Combined Transportation 1 4
Combined Transportation 1 4
College of Engineering
Department of Civil Engineering
Le c t u r e # 1
ADVISER:
E N G R . K R E Z I A M O R A L E S - TA C TA C
COURSE OUTLINE
I. TRANSPORTATION PLANNING CONCEPTS
T R A N S P O R TAT I O N E N G I N E E R I N G
COURSE OUTLINE
II. TRAFFIC FLOW FUNDAMENTALS
Types of Flow
Relationship of Flow, Speed and Density
Capacity and Level of Service
Queuing Theory
Shock Wave
T R A N S P O R TAT I O N E N G I N E E R I N G
COURSE OUTLINE
III. TRAVEL DEMAND FORECASTING
T R A N S P O R TAT I O N E N G I N E E R I N G
COURSE OUTLINE
T R A N S P O R TAT I O N E N G I N E E R I N G
GRADING SYSTEM
a) Examination 30%
b) Midterm Project 25%
c) Final Project 25%
d) Assignments 10%
e) Attendance 10%
Passing Grade 75%
T R A N S P O R TAT I O N E N G I N E E R I N G
OV E R V I E W
TRANSPORTATION ENGINEERING
T R A N S P O R TAT I O N E N G I N E E R I N G
MODE OF TRANSPORTATION
MOTORIZED
CAR
TRICYCLE
JEEPNEY
MOTORCYCLE
BUS
TRAIN
T R A N S P O R TAT I O N E N G I N E E R I N G
MODE OF TRANSPORTATION
MOTORIZED
CABLE CAR
TRICYCLE
WAT E R
TRANSPORT
VESSEL
AIR
TRANSPORT
VESSEL
T R A N S P O R TAT I O N E N G I N E E R I N G
MODE OF TRANSPORTATION
MOTORIZED
E-JEEPNEY
E-TRIKE
NON - MOTORIZED
BICYCLE
PEDICAB
T R A N S P O R TAT I O N E N G I N E E R I N G
MODE OF TRANSPORTATION
NON - MOTORIZED
E- SCOOTER
WALKING
KALESA/
HORSE-DRAWN CARRIAGE
T R A N S P O R TAT I O N E N G I N E E R I N G
TRANSPORTATION
PLANNING CONCEPTS
C H A L L E N G E S FA C I N G U R B A N T R A N S P O R TA T I O N
T R A N S P O R TAT I O N E N G I N E E R I N G
C H A L L E N G E S FA C I N G U R B A N T R A N S P O R TA T I O N
T R A N S P O R TAT I O N E N G I N E E R I N G
U R B A N T R A N S P O R TA T I O N P R O B L E M S
T R A N S P O R TAT I O N E N G I N E E R I N G
U R B A N T R A N S P O R TA T I O N P R O B L E M S
T R A N S P O R TAT I O N E N G I N E E R I N G
U R B A N T R A N S P O R TA T I O N P R O B L E M S
T R A N S P O R TAT I O N E N G I N E E R I N G
U R B A N T R A N S P O R TA T I O N P R O B L E M S
T R A N S P O R TAT I O N E N G I N E E R I N G
U R B A N T R A N S P O R TA T I O N P R O B L E M S
T R A N S P O R TAT I O N E N G I N E E R I N G
U R B A N T R A N S P O R TA T I O N P R O B L E M S
T R A N S P O R TAT I O N E N G I N E E R I N G
U R B A N T R A N S P O R TA T I O N P R O B L E M S
T R A N S P O R TAT I O N E N G I N E E R I N G
U R B A N T R A N S P O R TA T I O N P R O B L E M S
7. Land consumption
As between 30 and 60%, of a metropolitan area can be
devoted to transportation, a large amount of land can be
considered as wasted by an over-reliance on some
forms of urban transportation.
