0% found this document useful (0 votes)
10 views3 pages

Mat x14

Uploaded by

Kaviraj
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
10 views3 pages

Mat x14

Uploaded by

Kaviraj
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Theory of Equations 33

6. If b > a, then the equation (x − a ) (x − b) − 1 = 0 has Analytical & Descriptive Questions


(a) both roots in (a , b) (2000, 1M)
9. If x2 + (a − b)x + (1 − a − b) = 0 where a , b ∈ R, then find
(b) both roots in ( − ∞ , a )
the values of a for which equation has unequal real
(c) both roots in (b, + ∞ )
roots for all values of b. (2003, 4M)
(d) one root in (−∞ , a ) and the other in (b, ∞ )
7. If the roots of the equation x2 − 2ax + a 2 + a − 3 = 0 are 10. Let a , b, c be real. If ax2 + bx + c = 0 has two real roots α
real and less than 3, then (1999, 2M)
and β, where α < − 1 and β > 1, then show that
c b
(a) a < 2 1 + +  < 0
(b) 2 ≤ a ≤ 3 a a  (1995, 5M)
(c) 3 < a ≤ 4 11. Find all real values of x which satisfy x2 − 3x + 2 > 0 and
(d) a> 4 x2 − 2x − 4 ≤ 0. (1983, 2M)
8. Let f (x) be a quadratic expression which is positive for
all real values of x. If g (x) = f (x) + f ′ (x) + f ′ ′ (x), then for Integer & Numerical Answer Type Question
any real x (1990, 2M)
12. The smallest value of k, for which both the roots of the
(a) g (x) < 0 (b) g (x) > 0 equation x2 − 8kx + 16 (k2 − k + 1) = 0 are real, distinct
(c) g (x) = 0 (d) g (x) ≥ 0 and have values atleast 4, is …… . (2009)

Topic 5 Some Special Forms


Objective Questions I (Only one correct option) 7. The largest interval for which
1. The number of real roots of the equation x12 − x9 + x4 − x + 1 > 0 is (1982, 2M)
5 + |2 − 1| = 2 (2 − 2) is
x x x
(2019 Main, 10 April II) (a) −4 < x ≤ 0
(a) 1 (b) 3 (b) 0 < x < 1
(c) 4 (d) 2 (c) −100 < x < 100
(d) −∞ < x < ∞
2. All the pairs (x, y) that satisfy the inequality
sin 2 x − 2 sin x + 5 1 8. Let a , b, c be non-zero real numbers such that
2 ⋅ ≤ 1 also satisfy the equation
sin 2 y 1
∫0 (1 + cos x)(ax2 + bx + c)dx
4 (2019 Main, 10 April I) 8
(1981, 2M)
(a) 2|sin x| = 3 sin y (b) sin x = |sin y| 2
(c) sin x = 2 sin y (d) 2 sin x = sin y = ∫ (1 + cos 8 x)(ax2 + bx + c)dx
0
3. The sum of the solutions of the equation Then, the quadratic equation ax2 + bx + c = 0 has
| x − 2| + x ( x − 4) + 2 = 0 (x > 0) is equal to (a) no root in (0, 2)
(2019 Main, 8 April I) (b) atleast one root in (1, 2)
(a) 9 (b) 12 (c) a double root in (0, 2)
(c) 4 (d) 10 (d) two imaginary roots
4. The real number k for which the equation,
2x3 + 3x + k = 0 has two distinct real roots in [0, 1] Objective Questions II
(2013 Main) (One or more than one correct option)
(a) lies between 1 and 2 (b) lies between 2 and 3
9. Let S be the set of all non-zero real numbers α such that
(c) lies between − 1and 0 (d) does not exist
the quadratic equation αx2 − x + α = 0 has two distinct
5. Let a , b, c be real numbers, a ≠ 0. If α is a root of real roots x1 and x2 satisfying the inequality x1 – x2 < 1.
a 2x2 + bx + c = 0, β is the root of a 2x2 − bx − c = 0 and Which of the following interval(s) is/are a subset of S?
0 < α < β, then the equation a 2x2 + 2bx + 2c = 0 has a root (2015 Adv.)
(a)  – , –
1 
γ that always satisfies (b)  – , 0
(1989, 2M) 1 1

