Calculus 2
Calculus 2
O r(−2)AA1
1 XX1XX
2 3 N
XXX4 5 A -x
2
3
XX z
Xy −2 −1 A 1 2 3 4
4 −1 U A r(0)
A
AUs
x+
−2
p
< 1, −2 >
q r s t u v w x y z
{ |
} ~
~
Calculus
• Instructor:
• Textbook:
R. T. Smith and R. B. Minton, ”Calculus: Early Transcendental Functions,”
3e, 2006.
• Reference:
• Grade:
1. Performance in class
2. Attendance condition
3. Weekly tests
4. Midterm
5. Final
Contents
2 DIFFERENTIATION 15
2.1 Tangent Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Computation of Derivatives: the Power Rule . . . . . . . . . . . . . . 19
2.4 The Product and Quotient Rules . . . . . . . . . . . . . . . . . . . . 21
2.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Derivatives of Trigonometric Functions . . . . . . . . . . . . . . . . . 28
2.8 Derivatives of Exponential and Logarithmic Functions . . . . . . . . . 32
3 APPLICATIONS OF DIFFERENTIATION 35
3.1 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Linearization and Newton’s Method . . . . . . . . . . . . . . . . . . . 37
3.3 Indeterminate Forms and L’Hôpital’s Rule . . . . . . . . . . . . . . . 41
3.4 Maximum and Minimum Values . . . . . . . . . . . . . . . . . . . . . 43
3.5 Monotonic Functions and the First Derivative Test . . . . . . . . . . 45
3.6 Concavity and the Second Derivative Test . . . . . . . . . . . . . . . 47
3.7 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 INTEGRATION 54
4.1 Antiderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Area Under a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 The Definite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 The Natural Logarithm as an Integral . . . . . . . . . . . . . . . . . . 72
4.6 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . 75
4.7 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5 INTEGRATION TECHNIQUES 81
5.1 Integration by Substitution . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Integrals Involving Powers of Trigonometric Functions . . . . . . . . . 89
5.5 Trigonometric Substitution . . . . . . . . . . . . . . . . . . . . . . . . 94
6 DIFFERENTIAL EQUATIONS 97
6.1 Growth and Decay Problems . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Separable Differential Equations . . . . . . . . . . . . . . . . . . . . . 99
6.3 Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9 VECTORS 149
9.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.2 The Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.3 The Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.4 Vector-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.5 The Calculus of Vector-Valued Functions . . . . . . . . . . . . . . . . 163
9.6 Arc Length and Curvature . . . . . . . . . . . . . . . . . . . . . . . . 167
INFINITE SERIES
7.1. SEQUENCES OF REAL NUMBERS
lim an = L
n→∞
if for each ε > 0, there exist N > 0 such that |an − L| < ε whenever n > N . If
the limit does not exist, then {an }∞
n=n0 diverges.
∞
1
Example 7.1.1. Write out the terms of the sequence {an }∞
n=1 = and then
n2 n=1
show that {an }∞
n=1 converges to 0.
Solution:
∞
1 1 1 1
= , ,··· , 2,···
n2 n=1 1 4 n
Given any ε > 0, we must find N sufficiently large so that for every n > N ,
1
−0 <ε
n2
1
<ε
n2
1
n2 >
ε
r
1
n> = N.
ε
an lim an
(d) lim = n→∞ assuming lim bn 6= 0 .
n→∞ bn lim bn n→∞
n→∞
5n + 7
Example 7.1.2. Evaluate lim .
n→∞ 3n − 5
Solution:
7
5n + 7 5+ n 5 5
lim = lim 5 = the sequence converges to .
n→∞ 3n − 5 n→∞ 3 − 3 3
n
n2 + 1
Example 7.1.3. Evaluate lim .
n→∞ 2n − 3
Solution:
n2 + 1 n + n1
lim = lim =∞ the sequence diverges.
n→∞ 2n − 3 n→∞ 2 − 3
n
Theorem 7.1.2. Suppose that lim f (x) = L. Then, lim f (n) = L, also.
x→∞ n→∞
Remark. If lim f (n) = L, it need not be true that lim f (x) = L. For exapmle,
n→∞ x→∞
cn f (x)
6 6
2.0 1
1.5 0.5
1.0 s s s s s s s s s s s s s s s s -x
2π 4π 6π
0.5 −0.5
-n −1
5 10 15
n+1
Example 7.1.4. Evaluate lim
n→∞ en
If lim an = L = lim bn ,
n→∞ n→∞
and there exists an integer N such that an ≤ cn ≤ bn for all n > N , then
lim cn = L.
n→∞
∞
sin n
Example 7.1.5. Determine whether the sequence converges or diverges.
n2 n=1
Solution:
n! = 1 · 2 · 3 · · · n, and 0! = 1.
2n+1
an+1 (n + 1)! 2
= n = ≤ 1, for n ≥ 1
an 2 n+1
n!
an+1 ≤ an , for n ≥ 1,
(b) {an }∞
n=1 is bounded.
2n 2 · 2 · 2···2 · 2 2
0< = ≤ = 2, for n ≥ 1
n! n · (n − 1) · · · 2 · 1 1
|an | ≤ 2, for n ≥ 1.
∴ {an }∞
n=1 converges.
2n − 1 4
(a) an = (c) an = √
n2 n+1
3 n
(b) an = (d) an = (−1)n
n! 3n − 1
∞
n!
(a) an = ne−n (c)
2n n=1
n2 + 3 ∞
(b) an = 3 nn + 3
n +1 (d) (−1)
n + 2 n=1
∞
en
(a)
n n=1
n+3
∞ (c) an =
2 n n+2
(b)
(n + 1)! n=1
∞ ∞
3n2 − 2 6n − 1
(a) (b)
n2 + 1 n+3 n=1
n=1
∞
X n
X
ak = lim ak = lim Sn = S,
n→∞ n→∞
k=1 k=1
∞
X
(b) If lim ak 6= 0, then ak diverges.
k→∞
k=1
∞
X k
Example 7.2.1. Use the kth-term test to determine if the series diverges.
k=1
k+1
k
Solution: lim ak = lim = 1 6= 0, ∴ this series diverges.
k→∞ k→∞ k + 1
∞
X 1
Example 7.2.2. Use the kth-term test to determine if the series diverges.
k=1
k
1
Solution: lim ak = lim = 0.
k→∞ k→∞ k
Remark. This does not say that the series converges.