T R A N S P O R TAT I O N E N G I N E E R I N G
CAR/PUBLIC TRANSPORT VICIOUS CIRCLE
T R A N S P O R TAT I O N E N G I N E E R I N G
BLACK HOLE THEORY
T R A N S P O R TAT I O N E N G I N E E R I N G
G 4 B e i j i n g - H o n g K o n g - M a c a u E x p re s s w a y
T R A N S P O R TAT I O N E N G I N E E R I N G
G 4 B e i j i n g - H o n g K o n g - M a c a u E x p re s s w a y
T R A N S P O R TAT I O N E N G I N E E R I N G
END OF
P R E S E N TAT I O N
Thank You
POLYTECHNIC UNIVERSITY OF THE PHILIPPINES
College of Engineering
Department of Civil Engineering
Le c t u r e # 2
ADVISER:
E N G R . K R E Z I A M O R A L E S - TA C TA C
COURSE OUTLINE
II. TRAFFIC FLOW FUNDAMENTALS
Types of Flow
Relationship of Flow, Speed and Density
Capacity and Level of Service
Queuing Theory
Shock Wave
T R A N S P O R TAT I O N E N G I N E E R I N G
T R A F F I C F L OW
FUNDAMENTALS
INTRODUCTION
T R A N S P O R TAT I O N E N G I N E E R I N G
T Y P E S O F F L OW
Uninterrupted Flow
Vehicles are not
required to stop by
any cause external
to the traffic stream
Interrupted Flow
vehicles are required
to stop by cause
outside the traffic
stream, such as a
traffic sign, or signal
(usually at an at-
grade intersection)
T R A N S P O R TAT I O N E N G I N E E R I N G
M A J O R T R A F F I C VA R I A B L E S
Uninterrupted flow
can be described
using any of the ff:
traffic variables:
Flow rate or
volume
Speed
Density or
concentration
T R A N S P O R TAT I O N E N G I N E E R I N G
F L OW R A T E / VO L U M E
Flow Rate
T R A N S P O R TAT I O N E N G I N E E R I N G
F L OW R A T E / VO L U M E
Flow Rate
Example:
Let us suppose a 15-minute count of vehicles bound for
Manila was conducted at a particular location on Quezon
Avenue. A summary is shown in the table below:
TYPE 15 – MINUTE COUNT
Car/Van 420
Jeepney 300
Bus 16
Truck 28
Speed
T R A N S P O R TAT I O N E N G I N E E R I N G
SPEED
T R A N S P O R TAT I O N E N G I N E E R I N G
SPEED
d = 15 – 50m
T R A N S P O R TAT I O N E N G I N E E R I N G
SPEED
Example:
Observed speeds of 25 cars:
SPEED (kph) NUMBER OF CARS
35 10
40 8
45 5
50 2
TOTAL: 25
T R A N S P O R TAT I O N E N G I N E E R I N G
SPEED
∑
∑
T R A N S P O R TAT I O N E N G I N E E R I N G
SPEED
d = 15 – 50m
T R A N S P O R TAT I O N E N G I N E E R I N G
SPEED
Example:
Observed speeds of 25 cars:
SPEED (kph) NUMBER OF CARS
35 10
40 8
45 5
50 2
TOTAL: 25
T R A N S P O R TAT I O N E N G I N E E R I N G
T I M E M E A N S P E E D V S. S PAC E M E A N S P E E D
T R A N S P O R TAT I O N E N G I N E E R I N G
DENSITY
Density
Defined as the number of vehicles in a given length of road
at an instant point in time.
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
T R A N S P O R TAT I O N E N G I N E E R I N G
SPEED – DENSITY RELATIONSHIP
GREENSHIELDS MODEL
Greenshields proposed a linear
relationship between speed and
density that is usually expressed as:
T R A N S P O R TAT I O N E N G I N E E R I N G
VOLUME – DENSITY RELATIONSHIP
GREENSHIELDS RELATIONSHIP
Flow – density relationship, we
simply substitute the u-k relationship
into the basic relationship q=uk
(remember that u here is us) such that:
1 ∗
It follows:
T R A N S P O R TAT I O N E N G I N E E R I N G
VOLUME – DENSITY RELATIONSHIP
GREENSHIELDS RELATIONSHIP
Similarly the speed – flow
relationship may be derived as:
∗ 1
It follows:
Two-dimensional representations of the
relationships of fundamental traffic flow
parameters
Therefore:
∗
∗ ∗
2 2
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
Example:
Data on density and speed were obtained from a four-lane, two-
way rural highway (in one direction only). Det. the speed –
density relationship.
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
Solution:
Therefore, the
speed – density
regression line is:
. .
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
Solution:
Determine the free flow speed and jam density:
Free flow speed occurs when DENSITY is 0.
91.959 0.5959
91.959 0.5959 0
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
Solution:
Determine the free flow speed and jam density:
Jam Density occurs when SPEED is 0.
