Factorization
Factorization
1      REVIEW
                                        FACTORISATION
                                                                                        13
          Factors
                           Each of the numbers (constant or variable), that forms a product is called
                           a factor of the product.
                            (i) 5 and x are factors of product 5x.
                           (i) (2x- 5) and (3x +2) are the factors of (2x-5) (3x +2).
                           Since (2x- 5)(3x + 2) =2x(3x +2) -5(3x +2)
                                                      =6x+ 4x- 15x -10
                                                      =6X2-11x-10
                           .2x-5 and 3x +2are factors of 6x-11x- 10,
13.2 | F A C T O R I S A T I O N
Example 1:
     Factorise: () 5x2- 10x                           (ii) 3x²y - 6xy² + 9xy
Solution:
                                             largest monomial which divides each
                                                                                       term of the given
    () By inspection,we find that the                                                             (Step 1]
polynomial 5x- 10x is 5x.
                                                        5x 10x                                   (Step 2)
                                     5x2-1Ox =5x               5x
                                                        5x
                                                                                                  (Ans.)
                                             = 5x (x - 2)
                                                     3x²y            6xy 9xy
    (0)                    3x²y - 6xy² + 9xy = 3xy    3xy            3xy    3xy
                                                                                                  (Ans.)
                                                = 3xy (x-2y + 3)
 Example 2:
          Factorise :
          () -10ay?       15a6y + 20a'x5               (i) 2x(a + b) -3y (a + b)
Solution :                                                                 15ax4    +20a'x
                                                             10ax2
                                    5atx*                                  - 5ax2    - 5ax2
       0 -10ax?- 15a6y + 20a x5 = -                       -5ax2
                                                       3a2y?- 4ax)
                                                                                                  (Ans.)
                                            = -5ax(2 +
                                                                                                    169
Factorisation
     (ii)
                                                         2x(a + b) 3y(a +b)
                   2x(a + b) - 3y(a + b) = (a + b)          a +b         a +b
                                              = (a+ b)(2x - 3y)
                                                                                                    (Ans)
 13.4FACTORISATION BY GROUPING
       Agiven algebraic expression, containing an even number         of terms
into factors, if its terms can be arranged in groups such that each group has amay be resolved
         Steps : 1. Arrange the terms of the given expression in suitable common factor.
                         each group has a common factor.
                                                                               groups sSuch that
                      2. Factorise each group.
                      3. Take out the factor which is common to each group.
 Example 3:
            Factorise: ax -bx + ay - by
Solution:
               ax - bx + ay- by
                         = (ax - bx) + (ay - by)
                         = x(a- b) + yla - b)                                                      (Step 1]
                         = (a b)(x + y)                                                             IStep 2)
OR             ax- bx + ay - by
                                                                           (Ans.)                  [Step 3)
                           =ax + ay - bx - by
                          = a(x + y) -b(x + y)                                                     [Step 1]
                          = (X + y)a b)                                                            [Step 2
 Example 4:                                                                (Ans.)                  [(Step 3
            Factorise :
            () y-3y² + 2y - 6- xy + 3x                   (ii) a?- (b + 5) a + 5b
Solution:
     (i)     y-3y² + 2y -6- xy + 3x = (y-3y') + (2y - 6) -
                                                           (xy 3x)                                 [Step 1]
                                               y²(y - 3) + 2(y - 3) - x(y - 3)                     (Step 2]
                                        = (y-3)(y² +2 -x)
                                                                                    (Ans.)         (Step 3)
     (i)              a- (b + 5) a + 5b = a²- ab -5a+ 5b
                                                                                    [Removing the bracket
                                        = (a- ab) (5a- 5b)
                                                                                                  (Step 1]
                                        = a(a- b) -5(a - b)
                                                                                                  [Step 2]
                                        = (a- b) (a - 5)
                                                                                    (Ans.)         (Step 3)
Example 5 :
          Factorise:     25a2 - 36b2
Solution :                                                    6b)(5a - 6b)                (Ans.)
                             25a? - 36b² =(5a)2- (6b) = (5a +
Example 6:
          Factorise : (0) 1-4(a -2b)                (i) 9(x + y)- 16(x-3y)2
Solution :
             1-4(a -2b)² = 1-2 (a -2b)
                         = 1- [2(a - 2b)]
                         = 12- (2a 4b)
                                                   - 2a 4b)
                                  = (1+ 2a-4b ) (1                                        (Ans.)
