RMR Concrete Halo Blocks Load Calculator Tool
Copyright @ 2024 by REY MICHAEL REYES RCE, RMP,S02
6/19/2024
REFERENCE TO NSCP 2015 TABLE 20-2 MINIMUM DESIGN DEAD LOADS
INPUT DATA
T-CHB = 200 mm CHB THICKNESS
S-GROUT = FULL CHB HEIGHT
D-CHB = 16.5 kN/M3 CHB DENSITY
H-CHB = 2.60 m CHB TOTAL HEIGHT
L-CHB = m CHB TOTAL LENGTH
PLASTERING = 2 SIDE/S
S-SLAB = 2.7 m Short span
L-SLAB = 3.00 m Long span
OUTPUT DATA
W-CHB = 2.97 kPa chb load pressure
W-Plaster = 0.48 kPa Plaster load pressure
W-Total = 3.45 kPa Total pressure of CHB and Plaster
V-chb = 0 m3 CHB Volume
W_chb = 0 kN CHB Equivalent point load
Area slab = 8.10 m2 Floor area
CHB located @ beam
w_chb = 8.97 kN/m Applied on beam
CHB loacated @ the slab
w-slab = 0.00 kPa Applied on slab
Tool
216.5
6 9
0
1
2
Grout Condition
NG NO GROUT
E 800
S 600
F 400
FL FULL
Plastered face
0.24
0.48
NO GROUT 16.5 100
800 19.6 150
600 21.2 200
400
FULL
Table 204.2
16.5_100 16.5_150 16.5_200 19.6_100 19.6_150 19.6_200 21.2_100 21.2_150 21.2_200
116.5 166.5 216.5 119.6 169.6 219.6 121.2 171.2 221.2
1.05 1.15 1.48 1.24 1.34 1.72 1.39 1.44 1.87
1.4 1.53 2.01 1.59 1.72 2.25 1.74 1.82 2.39
1.5 1.63 2.2 1.69 1.82 2.44 1.84 1.96 2.59
1.79 1.92 2.54 1.98 2.11 2.78 2.13 2.2 2.92
2.5 2.63 3.59 2.69 2.82 3.88 2.84 2.97 3.93
Kpa for ebery plastered face
RMR SINGLY REINFORCED BEAM DESIGN CALCULATOR V1
bw 250 mm width concrete beam
d 300 mm depth of concrete beam
de 242 mm effective depth
input parameters Sup Mid
Standard Top Bot
f'c 20.7 MPa strength of concrete Tension bar
fy 275 MPa strenth of steel tension bar dv 10
β1 0.85 table 422.2.2.4.3 db 16 cc 40
Es= 200 GPa n= 2
MSA 6.35
As 402.12352 mm2 area of tension steel
Assuming tension controled φ= 0.9 ρmin= 0.004136
𝑅𝑛=𝑀_𝑈/𝜙(𝑏𝑑^2 )
Mu= 7 kN-m max moment
As= ρbwd
As= 250.2349
Rn= 0.5312326875
nos 2.00 1.24
ρ required=0.85f'c/fy(1-(1-2Rn/0.85f'c)^1/2)) no. 16
ρ required= 0.0019317552
𝜌_𝑟𝑒𝑞=(0.85𝑓^′ 𝑐)/(𝑓_𝑦 (1−√(1−(2𝑅𝑛/(0.85𝑓^′ 𝑐)) )) ) min
max
checking for limits ρ ρmin ≤ ρ≤ ρmax
ρmin= 1.4/fy or ((f'c)^1/2)/4fy
ρmin= 0.00414 mm2 Asmin= ρmin bwd ok
ρmax= 0.85(f'c/fy)β1(3/7) Asmax= ρmax bwd
for tension controlled
ρmax= 0.85(f'c/fy)β1(3/8)
ρmax= 0.02039 no
check for minimum spacing limits of rebars section 425.2.1
1 S>4/3*(max size of aggre) ok!
2 S>db ok!
3 S>25mm ok!
S= 118 not applicable if n = 2
checking if tension controlled
0.9
c 99.582
fs= 600(de-c)/c da/2*f'c
fs= 858.0948 0.85(f'c)(a)(b)(d-a/2)=Asfy(d-a/2)
1=600(de-c)/c
V1
mm
mm
nos
size mm
250.2348897
0.297425064
1233.849375
1.466533024
c)(a)(b)(d-a/2)=Asfy(d-a/2)
RMR SINGLY REINFORCED BEAM DESIGN CALCULATOR V1
input parameters Sup Mid
Standard Top Bot Shear Strength
f'c 20.7 MPa strength of concrete Tension bar 5.00 5.00
fy 275 MPa strength of steel Tension bar - 2L bw 250
β1 0.85 table 422.2.2.4.3 db 16 d 300
Es= 200 GPa Mu= 55 55
fyt
dv 10
cc 40
MSA 6.35
de= 242 mm effective depth
Assuming tension controled φ= 0.9 ρ required 0.015178 0.015178
𝑅𝑛=𝑀_𝑈/𝜙(𝑏𝑑^2 )
kN-m max moment
As= ρbwd
As= 918.2736 918.2736
Rn= 4.1739711161 4.173971
nos 5.00 4.57 5.00
ρ required=(0.85f'c/fy)(1-(1-2Rn/0.85f'c)^1/2)) no. 16
ρ required= 0.0151780768 0.015178
𝜌_𝑟𝑒𝑞=(0.85𝑓^′ 𝑐)/𝑓_𝑦 (1−√(1−(2𝑅_𝑛)/(0.85𝑓^′ 𝑐))) min
max
checking for limits ρ ρmin ≤ ρ≤ ρmax
ρmin= 1.4/fy or ((f'c)^1/2)/4fy
ρmin= 0.00414 0.00414 mm2 Asmin= ρmin bwd no
ρmax= 0.85(f'c/fy)β1(3/7) Asmax= ρmax bwd
0.02331 0.02331
for tension controlled
ρmax= 0.85(f'c/fy)β1(3/8)