91.959 0.5959
0 91.959 0.5959
T R A N S P O R TAT I O N E N G I N E E R I N G
R E L AT I O N S H I P O F 3 M A J O R VA R I A B L E S
Solution:
Determine the maximum capacity of the rural
highway in one direction:
4
154.32 91.959
4
T R A N S P O R TAT I O N E N G I N E E R I N G
SPEED – DENSITY RELATIONSHIP
GREENBERG MODEL
Suitable for congested conditions
Free flow speed, Uf is not defined here
∗
∗ ∗ ·
T R A N S P O R TAT I O N E N G I N E E R I N G
SPEED – DENSITY RELATIONSHIP
UNDERWOOD MODEL
Suitable for free flow conditions
Jam density, kj is not defined here
∗
∗ ∗ ln
T R A N S P O R TAT I O N E N G I N E E R I N G
BEST – FIT MODEL
Example:
Data on density and speed were obtained from a four-lane, two-
way rural highway (in one direction only). Determine what model
best fit for this condition.
T R A N S P O R TAT I O N E N G I N E E R I N G
SEATWORK
15-min
Example: counts
us
(kph)
Determine the (pcu)
following: 150 60
1. Model best fit 38 62
for this 375 55
condition 405 56
2. Determine 175 2
the kj, uf & qm 215 5
3. Determine 660 42
the qpred 278 51
using the 315 12
Flow – 300 55
Density 340 57
Model based 313 22
on the result
of Q.1 503 21
504 54
405 26
T R A N S P O R TAT I O N E N G I N E E R I N G
O T H E R T R A F F I C VA R I A B L E S
Time Headway
Spacing
Time Occupancy
T R A N S P O R TAT I O N E N G I N E E R I N G
T I M E H E A DWAY
Time Headway
5 seconds
T R A N S P O R TAT I O N E N G I N E E R I N G
T I M E H E A DWAY
Time Headway
Example:
During morning peak hour, the average headway of UP-
Katipunan jeepneys is estimated at 5 minutes. If the
passenger demand during the same period is 240, determine
whether there is a need to increase the number of jeepney
units (or shorten the headway) for this route. Assume that the
passenger demand is evenly distributed within that period
and the average load/occupancy is 14 passengers per
jeepney.
T R A N S P O R TAT I O N E N G I N E E R I N G
S PA C I N G
Spacing
20 meters
T R A N S P O R TAT I O N E N G I N E E R I N G
S PA C I N G
Spacing
Example:
During heavy traffic congestion, it was observed that the
average spacing of vehicles in queue in the innermost lane of
EDSA is 6.5m. Determine the jam density or density of
stopped vehicles.
T R A N S P O R TAT I O N E N G I N E E R I N G
S PA C I N G
Example:
T R A N S P O R TAT I O N E N G I N E E R I N G
T I M E O C C U PA N C Y
Time Occupancy
T R A N S P O R TAT I O N E N G I N E E R I N G
T R A F F I C F L OW B E H AV I O U R
AND CHARACTERISTICS
LANE UTILIZATION
Lane Utilization
T R A N S P O R TAT I O N E N G I N E E R I N G
W E AV I N G
Weaving
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
Level of Service
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
Level of Service A (LOS A)
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
Level of Service B (LOS B)
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
Level of Service C (LOS C)
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
Level of Service D (LOS D)
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
Level of Service E (LOS E)
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
Level of Service F (LOS F)
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
T R A N S P O R TAT I O N E N G I N E E R I N G
LEVEL OF SERVICE
T R A N S P O R TAT I O N E N G I N E E R I N G
END OF
P R E S E N TAT I O N
Thank You
POLYTECHNIC UNIVERSITY OF THE PHILIPPINES
College of Engineering
Department of Civil Engineering
Le c t u r e # 3
ADVISER:
E N G R . K R E Z I A M O R A L E S - TA C TA C
COURSE OUTLINE
I. TRANSPORTATION PLANNING CONCEPTS
Challenges Facing Urban Transportation
Urban Transportation Problems
Land Use and Transport Interaction
Travel Demand Management
Sustainable Transportation
Dynamics of Urban Transportation
Transportation Planning
Travel Demand Forecasting
T R A N S P O R TAT I O N E N G I N E E R I N G
TRANSPORTATION
PLANNING CONCEPTS
LAND USE AND TRANSPORT INTERACTION
System Components
T R A N S P O R TAT I O N E N G I N E E R I N G
