The document is an assignment focused on solving simultaneous equations using methods from Vedic mathematics. It includes various equations and examples demonstrating the techniques for finding values of variables. The content is structured with equations, substitutions, and calculations to illustrate the problem-solving process.
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0 ratings0% found this document useful (0 votes)
22 views10 pages
Assignment 1
The document is an assignment focused on solving simultaneous equations using methods from Vedic mathematics. It includes various equations and examples demonstrating the techniques for finding values of variables. The content is structured with equations, substitutions, and calculations to illustrate the problem-solving process.
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 10
a
| \s MEH ASHISH SHAH
| W cse-A
EN ASSIGNMENT ~ 2
er = \
\ |
{| UBIECT:= EMT DATE: * +
TOPIC: SIMULTANEOUS AOLL No. : AOS! {
i EQUATIONS |
i \
By. Nasima)_Method an Se
| ee 2q-O_by 3 and. eq O_
subeudey : -
2) 2A Qiig = 15 ame\f
I () Iex + Soy = 40 : '
c=) =) =) 2 a
= = = 28 G
1st|
qs’
SO WE
n we
[Now swe will be using techni
pupvided by vedic Math to
| cmultancetis equations. It cee
.Givided 1p
categasies ime
fe -
| Since syaHo—oy w-“LyFi ji wns of
Me aie ea tand, 1914440 4 Zonstons
ys 4.0f20 = 1-2 __, in £uch— Qua on,
} value of *— is__O.. —__—_— |
ro 7 40 Wwe can _-aubsH}ute x =D |
— Y= a =
— Po BD _|
F a |
OA 2+ nent --ahpi cient,
and —y—ene interchanged |
—____—__ _—_—___|
We will : ad4 and. “than _ gubleya a ene.| Dividing wey) by bE and. 1ay(u) by 22
|
| ¥ey sa os) |
xey =) 06) }
itr gies Value of x = _2__and ye elt
iCaregasuy 2+ Pll oFhoss types not t
a — faliing- yn thee
f CALLA OF x by Lusi ng ne
>Tt
TEXERCLSE QUES TTL ONS ————
Let
22 ,b=3,C=F , pea 5 YES Eley
= ht y= <7 y = ct
> ar Yy- a = a* yt’
b= f- = Oy. 5 - b pa *a,
== - : _ _
Bxiy- 8¥S. y= SX U=- 2x15.
BZx4-2%5_Wh EEE TE |
| 3 hil y qd yi | |
% | \
¥ 1 | Ju lal
| Ro Taq
0 sys N44
\ de W\4s [al
| A | 4tu pila :
| i] 7 aN
‘ " ‘I He a
fo | Jn] (ap [2p 44
a
a uv
t
lA us S q’
x N *
a4 J te Alea
ya a 0 4°
qs | lle yu Joya py
\4 y" any "sp ny a oO
1 | ny Se le
; ; +45
a) N\ y " 4 aq |
| a wal
x x
rT 1”
; ry Rar +
TTT TTT Va Tay Ty2p. =at_¢
| = is-4 ul
_ 3 Le a
mor sort 2 Sy =e) +
: x
dg) 5s yx-2y >
PI
X= SY te
_SoPi- ri
x
25, ba 3 Cally pHboGye=8, 129
_ Fy, cer = ctp-—at —
= z - pra" sy
b* p =aty Tarp mate
x= =3*FT-Mx=8 y= txe- ex 9
~3%6 = SKX-C =32x*6-Sx-5 |
A= =-27 455 y= 66 ~ uo |
—/8 +20 le +25 44 12
| _L.
y= 2F y= 21
q 24 1h =
feu] fy =) <= 2, p= 2 -Y=
gs *p eara
4 b? p=a*% ay | —
<4 y= 2ex1-\zle |
=u 6 y7-Nx-4 7
“Y= At b =11 0 S|
Y t ve W2 +4 |wo
pat |
rea = - (13
19x 4144 =16 = 2?
So ra
canbe ans. umect. to_
{| _ -
bh) Ax +2 y= 2 = (4)
t ax 4+ Sy 2s = (2) |
40) - Since he sertio— wo peat |
{ y= e/a anc Stato —
Consus =. L/S “we aust) _
These pores Xx Can be awumed to
= : and. eT can Oi ate cle —
Cubst Hite K=O. ¥ aIv)
29 xX + 37.4. = Jo.
soy =r
| yard
i t
| XO ys L
37 xX + 294.
3
4S = (2) =
el ¢ 2) ae —
4
“Sina the siatio 04 _catppicents ep —
- randy arte totlancnntiiey eck als
o> We will aqdd___t+he _eey 1) and_2ey2).
7 _ ane A ub+4at Harem ate —
| Addii— et |
s BTX+29Y=45 BIR FAW HAS =o
42.24% aoe = 103 (_2I%+37 y= 109 a
66 “+6 = 14 EHF ie HP eee ay
=( +3) g -€ys-¢ |
—c4) |
+] Divide ey (3) by 66- meee me a qf
a fom ee %
x+y = 3 t X=Yy= 5
=—( ec) cc) -_
Adding—(sland (65 tp/get x
XY. =o
po yh Py ay
at
Cubs Ht a in es)
Lib y=
Be]
ye) 4422 —__tpPlizx+i7y2s3
fix +t hgeea G3
sor t- = ;
= Sin etna e140 Oy — rhc
Change.cl
and —y—axte——in dl.
cana. ond——
Leubtyac! te equations — a]
[Adding 2= = ——-+~Subsiactt ng
yp x LY = $9
(r+ Py = 5S
17% 412 4 263)
fe suse
ed
_ faa weedy sug Co) ES
= (3) =S¥ +S5y 5 710
=(h)
Divide eq (oy Pv An neal} bys
K+ty=zH =
| gaa ee