α+β β  2 5  5 
(a) γ = (b) γ = α +
(c)  0,
1 
(d) 
2 2 1 1
 , 
(c) γ = α (d) α < γ < β  5  5 2
6. If a + b + c = 0, then the quadratic equation 10. Let a ∈ R and f : R → R be given by f (x) = x5 − 5x + a.
3ax2 + 2bx + c = 0 has (1983, 1M)
Then,
(a) at least one root in (0, 1) (a) f (x) has three real roots, if a > 4
(b) one root in (2, 3) and the other in (−2, − 1) (b) f (x) has only one real root, if a > 4
(c) imaginary roots (c) f (x) has three real roots, if a < − 4
(d) None of the above (d) f (x) has three real roots, if −4 < a < 4
34 Theory of Equations

Passage Based Problems equation f ( x ) = 0 has a root in R. Consider f ( x ) = kex − x for


all real x where k is real constant. (2007, 4M)
Read the following passage and answer the questions.
14. The line y = x meets y = kex for k ≤ 0 at
Passage I
(a) no point
Consider the polynomial f ( x ) = 1 + 2x + 3x 2+ 4x3 . Let s be (b) one point
the sum of all distinct real roots of f ( x ) and let t =| s|. (c) two points
(2010) (d) more than two points
11. The real numbers s lies in the interval 15. The positive value of k for which kex − x = 0 has only one
(a)  − , 0 (b)  − 11, −  (c)  − , −  (d)  0,
1 3 3 1 1 root is

 4   4  4 2  4 1
(a) (b) 1
12. The area bounded by the curve y = f (x) and the lines e
(c) e (d) log e 2
x = 0, y = 0 and x = t , lies in the interval
(a)  , 3
3
(b)  , 
21 11
(c) (9, 10) (d)  0, 
21 16. For k > 0, the set of all values of k for which kex − x = 0
4   64 16   64  has two distinct roots, is
(a)  0,  (b)  , 1
1 1
13. The function f ′ (x) is
 e e 
(a) increasing in  − t, −  and decreasing in  − , t 
1 1
(c)  , ∞ 
1
 4  4  (d) (0, 1)
e 
(b) decreasing in  − t, −  and increasing in  − , t 
1 1
 4  4 
(c) increasing in (−t , t )
True/False
(d) decreasing in (−t , t ) 17. If a < b < c < d, then the roots of the equation (x − a )
(x − c) + 2 (x − b) (x − d ) = 0 are real and distinct.
Passage II
(1984, 1M)
If a continuous function f defined on the real line R,
assumes positive and negative values in R, then the Analytical & Descriptive Question
equation f ( x ) = 0 has a root in R. For example, if it is 18. Let −1 ≤ p < 1. Show that the equation 4x3 − 3x − p = 0
known that a continuous function f on R is positive at some has a unique root in the interval [1/2, 1] and identify it.
point and its minimum values is negative, then the (2001, 4M)

Answers
Topic 1 Topic 2
1. (d) 2. (d) 3. (d) 4. (a) 1. (d) 2. (a) 3. (b) 4. –1
5. (b) 6. (b) 7. (c) 8. (a) 5. False
9. (c) 10. (c) 11. (d) 12. (b)
Topic 3
13. (d) 14. (d) 15. (c) 16. (c)
1. (c) 2. x = α 2β, αβ 2
17. (c) 18. (d) 19. (a) 20. (c)
21. (c) 22. (d) 23. (d) 24. (c) Topic 4
25. (b) 26. (d) 27. (a) 28. (a) 1. (d) 2. (a) 3. (a) 4. (a)
29. (b) 30. (b) 31. (c) 32. (b) 5. (b) 6. (d) 7. (a) 8. (b)
33. (a) 34. (b) 35. (a) 36. (a) 9. a > 1 11. x ∈ [1 − 5, 1 ) ∪ [1 + 5, 2 )
37. (d) 38. (a) 39. (c) 40. (b)
12. k = 2
41. (b) 42. 4 43. k =2 44. ( −4, 7 )
45. –5050 46. True 47. False 48. 1210 Topic 5
 2 1 1. (a) 2. (b) 3. (d) 4. (d)
51. y ∈ { −1 } ∪ [1, ∞ ) 52. x ∈ ( −2, − 1 ) ∪  − , − 
 3 2 5. (d) 6. (a) 7. (d) 8. (b)
53. −4 and ( − 1 − 3 ) 54. x = {a (1 − 2 ), a ( 6 − 1 )} 9. (a,d) 10. (b, d) 11. (c) 12. (a)
55. ±2, ± 2 57. (q − s ) 2 − rqp − rsp + sp 2 + qr 2 13. (b) 14. (b) 15. (a) 16. (a)
58. x = a −1/ 2 − 4 /3
59. q − p
2 2 1 
or a 60. (d) 17. True 18. x = cos cos−1 p
3 
61. (d)
Hints & Solutions
Topic 1 Quadratic Equations Q The root x =
1
∈ (0, 1) for λ = 3
1. Given quadratic polynomials, x + 20x − 2020 and
2 5
∴ λ ∈ (1 , 3].
x2 − 20x + 2020 having a , b distinct real and c, d distinct
complex roots respectively. Hence, option (d) is correct.
So, a + b = − 20, ab = − 2020 4. Given quadratic equation is
and c + d = 20, cd = 2020  π
x2 + x sin θ − 2 sin θ = 0, θ ∈ 0, 
Now, ac(a − c) + ad (a − d ) + bc(b − c) + bd (b − d )  2
= a 2(c + d ) − a (c2 + d 2) + b2(c + d ) − b(c2 + d 2) and its roots are α and β.
= (c + d ) (a 2 + b2) − (c2 + d 2)(a + b) So, sum of roots = α + β = − sin θ
= (c + d )[(a + b)2 − 2ab] − (a + b) [(c + d )2 − 2cd ] and product of roots = αβ = − 2 sin θ
= 20 [(20)2 + 4040] + 20 [(20)2 − 4040] ⇒ αβ = 2(α + β ) …(i)
= 2 × 20 × (20)2 = 40 × 400 = 16000 α 12 + β12
Now, the given expression is −12
2. It is given that α is a common roots of given quadratic (α + β −12)(α − β)24
equations α 12 + β12 α 12 + β12
x2 – x + 2λ = 0 and 3x2 – 10x + 27λ = 0 = = 12
 1 1 24  β + α 12
∴ 3 α – 10 α + 27λ = 0
2  12 + 12 (α − β)  12 12  (α − β)24
α β   α β 
3 α 2 − 3 α + 6λ = 0
12 12
– + –  αβ   αβ 
= 2
= 
0 – 7α + 21λ = 0 ⇒ α = 3λ  (α + β ) − 4αβ
 (α − β ) 
2