LAND USE AND TRANSPORT INTERACTION
T R A N S P O R TAT I O N E N G I N E E R I N G
LAND USE AND TRANSPORT INTERACTION
T R A N S P O R TAT I O N E N G I N E E R I N G
INTEGRATED LAND USE, TRANSPORT AND
ENVIRONMENT MODELING (ILUTE)
T R A N S P O R TAT I O N E N G I N E E R I N G
T R AV E L D E M A N D M A N AG E M E N T
T R A N S P O R TAT I O N E N G I N E E R I N G
T R AV E L D E M A N D M A N AG E M E N T
T R A N S P O R TAT I O N E N G I N E E R I N G
T R AV E L D E M A N D M A N AG E M E N T
T R A N S P O R TAT I O N E N G I N E E R I N G
T R AV E L D E M A N D M A N AG E M E N T
A sample of well –
practiced and successful
interventions includes:
Park and Ride
Traffic Calming
Priority lane for buses, and high –
occupancy vehicles
Alternate work schedules
Promoting bicycle use
Car sharing
Enhancing pedestrian areas
Improving public transit
Parking management
T R A N S P O R TAT I O N E N G I N E E R I N G
S U S TA I N A B L E T R A N S P O R TA T I O N
Sustainable Development
“development which meets the needs of the present
without compromising the ability of future generations to
meet their own needs”
T R A N S P O R TAT I O N E N G I N E E R I N G
DY N A M I C S O F U R B A N T R A N S P O R TA T I O N
T R A N S P O R TAT I O N E N G I N E E R I N G
T R A N S P O R TA T I O N P L A N N I N G
T R A N S P O R TAT I O N E N G I N E E R I N G
T R AV E L D E M A N D F O R E C A S T I N G
T R A N S P O R TAT I O N E N G I N E E R I N G
4 – S T E P S E QU E N T I A L M O D E L
Database Development
Break the area that requires prediction of future travel
demand into study zones that can be accurately
described by a few variables
Collection of existing socio-economic data for the study
area
Conduct of Person – Trip (PT) surveys to establish the
present travel patterns, specifically, person OD trips.
Conduct of other traffic surveys to calibrate the model for
the base year
Conduct of land use surveys to establish land use
development patterns
T R A N S P O R TAT I O N E N G I N E E R I N G
4 – S T E P S E QU E N T I A L M O D E L
1. Trip Generation
Calculate the number of trips starting in each zone for a
particular trip purpose
2. Trip Distribution
Produce a table of the number of trips starting in each zone
and ending up in each other zone.
4. Trip Assignment
Identify the specific routes on each transportation system that
will be selected by the travelers.
T R A N S P O R TAT I O N E N G I N E E R I N G
T R AV E L D E M A N D F O R E C A S T I N G
Classification of trips:
By purpose (work, school, shop, other)
By Time of Day (a.m., p.m., peak, off-peak)
By Person Type (income, car ownership, family
size, accessibility, etc.)
T R A N S P O R TAT I O N E N G I N E E R I N G
T R AV E L D E M A N D F O R E C A S T I N G
TYPES OF SURVEY
T R A N S P O R TAT I O N E N G I N E E R I N G
HOUSEHOLD INTERVIEW SURVEY (HIS)
T R A N S P O R TAT I O N E N G I N E E R I N G
HOUSEHOLD INTERVIEW SURVEY (HIS)
T R A N S P O R TAT I O N E N G I N E E R I N G
HOUSEHOLD INTERVIEW SURVEY (HIS)
T R A N S P O R TAT I O N E N G I N E E R I N G
T R AV E L D E M A N D F O R E C A S T I N G
T R A N S P O R TAT I O N E N G I N E E R I N G
END OF
P R E S E N TAT I O N
Thank You
POLYTECHNIC UNIVERSITY OF THE PHILIPPINES
College of Engineering
Department of Civil Engineering
Le c t u r e # 4
ADVISER:
E N G R . K R E Z I A M O R A L E S - TA C TA C
COURSE OUTLINE
II. TRAFFIC FLOW FUNDAMENTALS
Types of Flow
Relationship of Flow, Speed and Density
Capacity and Level of Service
Queuing Theory
Shock Wave
T R A N S P O R TAT I O N E N G I N E E R I N G
QU E U I N G T H E O RY
Q U E U I N G A N A LY S I S
T R A N S P O R TAT I O N E N G I N E E R I N G
E L E M E N T S O F WA I T I N G L I N E A N A LY S I S
T R A N S P O R TAT I O N E N G I N E E R I N G
E L E M E N T S O F WA I T I N G L I N E A N A LY S I S
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
Factors to consider in analysis:
The queue discipline
The order in which waiting
customers are served.