                                                        4b)
                                   = (1 +2a - 4b)(1-2a+
                                                   3y))
     )      9(x +y)?-16(x -3y)² =[3(x + y)-[4(x-
                                                 12y)2
                               = (3x+ 3y)² (4x -
                                                                             -12y )
                                         (3x +3y  +  4x- 12y) (3x +3y - 4x
                                       =                                     12y)
                                                         12y)(3x + 3y - 4x +
                                       = (3x + 3y + 4x -                                   (Ans.)
                                        = (7x 9y)(15y     -x)
                                                                                           171
                                         EXERCISE 13(B)
                                                             (b) (a +1+b-x) (a
1. Multiple Choice Type :                                    (c)
                                                                               +1-b+x)
   Choose the correct answer from
                                  the options                    (a-1+b- x) (a -1-b+x
   given below.                                            (d) (a-1+ bx) (a+1- bx)
    (1) (2x + y)² - (2y + x)² is equal to :          2. (a + 2b)2 a2
        (a) 3(x + y) (x- y) (b) 2(x - y) (x + y)     3.    (5a -3b)2- 16b2
        (c) 2(y - x) (x + y) (d) (3x + y) (3x - y)
                                                     4. a- (a-3b2)2
   (ii) 49- (x + 5) is equal to:                     5.    (5a - 2b)2- (2a -b)2
        (a) (54 - x) (54 + x) (b) (2 -x) (12 + x)
        (c) 48(x + 5)2         (d) 48(x - 5)2         6.   1-25 (a +b)²
   (iüi) a-2ab + b² +a-b is equal to :               7. 4(2a+ b)² (a- b)?
        (a) (a - b) (a + b- 1) (b) (a-b) (a +b+1)    8. 25(2x + y)- 16(x - y)2
       (c) (a + b)(a b- 1)(d) (a-b) (a-b+ 1)
  (iv) x² + y² - 2xy -1 is equal to :
       (a) (x + y- 1)(x - y- 1)
                                                      9.
                                                         (*3)-("4)
                                                     10. (0-7)2- (0-3)2
       (b) (x + y + 1)(x - y- 1)                     11. 75(x + y)² 48(x - y)2
       (c) (x + y+ 1) (x -y+ 1)                      12. a² + 4a + 4- b2
       (d) (x- y+ 1) (x - y-1)                       13. a²- b²2b    1
   (v) a² + 2a + 1- b²- x² +2bx is equal to :        14. x² + 6x +9- 4y²
       (a) (a + 1-b+ x) (a -1-b+x)
13.6FACTORISATION OF TRINOMIALS
       Since the product of two binomials (2a + b)and (3a - 5b)
                            = (2a + b)(3a - 5b)
                            = 6a?-7ab - 5b2, which is a trinomial.
       The factors of a trinomial 6a²-7ab - 5b² are the binomials (2a + b) and (3a-5),
       Before learning the factorisation of a trinomial, it is essential to know how to find out
 the two numbers whose product and sum are given.
Example7:
       Find the numbers whose :
       () product =6 and sum =5                        (ii) product = 6 and sum =-5
      (ii) product = 6 and sum = 5                   (iv) product =-6 and sum =-5
Solution:
   () Since product = 6 and sum =5. The product and the sum of two numbers are pos0e
       only when both the numbers are positive.
       By trial, we find that the required two numbers are 3 and 2.                         (Ans)
                                                                                          Schoo-8
                 product   =   6 and sum = 5.
   )    Since,
               product
                                      is negative and their sum is positive only when the larger
                         of two numbers
        The
               two n
                    numbers is positive and the smaller is negative.
        ofthe
                  we find that the
                                   required two numbers are 6and-1.                      (Ans.)
        By trial,
                 product  -6 and sum =-5. The product of two numbers is negative and their
 lw)
        Since
                 also negative only
                                     when the larger numberis negative andthesmalleris positive.
        Sumis
Example 11:
                                                                         (ii) 3x² + 12x36
      Factorise completely: (i) 8xß- 18xy2
Solution :                                                                                (Taking out the common]
                       8x° - 18xy² = 2x (4x? 9y²)                                    [Converting   in the form a' - b)
                                    =2x [(2x)²- (3y)9]
                                                                                                              (Ans.)