So, 9λ2 – 3λ + 2λ = 0
12
1 1  2(α + β) 
⇒ λ= ⇒α= [Qλ ≠ 0] =  [from Eq. (i)]
 (α + β ) − 8 (α + β) 
9 3 2

1
2×  
12
 
12
2λ 9 =2 =
2
=
2
[Q α + β = − sin θ]
As αβ = 2λ ⇒ β = =  
α 1 3  (α + β ) − 8  − sin θ − 8
3 212
1 =
9× (sin θ + 8)12
9λ 9 =3
and αγ = 9λ ⇒ γ = =
α 1 5. Given quadratic equation is x2 + px + q = 0, where
3 p, q ∈R having one root 2 − 3 , then other root is 2 + 3
2 (conjugate of 2 − 3 ) [Q irrational roots of a quadratic
×3
βγ 3 equation always occurs in pairs]
∴ = = 18
λ 1 So, sum of roots = − p = 4 ⇒ p = −4
9 and product of roots = q = 4 − 3 ⇒ q = 1
3. Given quadratic equations Now, from options p2 − 4q − 12 = 16 − 4 − 12 = 0
f (x) = (λ2 + 1)x2 − 4λx + 2 = 0 have exactly one root in 6. Given quadratic equation is
the interval (0, 1).
(m2 + 1)x2 − 3x + (m2 + 1)2 = 0 …(i)
So, D > 0 ⇒ 16λ2 − 4(λ2 + 1)2 > 0
Let the roots of quadratic Eq. (i) are α and β, so
⇒ 8λ − 8 > 0 ⇒ λ2 > 1
2
3
α+β= and αβ = m2 + 1
⇒ λ ∈ (−∞ , − 1) ∪ (1, ∞ ) …(i) m2 + 1
and f (0) f (1) < 0
According to the question, the sum of roots is greatest
⇒ 2(λ2 + 1 − 4λ + 2) < 0 ⇒ λ2 − 4λ + 3 < 0
and it is possible only when ‘‘(m2 + 1) is minimum’’ and
⇒ (λ − 3)(λ − 1) < 0 ⇒ λ ∈ (1, 3) …(ii) ‘‘minimum value of m2 + 1 = 1, when m = 0’’.
From Eqs, (i) and (ii), we get ∴α + β = 3 and αβ = 1, as m = 0
λ ∈ (1, 3) Now, the absolute difference of the cubes of roots
And if λ = 3, then the quadratic equation is = |α 3 − β3|
10x2 − 12x + 2 = 0 = |α − β||α 2 + β 2 + αβ|
⇒ 5 x2 − 6 x + 1 = 0 = (α + β )2 − 4αβ |(α + β )2 − αβ|
1 = 9 − 4 |9 − 1|= 8 5
⇒ x = 1,
5

You might also like