Calling population
The source of customers
(infinite or finite)
Arrival rate
The frequency at which
customers arrive at a waiting
line according to a probability
distribution
Service rate.
The average number of
customers that can be served
during a time period.
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
Factors to consider in analysis:
Balking
The customer decides not to
enter the waiting line.
Reneging
The customer enters the line but
decides to leave before being
served.
Jockeying
When the customer enters one
line and then switches to a
different one in an effort to
reduce the waiting time.
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
A / B / C(n)
Arrivals and departure may either follow a random or
deterministic pattern
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
A / B / C(n)
Typical examples of these processes are:
M / M / 1 (∞) - is used for random arrival and departure
(service rate); one or single server; infinite queue (no limit)
M / M / N (∞) - random arrival and departure; N or multiple
servers; infinite queue
D / D / 1 (100) – regular arrival; regular service rate or
departure; single server; limit of queue is 100.
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
D/D/1 Queuing
Due to the regularity of both arrivals and
departures, it is more convenient to analyze a D/D/1
queuing system graphically. Arrivals and
departures are easily represented by straight lines
with the slopes corresponding to their rates.
T R A N S P O R TAT I O N E N G I N E E R I N G
Q U E U I N G S Y S T E M - G R A P H I C A L LY
D/D/1 Queuing
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
D/D/1 Queuing
EXAMPLE:
Vehicles arrive at an entrance to a recreational park. There is a
single gate (at which all vehicles must stop), where a park
attendant distributes free brochures.
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
M/D/1 Queuing
The M/D/1 queuing system assumes that the
arrivals of vehicles follow a negative exponential
distribution, a probability distribution characterized
by randomness. Departure is assumed to be regular
as in D/D/1.
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
M/D/1 Queuing
Let
;
Then:
;
If 1;
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
M/D/1 Queuing
EXAMPLE:
At the exit of a toll gate with a single booth, vehicles arrive at random at a rate of
20 vehicles per kmnute.
mi The service has an average rate of 22 vehicles per
kmnute.
mi
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
M/M/1 Queuing
The M/M/1 queuing system assumes negative
exponential for both arrival and departure
distributions.
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
M/M/1 Queuing
EXAMPLE:
Consider the same problem as M/D/1. However, due to variable toll fees,
the service is also random with an average rate of 22 vehicles per minute.
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
M/M/N Queuing
When there is more
than one server, such as
in toll gate where an
arriving vehicle will be
able to proceed to a
vacant gate, if available.
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
M/M/N Queuing
Let
;
Then:
;
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
Where:
1
∑
! ! 1
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
T R A N S P O R TAT I O N E N G I N E E R I N G
QUEUING SYSTEM
M/M/N Queuing
EXAMPLE:
If the operator of the toll road in the previous example wants to improve
the current condition at the toll plaza, determine the new queue
characteristics if the number of toll booths is increased to 2.
a. Average length of queue formed at the toll gate
.375
.236 1
b. average waiting time of vehicles
0.012 0.72
c. average time vehicles spent in the system
̅ 0.057 3.42
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
S H O C K WAV E
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
A shock wave
propagates along a
line of vehicles in
response to
changing conditions
at the front of the
line.
Shock wave is
simply the motion
or propagation of a
change in density
and flow
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
Example:
A vehicle stream is interrupted and stopped by
policeman. The traffic volume for the vehicle stream
before the interruption is 1500 veh/hr and the
density is 50 veh/km. Assume that the jam density is
250 veh/km. After four minutes the policeman
releases the traffic. The flow condition for the
release is a traffic volume of 1800 veh/hr and a
speed of 18kph. Determine:
1. The length of the queue
2. The number of vehicles in the queue after four minutes
3. How long it will take for the queue to dissipate after the
policeman releases the traffic
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
Illustration:
APPROACHING PLATOON RELEASING
CONDITION CONDITION CONDITION
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
Solution:
; shock wave is moving
upstream
1. Length of queue after 4 minutes
T R A N S P O R TAT I O N E N G I N E E R I N G
S H O C K WAV E
Solution:
; shock wave is moving
upstream
3. Time to dissipate the queue
; to dissipate
T R A N S P O R TAT I O N E N G I N E E R I N G
END OF
P R E S E N TAT I O N
Thank You