∞
X ark0
Theorem 7.2.2. For a 6= 0, the geometric seies ark converges to if |r| < 1
k=k0
1−r
and diverges if |r| ≥ 1.
Proof:
Sn = ark0 + ark0 +1 + ark0 +2 + · · · + arn
− rSn = ark0 +1 + ark0 +2 + ark0 +3 + · · · + arn+1
(1 − r)Sn = ark0 − arn+1
ark0 − arn+1
Sn =
1−r k0
ar k0
− ar n+1 ar
if |r| < 1;
S = lim Sn = lim = 1−r
n→∞ n→∞ 1−r
does not exist if |r| ≥ 1
∞ k
X 1 2
Example 7.2.3. Determine if the geometric series converges or diverges.
k=3
3 3
Find the sum of the series if it converges.
Solution:
∞ k
2 2 X 1 2
r= , |r| = < 1. ∴ converges.
3 3 k=3
3 3
1
3
ar3 3
· 23 8
S= = 2 =
1−r 1− 3 27
∞ k
X 1 3
Example 7.2.4. Determine if the geometric series − converges or di-
k=1
3 2
verges. Find the sum of the series if it converges.
Solution:
∞ k
3 3 X 1 3
r=− , |r| = > 1 ∴ − diverges.
2 2 k=1
3 2
Exercise 7.2.1. Use the kth-term test to determine if the series diverges.
∞ ∞
X 2 X 2k
(a) (c) (−1)k+1
k k=0
k+1
k=1
∞ ∞
X 4k X 1 1
(b) (d) k
−
k+2 k=0
2 k+1
k=0
Exercise 7.2.2. Determine if the geometric series converges or diverges. Find the
sum of the series if it converges.
∞ k ∞
X 1 X 1 k
(a) 5 − (c) 4−1
2 k=0
3
k=2
∞ k ∞ k
X 1 X 1 7
(b) 3 (d) −
4 k=3
5 2
k=1
Z n
Proof: (a) 0 ≤ a2 + a3 + · · · + an = Sn − a1 ≤ f (x) dx ≤ a1 + a2 + · · · + an−1 = Sn−1
1
y
6
y
y = f (x) 6
y = f (x)
s s a1 )
(2, a2 )
s
(1,
s s s
(5, a5 )
s s
(4, a4 )
-x
1 2 3 4 5 6
-x
1 2 3 4 5 6
Z ∞
(i) If f (x) dx converges to L
1
Z n
Sn − a1 ≤
f (x) dx
1
Z n Z ∞
lim (Sn − a1 ) ≤ lim f (x) dx = f (x) dx = L
n→∞ n→∞ 1 1
lim Sn ≤ lim (L + a1 ) = L + a1 , converges, too.
n→∞ n→∞
Z ∞
(ii) If f (x) dx diverges
1
Z n
f (x) dx ≤ Sn−1
1
Z n Z ∞
lim f (x) dx = f (x) dx = ∞ ≤ lim Sn−1
n→∞ 1 1 n→∞
∞
X
(iii) If ak converges to L
k=1
Z n
f (x) dx ≤ Sn−1
Z n Z 1∞
lim f (x) dx = f (x) dx ≤ lim Sn−1 = L
n→∞ 1 1 n→∞
Z ∞
f (x) dx ≤ L, converges, too.
1
∞
X
(iv) If ak diverges
k=1
Z n
f (x) dx
Sn − a1 ≤
1
Z n Z ∞
lim (Sn − a1 ) = ∞ ≤ lim f (x) dx = f (x) dx
n→∞ n→∞ 1 1
Z ∞
f (x) dx ≥ ∞, diverges, too.
1
∞
X Z ∞
(b) Rn = ak ≤ f (x) dx y
k=n+1 n 6
y = f (x)
s(n + 1, an+1 )
s s s
-x
nn+1
∞
X 3
Example 7.3.1. Use the integral test to determine if the series converges
k=0
(2 + k)2
or diverges.
3
Solution: f (x) = is continuous and decreasing, and f (x) ≥ 0 for x ≥ 0
(2 + x)2
Z ∞ Z R R
3 3 −3
dx = lim dx = lim
0 (2 + x)2 R→∞ 0 (2 + x)2 R→∞ (2 + x)
0
1 1 3
= −3 lim − = , converges
R→∞ 2 + R 2 2
∞
X 3
∴ converges, too.
k=0
(2 + k)2
Example 7.3.2. Estimate the error for the integral test in using the partial sum S100
∞
X 3
to approximate the sum of the series .
k=0
(2 + k)2
Solution:
Z ∞ Z R R
3 3 −3
0 ≤ R100 ≤ dx = lim dx = lim
100 (2 + x)2 R→∞ 100 (2 + x)
2 R→∞ (2 + x)
100
1 1 3
= −3 lim − = .
R→∞ 2 + R 102 102
Example 7.3.3.
Determine the number of terms needed to obtain an approximation to the sum of the
∞
X 3
series 2
correct to within 10−6 with error estimate for the integral test.
k=0
(2 + k)
Solution:
Z ∞ Z R R
3 3 −3
0 ≤ Rn ≤ dx = lim dx = lim
n (2 + x)2 R→∞ n (2 + x)
2 R→∞ (2 + x)
n
1 1 3
= −3 lim − = ≤ 10−6 ,
R→∞ 2 + R n+2 n+2
3
Rn ≤ ≤ 10−6 , ∴ n ≥ 3 × 106 − 2.
n+2
1
Proof: f (x) = = x−p is continuous and decreasing, and f (x) ≥ 0 for x ≥ 1
xp
(a) For p 6= 1
Z ∞ Z R R
−p x−p+1
x dx = lim x−p dx = lim
1 R→∞ 1 R→∞ −p + 1 1
1
= lim R−p+1 − 1
−p + 1 R→∞
1 , if p > 1
= p−1
∞, if p < 1
(b) For p = 1
Z ∞ Z R
1 1
dx = lim dx = lim ln |x||R
1
1 x R→∞ 1 x R→∞
∞
X 1
(c)
k=1
k
∞
X 1
∵ p=1 ∴ diverges.
k=1
k
Exercise 7.3.1. Use the integral test to determine if the series converges or diverges.
If the series converges:
(1) Estimate the error in using the partial sum S100 to approximate the sum of the
series.
