integrating constant) 20s x+ 20. iF ff = (seex+cosecr + tan x-+cotx) b then Ja+b+¢ —— (Where d is constant of integration) ef ete allt byl+x7 +C, then 34-0 = __ vite (where C is integral constant) al. Eee NARAYANA IIT ACADEMY 22. ForK(x)=" sin” hao 2 “ mesh 23. The integral i xsecx +C tanx— A) axsinx+cosx xtanx + secx— 1) Jet (2+ xsec’ x)dx = xsinx+cosx 24. A) 2e™" +C “4C C) Tanx + xe™ sec” x— 2022 a jo 1a }-0 A) ei(Z)-1( 3 6 cos’ x For I(x) ° wu(2)-(2 AG 26. The integral (xsinx + cosx)° 2) sue GE B) SHE) a dx is equal to (where C is a constant of integration); xtan.x secx + +C B) tanx+ D) xsinx+cosx xseex +C xsinx+cosx B) x'e™ + D) x? +xe™+C as (2 - 2!" then un no(a}-4g) pens) d= FO) +e such that SO =0, then Ail ([Jis the greatest integer function, ¢ is integrating constant) A)l B)O fan Vicdeis equal to 7. 9 A) + Dian Vx Ve +C ©) Venstan V+ 2 3 D)2 py stan Ve +C py ¥¥-(+Dtan"' Vs +C (where C is integrating constant) Sets 28, dx is equal to 29. 30. 31. 34, NARAYANA IIT ACADEMY SE <(log, “| ——_+¢ xtan( 22) 4.¢ A) 1+ cos(logx) B) 2 —xeot tees). C A3* 46 ° _ py Hsinioa) If fee ade=— Le /(a)+C where C is a constant of integration, then f°) is equal to (2 wf ‘seox(2-+ see) 4. f(x) +C.where c is the integration constant and the curve (1+2secx) y= F(®)passes through the origin, then 2 & + f(x) equals 1 x x If [| log(logx) + ——, |dv =—log(logx) + B——+C. Then 4+B= i log( mes) fr = “log (logx) cm en (Ayo (B) 2 (2 ()1 ex is equal to: J sin2x-+e lyin 2x40 : A)2 B) 2 D) -sin’ x+c The integral equal (for some arbitrary constant K) ( j seex-+ tan oy box ay (eo +tans 1 B) exon" alee ome See JEE MAIN-2026 MATHS ASSIGNMENT NARAYANA IIT ACADEMY 1 fil : Fr pleer+ tans) D) (secx+tanx)"* U1 Tx sin 35. i 2a is equal to (where c is a constant of integration) sin 2sin3x 2sin3x +sin2x+2sinx—x+e A) 3 B) +sin2x—2sinx+x+e 2sin3x D) 2x +2sinx+x+e +sin2x+2sinx+x+0 36. [—*~ a= J x +l)vx* +1 37. a2 A) 3 B) C=1/3 © D=1 D) B+C+D=-1 38. Ay Se il ©) loxls 39. te fae ae Bin ie —5e 8B-A then 2 +e (Where c is integrating constant) REE NARAYANA IIT ACADEMY 3e0t3x—cotx,, 40. If fc = p+ qi Ul cme=sanacee aaad +e then 2 (where c is constant of integration) 41. For real numbers °9:7 474 6 ig cep stan fF etl 1s fan- 432 +e [F Bs | x allog, | tan) * =) + pian (= =} btm [2H \;' x Fe ; where C is an ame constant, then the value of !0(¢ + 818) is equal to 42 — If Ie ae 4 +C, where C is the constant of integration and (x—1)"(x +3)" Bx+3 4.8 are constants, then the value of © 9+20AB jg 43. 1 0) = fae (20) ang £0 =9 then the value of 4) oe 2x (A) 2 (B) 2 ©-1 (D)1 dx ¥2(a=3)x+(a-1) (x+a-3)- f(a)| («+a-3)+ f(a) 44. Assertion (A): For2D. 15, + Lyng = a tan? x + bx +, where ¢ is a constant of integration, then the ordered pair (4-5) is equal to A) (a4) B) (aa) ° las] D) bas 54. The value of integral /, - 8in9X (y, equals to (Where c is integrating constant) cosx cos8x _cos6x , cos4x +cos2x + In|secx| +e Ay 4 3 cos8x . cos6x 4 SOSBE 5 086% | CO8FN 5 cos 24 4 Infseca] +e B) 4 3 A S0SBR | LOSER _ COSAT | gs 2x + Ineo} +c Ce 3 _cos7x | cosSx _cos3x + +c082x + In]seex| +e pb) 4 A [pees] 55. Let 1, = ftan'xdx, (n> 1). 1, +1, =atan’ x+ bx’ +C, where C is a constant of integration, then the ordered pair (54) js equal to a (-1,0) (B) (-11) © (1,0) (D) (1-1) 1+10x? - x 56. fet 1 we(E vem e( EA} oe a re a I-x I-x Tex de is equal to: (where c is an integral constant) lex! REFER ee then &+B° ig equal to : 58. Let /“be a twice differentiable function defined on R such that £0 =1/°0)=3 and fe) #0 for all ER. If ra Pu 0, for all xR, then the value of f(1) lies in the interval. A) (9,12) B) (15,25) ©) (10,15) D) (25,30) If ——_, d= Atan'x +Btan”’=+C then 24+ B= 59. (Gf +DQ +4) 2 (where C is integral constant)

You might also like