0% found this document useful (0 votes)
10 views3 pages

Worksheet 3

Uploaded by

aymanrini23
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
10 views3 pages

Worksheet 3

Uploaded by

aymanrini23
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Calculus 2: Worksheet 3 MATH 1700

4
Intended Learning Outcomes
Z
(b) ( x2 − 4 x + 2) dx
−4
• Express the limit of a Riemann sum as a definite Z 0
integral on a given interval. (c) ( x2 + x) dx
−2
Z 2
• Evaluate definite integrals using the limit defini- (d) (2 x − x3 ) dx
tion and known summation formulas. 0
Z 1
• Interpret the value of a definite integral as the (e) ( x3 − 3 x2 ) dx
0
signed area under a curve.
3. (a) Each of the regions G, H, and I bounded
• Apply the Fundamental Theorem of Calculus to by the graph of f and the x–axis
differentiate functions defined by integrals. has area 2, 1, and 3, respectively.

• Compute definite integrals of algebraic and trigono-


metric functions using antiderivatives. y

G I

x
Exercises -2 0 1 4
H
1. Express the limit as a definite integral on the given
interval. Find the value of
Z 4
n 1 − x2 £ ¤
j f ( x) + 3 dx.
∆ x,
X
(a) lim 2
[2, 6]. −2
n→∞
j =1 4 + x j
n cos x
(b) Each of the regions D, E, and F bounded by
j
∆ x, the graph of f and the x–axis has area 4.
X
(b) lim [π, 2π].
n→∞
j =1 xj
y
n £
5 ( x∗j )3 − 4 x∗j ∆ x,
X ¤
(c) lim [2, 7].
n→∞
j =1 D F
n x∗j
∆ x,
X
(d) lim ∗ 2 [1, 3]. x
n→∞
j =1 ( x j ) + 4
-3 -1 1 3
E
2. Use the definition of definite integral to evaluate
the integrals below. You may use the following Find the value of
equalities: Z 3
n n( n + 1)
£ ¤
X f ( x) + 2 dx.
i= −3
i =1 2
(c) Each of the regions A , B, and C bounded
n n( n + 1)(2 n + 1) by the graph of f and the x-axis has area 3.
i2 =
X
i =1 6 y

n n( n + 1)
· ¸2 B
3
X
i =
i =1 2
-4 -2 0 2 x
Z 5
A C
(a) (4 − 2 x) dx
2

Dr. Angel Barria Comicheo


Calculus 2: Worksheet 3 MATH 1700

Z 1
Find the value of
(c) ( u + 2)( u − 3) du
Z 2 0
£ ¤
f ( x) − 5 dx.
Z 4 p
−4 (d) (4 − t) t dt
0
4. Find the derivative of the function.
Z 9 x−1
(e) p dx
Z x
1 1 x
(a) g( x) = 3
dt. Z 2
1 t +1
Z x (f) ( y − 1)(2 y + 1) d y
¢5 0
2 + t4 dt.
¡
(b) g( x) = Z π/4
1
Z s
¢8 (g) sec2 t dt
t − t2 dt. 0
¡
(c) g( s) =
5
Z π/4
Z rp (h) sec θ tan θ d θ
(d) g( r ) = x2 + 4 dx. 0
0 Z 2
(1 + 2 y)2 d y
Z πp
(i)
(e) F ( x) = 1 + sec t dt. 1
x Z 2 s4 + 1
Z 1 (j) ds
s2
¡p ¢
(f) G ( x) = cos t dt. 1
x
v5 + 3 v6
2
Z
Z 1/x (k) dv
(g) h( x) = sin4 t dt. 1 v4
2 s
p Z 18
Z
z2 x 3
(h) h( x) = dz. (l) dz
z4 + 1 1 z
1 Z π
Z tan x q
p (m) f ( x) dx, where
(i) y = t + t dt. 0
0
x 4
π
Z 
2 sin x, 0≤x< ,
(j) y = cos θ d θ .

0 f ( x) = π 2
1 3 cos x,
 ≤ x ≤ π.
u
Z
2
(k) y = 2
du.
1−3x 1 + u
Z 1 p Z 2

(l) y = 1 + t2 dt. (n) f ( x) dx, where


−2
sin x
3x u2 − 1
Z 
(m) g( x) = du.
2, −2 ≤ x ≤ 0,
2x u2 + 1 f ( x) = 2
Z 1+2x 4 − x , 0 < x ≤ 2.
(n) g( x) = t sin t dt.
1−2x Z 9 1
Z x 3 (o) dx
(o) h( x) = cos t2 dt.
¡ ¢
1 2x
p
x
Z 1
x 2 (p) 10 x dx
1
Z
0
(p) g( x) = p dt. p
tan x 2 + t4 3
6
Z
2
(q) 1
p dt
5. Evaluate the integral. 2 1 − t2
Z π Z 1
4
(a) sin θ d θ (r) dt
π/6 0 t2 + 1
Z 5 Z 1
(b) π dx (s) e u+1 du
−5 −1

Dr. Angel Barria Comicheo


Calculus 2: Worksheet 3 MATH 1700

4 + u22
Z
(t) du
1 u3
Z 4
p
(u) t (1 + t) dt
1
Z π/3
(v) csc2 θ d θ
π/4
Z π/4 1 + cos2 θ
(w) dθ
0 cos2 θ
Z π/3 sin θ + sin θ tan2 θ
(x) dθ
0 sec2 θ

Dr. Angel Barria Comicheo

You might also like