(2) Determine the number of terms needed to obtain an approximation to the sum
of the series correct to within 10−6 with error estimate for the integral test.
∞
∞
X k+1
X 1
(a) (c)
2
k + 2k + 3 k=3
(1 + 2k)2
k=3
∞
X∞
2
X e1/k
(b) (d)
k ln k k=3
k2
k=2
∞
X ∞
X
(b) If ak diverges, then bk diverges, too.
k=1 k=1
∞
X
Proof for (a): If bk = B
k=1
∞
X
0 ≤ S n = a1 + a2 + · · · + an ≤ b 1 + b 2 + · · · + b n ≤ bk = B
k=1
{Sn }∞
n=1 is bounded, (∵ 0 ≤ Sn ≤ B)
Sn = a1 + a2 + · · · + an ≤ a1 + a2 + · · · + an + an+1 = Sn+1
{Sn }∞
n=1 is increasing, (∵ Sn ≤ Sn+1 )
∴ lim Sn = S converges.
n→∞
∞
X
Proof for (b): If ak = ∞
k=1
∞
X ∞
X
bk = lim (b1 + b2 + · · · + bn ) ≥ lim (a1 + a2 + · · · + an ) = ak = ∞.
n→∞ n→∞
k=1 k=1
∞
X
∴ bk =∞ diverges, too.
k=1
∞
X 2
Example 7.4.1. Use the comparison test to determine if the series con-
k=1
3k 2+1
verges or diverges.
Solution:
2 2
< 2, for k ≥ 1
3k 2 +1 3k
∞
X 2
∵ converges (∵ p = 2),
k=1
3k 2
∞
X 2
∴ converges, too.
k=1
3k 2+1
∞
X 2
Example 7.4.2. Use the comparison test to determine if the series √
3
k=1
3 k2 − 1
converges or diverges.
Solution:
2 2
√
3
> √ 3
, for k ≥ 1
3 k2 − 1 3 k2
∞ ∞
X 2 X 2 2
∵ √ = 2 diverges ∵ p = ,
k=1
3
3 k2 k=1 3k
3 3
∞
X 2
∴ √
3
diverges, too.
3 k 2−1
k=1
ak ak L
Proof: If lim = L > 0, we can make − L < ε = , for all k > N
k→∞ bk bk 2
L ak 3L
< <
2 bk 2
L 3L
bk <ak < bk , for all k > N.
2 2
∞
X
(a) If bk converges to B, then
k=1
∞ N ∞ ∞
N N
X X X 3L X X X 3L
ak = ak + ak < ak + bk < ak + B, converges,
k=1 k=1 k=N +1 k=1
2 k=N +1 k=1
2
too.
∞
X
(b) If bk diverges, then
k=1
∞ N ∞ N ∞
X X X X L X
ak = ak + ak > ak + bk , diverges, too.
k=1 k=1 k=N +1 k=1
2 k=N +1
| {z }
∞
∞
X
(c) If ak converges to A, then
k=1
∞ N ∞ N ∞ N
X X X X 2 X X 2
bk = bk + bk < bk + ak < bk + A, converges, too.
k=1 k=1 k=N +1 k=1
L k=N +1 k=1
L
∞
X
(d) If ak diverges, then
k=1
∞ N ∞ N ∞
X X X 2 X
X
bk = bk + bk > bk + ak , diverges, too.
k=1 k=1 k=N +1 k=1
3L k=N +1
| {z }
∞
∞
X 1
Example 7.4.3. Use the limit comparison test to determine if the series
k=3
k3 − 5k
converges or diverges.
1 1
Solution: Let ak = > 0, bk = 3 > 0 for k large.
k3 − 5k k
1
ak 3 1
lim = lim k − 5k = lim =1>0
k→∞ bk k→∞ 1 k→∞ 1 − 52
k
k3
∞ ∞
X 1 X 1
Since 3
is a convergent p-series (p = 3 > 1), 3
is also convergent.
k=3
k k=3
k − 5k
Example 7.4.4. Use the limit comparison test to determine if the series
∞
X k 2 − 2k + 7
converges or diverges.
k=1
k 5 + 5k 4 − 3k 3 + 2k − 1
Solution: Let
k 2 − 2k + 7 1 − k2 + k72 1
ak = = , bk =
k 5 + 5k 4 − 3k 3 + 2k − 1 k 3 + 5k 2 − 3k + k2 − 1
k2
k3
1 − k2 + k72
ak k 3 + 5k 2 − 3k + k2 − 1
k2
1 − k2 + 7
k2
lim = lim = lim =1>0
k→∞ bk k→∞ 1 k→∞ 1 + 5 − 32 + 2
− 1
k k k3 k5
k3
∞ ∞
X 1 X k 2 − 2k + 7
Since 3
is a convergent p-series (p = 3 > 1), 5 + 5k 4 − 3k 3 + 2k − 1
is also
k=1
k k=1
k
convergent.
Exercise 7.4.1. Use the comparison test to determine if the series converges or
diverges.
∞ ∞
X 2k X 2k
(a) (c)
3
k +4 k=3
k4 + 5
k=1
∞ ∞
X 2 X 2
(b) (d)
3k 2+1 k=2
3k 2+k
k=1
Exercise 7.4.2. Use the limit comparison test to determine if the series converges
or diverges.
∞ ∞
X k 3 + 2k + 3 X k2 + 3
(a) (b)
k 4 + 2k 2 + 4 k=3
k5 + k2 + 4
k=1
S2 = a1 − a2 > 0
S4 = S2 + (a3 − a4 ) ≥ S2 , ∵ a3 ≥ a4
..
.
S2n = S2n−2 + (a2n−1 − a2n−2 ) ≥ S2n−2
S2n ≥ S2n−2 ≥ · · · ≥ S4 ≥ S2 > 0.
{S2n }∞
n=1 is bounded.
≤ a1
converges, too.
∞
X k2
Example 7.5.1. Determine if the alternating series (−1)k+1 converges or
k=0
k2 + 3
diverges.
∞
k2 X k2
Solution: lim ak = lim = 1 6= 0, ∴ (−1)k+1 diverges.
k→∞ k→∞ k 2 + 3 k2 + 3
k=0
∞
X 1
Example 7.5.2. Determine if the alternating series (−1)k+1 converges or
k=0
k2 +3
diverges.