                                   = 2x (2xX +3y)(2x-3y)
                                                                                     [Taking out the common factor]
      ()         3x2 + 12x 36            = 3 (x² + 4X- 12)                                [Factorising the trinomial]
                                         = 3 (x* + 6x-2X -12)
                                         = 3 [x(x + 6) -2(x + 6)]                                             (Ans.)
                                          = 3(x+ 6)(x -2)
Example 12 :
       Factorise completely : () x²+ 4xy + 4y² 97?
                                                      (i) 16x-y
Solution :
                   expression, x² + 4xy + 4y is a perfect square trinomial as:
     9mne given
            X*+ 4xy + 4y2 = x?+2xxx2y +(2y)*                           [Taking X=                         aand 2y = b]
                                              = a²+2ab + b²
                                              = (a + b)²                                                 [Substituting]
                                              = (x + 2y)?
                                                                                                                175
Faciorisation
                                        K+ 2y)      (3z)²
                                    = (X + 2y + 3z)(x + 2y - 3z)
       (i)              16x* - y = (4x2)2 - (y)°
                                  =(4x2 + y°)(4x² - y²)                                                       (Ans)
                                 = (4x² + yI(2x)² - (y)
                                    = (4x² + y°X2x + y(2x - y)
          Reason (R): Any trinomial which can be                       (0) 15(5x -4)- 10(5x 4)
          expressed as x*+ y' + 2xy or x²+ y²-2xy                     (ü) 3a²x -bx +3a2-b
          is a perfect square trinomial.                              (ii) b(c - d)' + a(d- c) +3(c - d)
         (a) (1)              (c) (3)
                          (b) (2)        (d) (4)                      (iv) ax? +b²y- ab² -x2y
   (vil)lAssertion (A) : x+7x + 12                                    (v) 1-3x-3y - 4(x + y
                       = x²+(4+3) x +4 x 3                      7.    Factorise:
                       =x² +4X + 3% + 4 x 3                            (0) 2a- 50a             (ii) 54a²b² -6
                      = (x +4) (x +3)                                 (i) 64a?b- 144b3 (iv) (2x-y- (2x-y)
           Reason (R):To factorise a given trinomial,                  (v) x²-2xy+y-2
           the product of the first and the last term of              (vi) x°-y-2yz -2
           the trinomial is always the sum of the two                                                      20x4
           parts when we split the middle term.                      (vii) 7a5- 567a         (viii) 5x2
           (a) (1)         (b) (2)       (c) (3)    (d) (4)     8. Factorise xy² - xz², Hence, find the value of :
                                                                     (i) 9x 8 -9x 22
      (x) Assertion (A) : The value of k so that the
                                                                    (ii) 40 x 5.52- 40 x 4.52
                                       121                 11
              factors of x-kx +16            the same is
                                                  2
                                                                 9    Factorise
                                                                       () (a-3b)-36 b²
              Reason (R):(x+a) (x +b) =x*+(a+ b) x+ab                  (i) 25(a - 5b)- 4(a - 36)?
              (a) (1)      (b) (2)       (c) (3)    (d) (4)           (ii) a'- 0-36 b²
                                                                      (iv) x-5x2-36
      () Assertion (A): There are two values ofb                       (v) 15(2x-y)²- 16(2x -y) -15
              so that x²+ by - 24 is factorisable.
              Reason (R):Two values have:                        10. Evaluate (using factors) :3012 x 300 -3003.
                                                                 11. Use factor method to evaluate
               Product =-24 and sum = 2
              la) (1)       (b) (2)      (c) (3)                       (0) (522- 80) + (z 4)
                                                     (d) (4)
  2. Factorise:                                                         (52?-80) + (2-4)
          0) 6x3 -8x?                                                             5(2 -16)       5(2 -4²)
          (0) 36x² -30x°y+ 48xy                                                    Z-4            Z-4
          () 8(2a +3b)3 12(2a + 3b)                                           5(z +4) (2 -4) = 5(2 +4)
          (w) 9a(x -2y) -12a (x -2y)°                                                Z-4
  3. Facorise :
           0 a- ab (1-b) - b                                            (i) 10y(6y + 21) + (2y + 7)
          (0) xy' +(x-1)y 1                                            (ii) (a- 14a - 32) + (a +2)
          () (ax +by)² +(bx                                            (iv) 39x(50x- 98) + 26x² (5x + 7)
                            ay)
  FactoDsation                                                                                                    177)