ρmax= 0.02039 0.02039 no
check for minimum spacing limits of rebars section 425.2.1
1 S>4/3*(max size of aggre) ok! ok!
2 S>db ok! ok!
3 S>25mm not ok not ok
S= 17.5 mm 17.5 mm
checking if tension controlled
0.9
c 99.582
fs= 600(de-c)/c da/2*f'c
fs= 858.0948 0.85(f'c)(a)(b)(d-a/2)=Asfy(d-a/2)
1=600(de-c)/c
V1
mm
mm
mm
mm
size mm
4.57
250.2348897
0.297425064
1233.849375
1.466533024
c)(a)(b)(d-a/2)=Asfy(d-a/2)
REINFORCED CONCRETE BEAM
FTB-1
Input Parameters :
Sup Mid
Standard Specs Moment Capacity Top Bot Shear Capacity
fc' = 20.7 Mpa Tension Bar, Dt = 4 4 bw = 200 mm
fy = 275 Mpa Tension Bar 2-L, Nb = 0 2 h = 300 mm
b₁ = .85 Main Bar dia, D = 16 Sb = 10 mm
Es = 200 Gpa Moment, Mu = 40.0 55.0 Cc = 40 mm,
CONDITION ;
Val = 0.65+0.25(Ԑt - Ԑty/0.005 - Ԑty) ρ < ρmin, As is not Adequate for Beam Dim
Ø = 0.65 , Ԑt ≤ Ԑty if fs > fy, use fy 4-16mm Ø
Val , Ԑty ˂ Ԑt ˂ 0.005 fs < fy, use fs -- -- --
0.90 , Ԑt ≥ 0.005
Location of d' & dt; Support Midspan
As1 = π D² Db /4 = 804.25 804.25
2L, As2 = π D² Nb /4 = 0.00 402.12
y= (As1 y1+As2 y2)/As = 0.00 20.00 2-16mm Ø
d' = Cc + Sb + (D/2) + y = 58.00 78.00
dt = h - d' = 242.00 222.00
CHECKING ; Support Midspan
ρ= As / b dt = 0.0166 0.0272
ρmin = 1.4 / fy = 0.0051 0.0051 2-16mm Ø
ρmax = 0.85(f'c/fy)β1(3/7) = 0.0233 0.0233
Therefore ρ < ρmax ρ > ρmax
Tension Steel Yield Not Yield
CHECK SHEAR ; Ø = 0.75
Vc = 0.17 √fc' bw dt = 37.44 < 150.00 2-16mm Ø
Vsmax = 0.67 √fc' bw dt = 147.54 KN 4-16mm Ø
Vs = (Vu/Ø ) - Vc = 162.56 > 147.54
Section is not Adequate
Av = 2 (π Sb²/4) = 157.1
Vs ≤ 0.33√f'c bw d, d/2
Max S, w/c or 600mm otherwise
ever is
lesser,mm Vs > 0.33√f'c bw d,
d/4 or 300mm
BEAM MOMENT CAPACITY @ SUPPORT; Ø= 0.90 BEAM MOMENT CAPACITY @ MIDSPAN; Ø =
Direct Substitution Solve fs, From Strain Diagram, [ΣFh = 0], T = C
0.003 = C (fs / Es) / (d-C); Where fs = 600 (dt-C)/C
----- ----- SUPPORT As fy = 0.85fc' β1 C bw MIDSPAN
----- ----- = ----- C= by quadratic = 129.381
----- ----- = ----- a= β1 C = 109.97385
ω= ρ fy / fc' = 0.22 fs = 600 (dt-C)/C = 275.00
Mn = fc' ω bw dt² (1-0.59ω) = 46.55 Mn = As fs [dt-(a/2)] = 21.97
ØMn = 41.90 > 40.00 Pass! ØMn = 19.77 < 55.00 Fail!
Therfore use, 200x300 with 6-16mm Ø @ support and 8-16mm Ø @ midspan Main Bars (Grade 40);
10mm Ø 2 leg-stirrups: Sp. at 1@50, 8@60 and rest 120 O.C, BOTH ENDS.