1 1 1
Solution: lim ak = lim = 0 and a k+1 = < = ak ,
k→∞ k→∞ k 2 + 3 (k + 1)2 + 3 k2 + 3
∞
X 1
∴ (−1)k+1 converges.
k=0
k2 +3
∞
X
Theorem 7.5.2. If the alternating series (−1)k+1 ak converges to some number
k=1
S, then the error in approximating S by the nth partial sum Sn satisfies
|S − Sn | ≤ an+1 .
≤ a2m+1 = an+1
(b) n = 2m + 1 (odd)
≥ −a2m+2 = −an+1
∴ |S − Sn | ≤ an+1
Example 7.5.3. Determine how many terms needed to estimate the sum of the
∞
X 4
alternating series (−1)k+1 2 correct to within 10−8 .
k=1
k
Solution:
|S − Sn | ≤ an+1 ≤ 10−8
4
2
≤ 10−8
(n + 1)
n + 1 ≥ 2 × 104
n ≥ 19999
∞
X ∞
X ∞
X
(b) ak is conditionally convergent if ak converges but |ak | diverges.
k=1 k=1 k=1
∞
X
ak = a1 + a2 + a3 + · · ·
k=1
∞
X
≤ |a1 | + |a2 | + |a3 | + · · · = |ak | = L, converges, too.
k=1
∞
X 2
Example 7.5.4. Use the absolute convergence to determine if the series (−1)k 2
k=1
k
is absolutely convergent, conditionally convergent or divergent.
Solution:
∞ ∞ ∞
X X 2 k
X 2
|ak | = (−1) 2 = 2
, is a convergent p-series (p = 2 > 1)
k=1 k=1
k k=1
k
∞ ∞
X X 2
∴ ak = (−1)k is absolutely convergent.
k=1 k=1
k2
Exercise 7.5.2. Prove Theorem 7.5.1, Theorem 7.5.3 and Theorem 7.5.2.
ak+1
Proof for (a): For L < 1, pick any number r with lim = L < r < 1.
k→∞ ak
Then, we can make
ak+1
< r, for k > N
ak
|ak+1 | < r|ak |
|ak+2 | < r|ak+1 | < r2 |ak |
..
.
|ak+m | < r|ak+m−1 | < rm |ak |
∞
X N
X ∞
X
|ak | = |ak | + |ak |
k=1 k=1 k=N +1
N ∞ N
X X
k−N −1
X |aN +1 |
< |ak | + r |aN +1 | = |ak | + < ∞, converges.
k=1 k=N +1 k=1
1−r
∞
X
∴ ak converges absolutely.
k=1
ak+1
Proof for (b): For L > 1, we have lim = L > 1.
k→∞ ak
Then, we can make
ak+1
> 1, for k > N
ak
|ak+1 | > |ak | ⇒ lim |ak | 6= 0
k→∞
∞
X
By the kth-term test, ak diverges.
k=1
∞
X 2
Example 7.6.1. Use the ratio test to determine if the alternating series (−1)k
k=0
k!
is absolutely convergent, conditionally convergent or divergent.
2
ak+1 (k+1)! 1
Solution: lim = lim 2 = lim =0<1
k→∞ ak k→∞
k!
k→∞ k + 1
∞
X 2
∴ (−1)k is absolutely convergent.
k=0
k!
Theorem
∞
7.6.2. Root Test
X p
Given ak , suppose that lim k |ak | = L. Then,
k→∞
k=1
p
k
Proof for (a): For L < 1, pick any number r with lim |ak | = L < r < 1.
k→∞
Then, we can make
p
k
|ak | < r, for k > N
|ak | < rk
|ak+1 | < rk+1
..
.
|am | < rm
∞
X N
X ∞
X
|ak | = |ak | + |ak |
k=1 k=1 k=N +1
N ∞ N
X X
k
X rN +1
< |ak | + r = |ak | + < ∞, converges.
k=1 k=N +1 k=1
1−r
∞
X
∴ ak converges absolutely.
k=1
p
k
Proof for (b): For L > 1, we have lim |ak | = L > 1.
k→∞
Then, we can make
pk
|ak | = L > 1, for k > N
|ak | > Lk
|ak+1 | > Lk+1 ⇒ lim |ak | 6= 0
k→∞
∞
X
By the kth-term test, ak diverges.
k=1
∞
X 3
Example 7.6.2. Use the root test to determine if the series (−1)k is absolutely
k=1
kk
convergent, conditionally convergent or divergent.
Solution:
s √
k
p
k k 3 3
lim |ak | = lim k
= lim =0<1
k→∞ k→∞ k k→∞ k
∞
X 3
∴ (−1)k is absolutely convergent.
k=1
kk
Exercise 7.6.1. Use the ratio test to determine if the alternating series is absolutely
convergent, conditionally convergent or divergent.
∞ ∞
X X 10k
(a) (−1)k 2k (d) (−1)k
k=4
k!
k=0
∞ ∞
X k! X (−1)k k!
(b) (−1)k+1 (e)
4k k=1
ek
k=1
∞ ∞ 2 k
kk 3
X 2 X
(c) (f) (−1)
k! k=3
2k
k=1
Exercise 7.6.2. Use the root test to determine if the series is absolutely convergent,
conditionally convergent or divergent.
∞ ∞
X 2 X e3k
(a) (c)
(k + 3)k k=2
k 3k
k=1
∞ k ∞ k
X 6k X 4
(b) (d)
5k + 1 k=1
3k + 2
k=1
2
Example 7.7.1. Find a power series representation of about c = 0. Also
1−x
determine the radius of convergence and interval of convergence.
Solution:
∞
X a
∵ abk = , for |b| < 1
k=0
1−b
∞
2 X
∴ = 2 · xk for |x| < 1,
1 − x k=0
Example 7.7.2. Determine the radius and interval of convergence for the geometric
∞
X 10k
power series (x − 1)k .
k=0
k!
10k+1
(x − 1)k+1
ak+1 (k + 1)! 1
lim = lim k
= 10|x − 1| lim =0<1
k→∞ ak k→∞ 10 k→∞ k + 1
(x − 1)k
k!
∞
X 10k
∴ (x − 1)k converges absolutly for all x ∈ (−∞, ∞) and r = ∞.
k=0
k!
Example 7.7.3. Determine the radius and interval of convergence for the geometric
∞
X xk
power series k
.
k=1
k 4
xk+1
ak+1 (k + 1)4k+1 |x| k |x|
lim = lim k
= lim = < 1.
k→∞ ak k→∞ x 4 k→∞ k + 1 4
k 4k
For x = 4,
∞ ∞ ∞
X xk X 4k X 1
k
= k
= , is a divergent p-series (p = 1).
k=1
k4 k=1
k4 k=1
k
For x = −4,
∞ ∞ ∞
X xk X (−4)k X (−1)k
k
= k
= , is a convergent alternating series.
k=1
k 4 k=1
k 4 k=1
k
∴ r = 4, x ∈ [−4, 4).
For x = −1,
∞
X ∞
X ∞
X
k+1 k−1 2k
(−1) kx = (−1) k = k, diverges (k-term)
k=1 k=1 k=1
For x = 1,
∞
X ∞
X
(−1)k+1 kxk−1 = (−1)k+1 k, diverges (k-term)
k=1 k=1
Exercise 7.7.1. Find a power series representation of f (x) about c = 0. Also deter-
mine the radius of convergence and interval of convergence.
3 3
(a) f (x) = (c) f (x) =
4+x x−1
2 3
(b) f (x) = (d) f (x) =
1 + x2 6−x
Exercise 7.7.2. Determine the radius and interval of convergence for the power series
∞ ∞
X X 2k
(a) (x + 2)k (c) (x − 2)k
k=0
k!
k=0
∞ ∞
X x k X k!
(b) (−1)k (d) (−1)k+1
2 k=1
4k
k=0
∞
X
Exercise 7.7.3. Use the power series (−1)k xk to find power series representations
k=0
of f (x). Also determine the radii of convergence and intervals of convergence.
Proof:
∞
X
f (x) = bk (x − c)k
k=0
= b0 + b1 (x − c) + b2 (x − c)2 + b3 (x − c)3 + · · · f (c) = b0 ,
f ′ (x) = b1 + 2b2 (x − c) + 3b3 (x − c)2 + 4b4 (x − c)3 + · · · f ′ (c) = b1 ,
f ′′ (x) = 2b2 + 3 · 2b3 (x − c) + 4 · 3b4 (x − c)2 + · · · f ′′ (c) = 2b2 ,
f ′′′ (x) = 3 · 2b3 + 4 · 3 · 2b4 (x − c) + · · · f ′′′ (c) = 3! b3 ,
..
.
··· f (k) (c) = k! bk ,
f (k) (c)
∴ bk = , for k = 0, 1, 2, · · ·
k!
Example 7.8.1. Find the Taylor series about c = 0 and its interval of convergence
for ex
Solution: (a) Taylor series expansion
∞
X f (k) (0)
f (x) = ex = xk , f (0) = 1
k=0
k!
′ x
f (x) = e , f ′ (0) = 1
f ′′ (x) = ex , f ′′ (0) = 1
f (3) (x) = ex , f (3) (0) = 1
.. ..
. .
f (k) (x) = ex , f (k) (0) = 1
∞
X 1 k 1 1
∴ ex = x = 1 + x + x2 + x3 + · · ·
k=0
k! 2! 3!
Example 7.8.2. For f (x) = ex , find the Taylor polynomial of degree n expanded
about x = 0 and use it to approximate the number e.
Solution: f (k) (x) = ex , for all k. So, the nth-degree Taylor polynomial is
n n
X f (k) (0) X 1 k
f (x) ≈ Pn (x) = (x − 0)k = x
k=0
k! k=0
k!
1 2 1 3 1
=1+x+ x + x + · · · + xn .
2! 3! n!
1 1 1
e = e1 = 1 + 1 + 12 + 13 + · · · + 1n ≈ 2.718281828.
2! 3! n!
Example 7.8.3. Expand f (x) = sin x in a Taylor series about x = π2 (i.e., take
c = π2 ) and find its interval of convergence.
∞
X f (k) π2 π k
Solution: (a) Taylor series expansion sin x = x−
k=0
k! 2
π
f (x) = sin x, f =1
2
π
f ′ (x) = cos x, f′ =0
2
π
f ′′ (x) = − sin x, f ′′ = −1
2
π
f (3) (x) = − cos x, f (3) =0
2
π
f (4) (x) = sin x, f (4) =1
2
..
.
π
··· f (k) = (−1)k/2 for k = 0, 2, 4, · · ·
2
∞
X (−1)k/2 π k
∴ sin x = x− , for k = 0, 2, 4, · · ·
k=0
k! 2
∞
X (−1)m π 2m k
= x− , where m =
m=0
(2m)! 2 2
1
π 2 1
π 4 1 π 6
=1− x− + x− − x− + ···
2 2 4! 2 6! 2
(b) To test the convergence by ratio test,
(−1)k+1 2k+2
x − π2
ak+1 (2k + 2)!
lim = lim
k→∞ ak k→∞ (−1)k 2k
x − π2
(2k)!
π 2 1
= x− lim =0<1
2 k→∞ (2k + 2)(2k + 1)
∞
X (−1)k π 2k
∴ x− converges absolutly for all x ∈ (−∞, ∞) and r = ∞.
k=0
(2k)! 2
2
Example 7.8.4. Find Taylor series in power of x for e2x , ex and e−2x .
Solution:
∞
x
X 1 k 1 1
e = x = 1 + x + x2 + x3 + · · · for x ∈ (−∞, ∞)
k=0
k! 2! 3!
∞ ∞
2x
X 1 k
X 2k k 22 23
e = (2x) = x = 1 + 2x + x2 + x3 + · · ·
k=0
k! k=0
k! 2! 3!
∞ ∞
2
X 1 2 k X 1 2k 1 1
ex = (x ) = x = 1 + x2 + x4 + x6 + · · ·
k=0
k! k=0
k! 2! 3!
∞ ∞
−2x
X 1 k
X (−1)k 2k k 22 23
e = (−2x) = x = 1 − 2x + x2 − x3 + · · ·
k=0
k! k=0
k! 2! 3!