ω= ρ fy / fc' = 0.221 0.361
ØMn = fc' ω bw dt² (1-0.59ω) = 46.55 57.96
As fs [dt-(a/2)] 275 275
fs = 600 (dt-C)/C 522.27 429.52
Solve fs, From Strain Diagram, [ΣFh = 0], T = C
0.003 = C (fs / Es) / (d-C); Where fs = 600 (dt-C)/C > >
As fy = 0.85fc' β1 C bw ρ > ρmin ρ > ρmin
C= by quadratic 129.38 129.38 ρ < ρmax ρ > ρmax
a= β1 C 109.97 109.97
359.99 359.99
C 129.38 129.38
Mn 41.36 21.97
41.36 21.97
INPUT ON BLUE COLORS ONLY
Shear Capacity
fyt = 275
Av = 2
Stirrups Bar Ø Main Bar Spacing Calculator
Clear Covering Sup Main Bar, S = 18.67 < 25mm <
Mid Main Bar, S = 18.67 < 25mm <
200
Dimensional Limits, 418.6.2.1 90
S
bw ≥ max[.3h, 200mm] Ok! 200
U
P
P Main Reinforcements Ratio Limits, 418.6.3.1 Sup
O Asmin < As > Asmax, Ok! Support Mid
R Asmin < As > Asmax, Decrease Ast! Midspan d'
T 1
Main Reinforcements, 418.6.3.2 1.5
Mumin ≥ 0.25 Mumax Ok fy Grade
230 33
275 40
M
I 415 60
D 13.75 55.0
S 40.0
P
A
N Add extra Stirrups to increase area of Shear resisting steel, Av
NSCP 2015 418.6.4
Beam mark Beam Length,
on critical m Vu Vs Smin
h 0 - 0.05m 5.00 (30.77) 365.0
2h 0.05 - 0.6m 150.00 162.56 69.1
Mid > 0.6m 0.20 (37.17) 302.2
0.90
m, [ΣFh = 0], T = C 1
Where fs = 600 (dt-C)/C 0 0
MIDSPAN 0 0
129.381 0 #N/A
109.97385
275.00
21.97
Fail! d/4 60.5
96
n Bars (Grade 40); 150
DS. AAV 111.00 111 50
2 AAV 69.09 NA 60.5
3 AAAV 111.00 111 121
4 AAAAV
Av =
0.05
0.60 .5Vc 18.72 111
1.50 2Vc 74.87 111
Shear force 4Vc 149.7 55.5
For Stirrups
Vu=@(Vs+VC)
conc steel
fc 20.7 fy 275
b 250 D 12
h 300 A 113.076
cc 40 Av 226.152
d'=h-cc 254
Rest
VC 49.1142843 kn
Vu 15 kn
Vs=(VU/*)-VC
Vs -29.1142843 KN s -640.838
95.33949296 KN 127 mm Critical
Phi*VC Phi*VC/2
Use min min 36.8357132 KN 18.41786 KN
Semi Mid span D/2
VC 49.1142843 kn
Vu 4.79 KN
VS -42.7276176
VS 95.33949296 127 mm
Phi*VC Phi*VC/2
Use min max 0 KN 0 KN
Mid span D/2
VC 49.1142843 kn
Vu 500 KN
get
VS 617.5523824 30.21208 mm
min
VC 95.33949296 63.5 mm
Grade 40 ( )
RS ONLY Main Bars ;
6 8
- @ midspan @ stirrups
x
Ø @ support and
Sup
Mid
b= 200 As fy = 331,752.18 As fy = 221,168.12
4 h= 300 0.85f'c B c b = 2991.15c B c b = 2,991.15
4 fc' = 20.7 A's = A's =
1210 1110 fy = 275 As = 1206.37 As = 804.25
804.25 1206.37 b₁ = .85 d' = 78.00 d' = 58.00
sup mid Es = 200 222.0 242.00
200.18791 183.64346 dt = dt =
246.4 226.03636 C= 129.38 C= 129.38
246.4 226.03636 a=((pdfy)/0.85f"c)
As Asmax
804.25 ρ < ρmax 0
1206.37 ρ > ρmax 0
2 2 1 2
1.5 2 1.5 2
2 < Yield dt = 222.0 242.00
3 > Not Yield C= 129.381 129.38
4 0.00509090909
Thus, Not Ok!
0-16mm Ø
2-16mm Ø
f's #REF!
NSCP 2015 418.6.4 C= 0
Stirrups Spacing
Smax
Qty mm (unit) fs 0.00
50.00 1.00 50.00 Pass! First Stirrups Min of 50mm from Face of Support
0.55 0.48
60.50 8.00 60.00 Pass!
111.00 Rest 120.00 Pass!
1
0 FALSE
1 Decrease Ast!
1 Decrease Ast! Ø=
50.00
60.50
111.00
111
69.1
69.1
Must not Exceed
0.05 ⅓ √f'c bw d
67.34
2
with
with 0- extra
number of
2
V
SECTION
190.67899 Adequate
with
b₁ = 0.9021429
0.65 0.65
0.7352644 0.7032819
0.9 0.9
at o.c.
d/2 d/4
111 55.5
0 - extra