Taylor Interval of
series Convergence
∞
X 1 k 1 2 1
ex = x =1+x+ x + x3 + · · · (−∞, ∞)
k! 2! 3!
k=0
∞
X (−1)k 2k+1 1 3 1 5 1
sin x = x =x− x + x − x7 + · · · (−∞, ∞)
(2k + 1)! 3! 5! 7!
k=0
∞
X (−1)k π 2k 1
π 2 1 π 4
= x− =1− x− + x− − ··· (−∞, ∞)
(2k)! 2 2 2 4! 2
k=0
∞
X (−1) k 1 2 1 1
cos x = x2k =1− x + x4 − x6 + · · · (−∞, ∞)
(2k)! 2! 4! 6!
k=0
∞
X (−1)k+1 1 1
ln x = (x − 1)k = (x − 1) − (x − 1)2 + (x − 1)3 − · · · (0, 2]
k 2 3
k=1
∞
−1
X (−1)k 2k+1 1 1 1
tan x = x = x − x3 + x5 − x7 + · · · [−1, 1]
(2k + 1) 3 5 7
k=0
Exercise 7.8.1. Find the Maclaurin series (i.e. Taylor series about c = 0) and its
interval of convergence.
1
(a) f (x) = ln(1 + x) (b) f (x) =
1−x
Exercise 7.8.2. Find the Taylor series about c and detremine the interval of conver-
gence.
Exercise 7.8.3. Find Taylor series in the summary table and prove Theorem 7.8.1.
PARAMETRIC EQUATIONS
AND POLAR COORDINATES
8.1. PLANE CURVES AND PARAMETRIC EQUATIONS
x = x(t), y = y(t)
Example
√ 8.1.1. Sketch the plane curve defined by the parametric equations x =
t, y = t, for 0 ≤ t ≤ 4.
Solution:
y
t = 0, (x, y) = (0, 0) 3 6 t=4
s: s
(4, 2)
t = 1, (x, y) = (1, 1) 2 s1
s *
√
1 t=√2
t = 2, (x, y) = 2, 2
s
(2, 2)
√ -x
t = 3, (x, y) = 3, 3 t=0 1 2 3 4
√ (0, 0)
t = 4, (x, y) = 4, 4
Example 8.1.2. Find the parametric equation for the line segment from (0, 1) to
(5, 6).
∴ a = 0, c = 1.
∴ b = 5, d = 5.
(
x = 5t
We now have that , 0 ≤ t ≤ 1.
y = 1 + 5t
Example 8.1.3. Find the parametric equation for the portion of the parabola y =
x2 + 1 from (1, 2) to (2, 5).
Solution:
( (
x=t x = 3t 1 2
, 1 ≤ t ≤ 2, or , ≤t≤ .
y = t2 + 1 y = 9t2 + 1 3 3
Exercise 8.1.1. Sketch the plane curve defined by the parametric equations
( (
x = −1 + 2t x = 2 cos t
(a) ,1 ≤ t ≤ 2 (c) , 0 ≤ t ≤ 2π
y = 3t + 1 y = 3 sin t
( (
x = −1 + 2t x = −2t2
(b) ,0 ≤ t ≤ 2 (d) , −2 ≤ t ≤ 1
y = t2 − 1 y =2−t
Exercise 8.1.2. Find the parametric equation for the line segment
(a) y = x2 + 1 from (1, 2) to (3, 10) (c) y = 2 − x2 from (2, −2) to (0, 2)
2
(b) y = 2x2 − 1 from (0, −1) to (2, 7) (d) y = x + 1 from (1, 2) to (−1, 2)
Example 8.2.1. Find the slope of the tangent lines to the curve x = 2 cos t +
π
sin 2t, y = 2 sin t + cos 2t at (a) t = 0, (b) t = and (c) the point (0, −3).
4
dy
dy 2 cos t − 2 sin 2t
Solution: = dt =
dx dx −2 sin t + 2 cos 2t
dt
(a) t = 0
π
(b) t =
4
π π √
dy 2 cos t − 2 sin 2t 2 cos − 2 sin 2−2 √
4 2
dx
=
−2 sin t + 2 cos 2t
= π π = −√2 = 2 − 1.
t= π4 t= π4 −2 sin + 2 cos
4 2
dy 2 cos t − 2 sin 2t 0
= , By the L’Hôpital rule
dx t= 3π −2 sin t + 2 cos 2t t= 3π 0
2 2
3π
−2 sin t − 4 cos 2t −2 sin − 4 cos 3π
= = 2 =∞
−2 cos t − 4 sin 2t t= 3π
3π
2 −2 cos − 2 sin 3π
2
Proof: Divide the t-interval [a, b] into n subinterval of equal length, ∆t:
y
a = t0 < t1 < t2 < · · · < tn = b, 6
b−a t =s a = t0 st = b = t
where ti − ti−1 = ∆t = , n
n
for each i = 1, 2, 3, · · · , n.
-x
The arc length of the subinterval [ti−1 , ti ] is
p
si ≈ [x(ti ) − x(ti−1 )]2 + [y(ti ) − y(ti−1 )]2
s 2 2
x(ti ) − x(ti−1 ) y(ti ) − y(ti−1 )
= + ∆t
∆t ∆t
Example 8.2.2. Find the arc length of the curve x = 2 cos t, y = 2 sin t for 0 ≤ t ≤
2π.
Solution:
Z bp y
s= [x′ (t)]2 + [y ′ (t)]2 dt 6
Z a I
2π p
= [−2 sin t]2 + [2 cos t]2 dt rt = 0- x
0
Z 2π √ Z 2π t = 2π
= 4 dt = 2 dt = 4π.
0 0
Example 8.2.3. Find the arc length of the curve x = 2 cos t+sin 2t, y = 2 sin t+cos 2t
for 0 ≤ t ≤ 2π.
Solution:
Z bp
s= [x′ (t)]2 + [y ′ (t)]2 dt
a
Z 2π p
= [−2 sin t + 2 cos 2t]2 + [2 cos t − 2 sin 2t]2 dt
Z0 2π
√
= 8 − 8 sin t cos 2t − 8 cos t sin 2t dt
0
Z 2π p Z 2π s
3t 2 3t 3t 3t
= 8(1 − sin 3t) dt = 8 cos2 + sin − 2 sin cos dt
0 0 2 2 2 2
s 2
Z 2π
3t 3t y
= 8 cos − sin dt
0 2 2 6
t =s 5π t s= π6
Z 2π √
3t 3t
s
= 8 cos − sin dt 6
0 2 2
Z 5π √ t=0
6 3t 3t -x
=3 8 sin − cos dt
π
6
2 2
5π
√ 2 3t 3t 6
−3 st = 3π
= 3 8· − cos − sin = 16.
3 2 2 π
6
2
Exercise 8.2.1. Sketch the graph and find the slope of the given curves at the
indicated points
(
x = t2 − 2
(a) at (i) t = −1, (ii) t = 1, (iii) (−2, 0)
y = t3 − t
(
x = t3 − t
(b) at (i) t = −1, (ii) t = 1, (iii) (0, 4)
y = t4 − 5t2 + 4
(
x = 2 cos t
(c) at (i) t = π4 , (ii) t = π2 , (iii) (0, 3)
y = 3 sin t
(
x = 2 cos 2t
(d) at (i) t = π4 , (ii) t = π2 , (iii) (−2, 0)
y = 3 sin 2t
Exercise 8.2.2. Sketch the graph and find the arc length of the given curves.
( (
3
x = t − 4t x = 2 cos t
(a) , −2 ≤ t ≤ 2 (c) , 0 ≤ t ≤ 2π
y = t2 − 3 y = 3 sin t
( (
x = t3 − 4t x = 2 cos 2t
(b) , −2 ≤ t ≤ 2 (d) , 0 ≤ t ≤ 2π
y = t2 − 3t y = 3 sin 7t
s (r, θ)
6
r y = r sin θ
s Kθ - x
O x = r cos θ
(
x = r cos θ
(a) , (x, y) = (r cos θ, r sin θ)
y = r sin θ
( p
r 2 = x2 + y 2 , r = ± x2 + y 2
(b) y ,
tan θ = , θ = tan−1 xy
x
θ can be any angle for which tan θ = xy , while − π2 < tan−1 y
x
< π2 , so that
p y
(r, θ) = (+ x2 + y 2 , tan−1 + 2nπ), for x > 0
x
−1 y
p
= (− x2 + y 2 , tan + π + 2nπ),
x
−1 y
p
(r, θ) = (+ x2 + y 2 , tan + π + 2nπ), for x < 0
x
−1 y
p
= (− x2 + y 2 , tan + 2nπ),
x
where n is an integer.
Example 8.3.1. Find the rectangular coordinate for the polar point (2, −π/3).
Solution:
−π −π
(x, y) = (r cos θ, r sin θ) = 2 cos , 2 sin
3 3
√ !
1 − 3 √
= 2· , 2· = (1, − 3).
2 2
Example
8.3.2. Find the polar coordinate representations for the points (r, θ) =
π 7π
2, 6 and (r, θ) = 2, 6 with r = −2.
Solution:
π π 7π
2, = −2, + π + 2nπ = −2, + 2nπ
6 6 6
y
7π 7π π
2, = −2, + π + 2nπ = −2, + 2nπ 6 π
6 6 6 θ=
'$ s""
6
"
"K" 2, 6
π
" " -x
U"
s" &%
" 1 2
""
" 2, 7π
" 7π
6
θ= 6
Example 8.3.3. Find all polar coordinate representations for the rectangular point
(2, −2).
Solution:
( p √
r2 = x2 + y 2 , r = ± 22 + (−2)2 = ± 8
y .
tan θ = , θ = tan−1 −2
2
= tan−1 (−1) = − π4
x √ √
π π
∵ x = 2 > 0 ∴ (r, θ) = 8, − + 2nπ = − 8, − + π + 2nπ .
4 4
Example 8.3.4. Find all polar coordinate representations for the rectangular point
(−2, 2).
Solution:
p √
r2 = x2 + y 2 , r = ± (−2)2 + 22 = ± 8
.
tan θ = y , 2
θ = tan−1 −2 = tan−1 (−1) = − π4
x √ √
π π
∵ x = −2 < 0 ∴ (r, θ) = 8, − + π + 2nπ = − 8, − + 2nπ .
4 4
Exercise 8.3.1. Find the rectangular coordinate for the polar point
Exercise 8.3.2. Find all polar coordinate representations for the rectangular points
√
(a) (−2, −1) (c) (−2, 3)
(b) (0, 3) (d) (3, −4)
dy
dy f (θ) cos θ + f ′ (θ) sin θ dx
= dθ = provided that 6= 0 at (r, θ).
dx dx −f (θ) sin θ + f ′ (θ) cos θ dθ
dθ
Proof: Using the product rule
Example 8.4.1. Find the slope of the tangent line to the polar curve at the point
r = cos 2θ at θ = 0, θ = π4 and the point (−1, π2 ). y
x
−1 1
−1
Solution:
dy
dy f ′ (θ) sin θ + f (θ) cos θ −2 sin(2θ) sin θ + cos(2θ) cos θ
= dθ = ′ =
dx dx f (θ) cos θ − f (θ) sin θ −2 sin(2θ) cos θ − cos(2θ) sin θ
dθ
(a) θ = 0
dy 1
= does not exist.
dx θ=0 0
π
(b) θ =
4
(
n petals if n is odd
Note. Rose curves sin nθ, cos nθ :
2n petals if n is even
x x x x x
x x x x x
1 1
Ai ≈ r · r∆θ = [f (θi )]2 ∆θ
2 2
n n Z b
X X 1 2 1
A = lim Ai = lim [f (θi )] ∆θ = [f (θ)]2 dθ.
n→∞
i=1
n→∞
i=1
2 a 2
Proof: Divide the θ-interval [a, b] into n subinterval of equal length, ∆θ:
a = θ0 < θ1 < θ2 < · · · < θn = b,
b−a
where θi −θi−1 = ∆θ = , for each i = 1, 2, 3, · · · , n. The arc length from θ = θi−1
n
to θ = θi is
p
si ≈ [x(θi ) − x(θi−1 )]2 + [y(θi ) − y(θi−1 )]2
p
= [f (θi ) cos θi − f (θi−1 ) cos θi−1 ]2 + [f (θi ) sin θi − f (θi−1 ) sin θi−1 ]2
p
= f 2 (θi ) + f 2 (θi−1 ) − 2f (θi )f (θi−1 )[cos θi cos θi−1 + sin θi sin θi−1 ]
p
= f 2 (θi ) + f 2 (θi−1 ) − 2f (θi )f (θi−1 ) cos ∆θ
p
= [f (θi ) − f 2 (θi−1 )]2 + 2f (θi )f (θi−1 )[1 − cos ∆θ]
v "
u 2 #
u ∆θ
= t[f (θi ) − f 2 (θi−1 )]2 + 2f (θi )f (θi−1 ) 2 sin
2
p
≈ [f (θi ) − f 2 (θi−1 )]2 + [f (θi )]2 (∆θ)2
p
≈ [f ′ (θi )]2 + f 2 (θi )∆θ
X n X n
p
s = lim si = lim [f ′ (θi )]2 + [f (θi )]2 ∆θ
n→∞ n→∞
i=1 i=1
Z bp
= [f (θ)]2 + [f ′ (θ)]2 dθ.
a
Example 8.4.3. Sketch the graph and find the arc length of the curve r = 2−2 cos θ.
Solution:
Z bp
s= [f (θ)]2 + [f ′ (θ)]2 dθ y
a
Z 2π p 2
= (2 − 2 cos θ)2
dθ + (2 sin θ)2 1
0
Z 2π p Z 2π r x
θ −4 −3 −2 −1 1
= 8(1 − cos θ) dθ = 4 sin2 dθ
0 0 2 −1
Z 2π 2π
θ θ −2
=4 sin dθ = −8 cos = 16.
0 2 2 θ=0
Exercise 8.4.1. Sketch the graph and find the slope of the given curves at the
indicated points
Exercise 8.4.2. Sketch the graph and find the area of the indicated region.
Exercise 8.4.3. Sketch the graph and find the arc length of the given curve.
VECTORS
9.1. VECTORS
9.1 Vectors
Definition 9.1.1. Vectors
(a) Notation
s Q(x1 , y1 )
*
terminal point
−→
P Q
s
initial point
P (x0 , y0 )
Vectors in the Space: V3 = {hx, y, zi |x, y, z ∈ ℜ} ]
−→
P Q = hx1 − x0 , y1 − y0 , z1 − z0 i = ha1 , a2 , a3 i = a
s Q(x1 , y1 , z1 )
*
−→ terminal point
P Q
s
initial point
P (x0 , y0 , z0 )
(b) Magnitude:
q
kak = a21 + a22 for a ∈ V2
q
kak = a21 + a22 + a23 for a ∈ V3 .
0 = h0, 0i for a ∈ V2
0 = h0, 0, 0i for a ∈ V3
(f) Parallel:
Example 9.1.1. For vector a = h5, −2i and b = h2, 1i, compute k5a − 2bk .
Solution:
Example 9.1.2. Determine whether or not the given pair of vectors is parallel: (a)
a = h2, 3i and b = h4, 5i, (b) a = h2, 3i and b = h−4, −6i.
5
Solution: (a) If b = ca, h4, 5i = h2c, 3ci , then c = 2 and c = . This is a
3
contradiction and so a and b are not parallel.
(b) If b = ca, h−4, −6i = h2c, 3ci , then c = −2. This says that b = −2a and so a
and b are parallel.
Example 9.1.3. Find the distance between the points (1, −3, 5) and (5, 2, −3).
Solution:
1. a + b = b + a (commutativity)
2. a + (b + c) = (a + b) + c (associativity)
3. a + 0 = a (zero vector)
4. a + (−a) = 0 (additive inverse)
5. d(a + b) = da + db (distributive law)
6. (d + e)a = da + ea (distributive law)
7. (1)a = a (multiplication by 1) and
8. (0)a = 0 (multiplication by 0).
Proof:
(b) For any nonzero position vector a, a unit vector having the same direction as a
is given by
1
u= a.
kak
p p
Proof: (a) kcak = (ca1 )2 + (ca2 )2 = |c| a21 + a22 = |c| kak
1 1
(b) kuk = a = kak = 1.
kak kak
Example 9.1.4. Find a vector a with the magnitude 3 and in the same direction as
the vector v = h4, 1, −2i.
Solution:
1 1 4 1 −2
u= v = √ h4, 1, −2i = √ , √ , √
kvk 21 21 21 21
4 1 −2 12 3 −6
a = 3u = 3 √ , √ , √ = √ ,√ ,√
21 21 21 21 21 21
Exercise 9.1.3. Find a vector with the given magnitude and in the same direction
as the given vector v.
Example 9.2.1. For vector a = h5, −2, 1i and b = h2, 1, −3i, compute the dot
product a · b.
Solution:
a · b = h5, −2, 1i · h2, 1, −3i = 10 − 2 − 3 = 5.
Theorem 9.2.2. Let θ be the angle between nonzero vectors a and b. Then
a · b = kak kbk cos θ
Proof: (a) If a and b are not parallel, then
ka − bk2 = (kak sin θ)2 + (kbk − kak cos θ)2
= kak2 + kbk2 − 2kak kbk cos θ
i
P
PPP
PP
PP
kak kak sin θP ka − bk
PP
PP
PP
θ PP
I P
-
kak cos θ kbk − kak cos θ
ka − bk2 = (a − b) · (a − b)
=a·a−a·b−b·a+b·b
= kak2 − 2a · b + kbk2
= kak2 + kbk2 − 2kak kbk cos θ
∴ a · b = kak kbk cos θ
a·b −10
cos θ = =√ √
kak kbk 26 11
−1 −10
0 ≤ θ = cos √ √ ≤ π.
26 11
(a) 2 × 2
a1 a2
= a1 b 2 − a2 b 1 .
b1 b2
(b) 3 × 3
a1 a2 a3
b b b b b b
b 1 b 2 b 3 = a1 2 3 − a2 1 3 + a3 1 2 .
c2 c3 c1 c3 c1 c2
c1 c2 c3
Definition 9.3.2. For two vectors a = ha1 , a2 , a3 i and b = hb1 , b2 , b3 i in V3 , the cross
(vector) product of a and b is
i j k
a a a a a a
a × b = a1 a2 a3 = 2 3 i − 1 3 j + 1 2 k
b2 b3 b1 b3 b1 b2
b1 b2 b3
Example 9.3.1. For vectors a = h2, 1, 4i , b = h−1, 2, −1i, compute the cross prod-
uct a × b.
Solution:
i j k
1 4 2 4 2 1
a×b= 2 1 4 = i− j+ k = h−9, −2, 5i .
2 −1 −1 −1 −1 2
−1 2 −1
1. a × b = −(b × a) (anticommutativity)
2. a × (b + c) = a × b + a × c (distributive law)
(a + b) × c = a × c + b × c
3. (da) × b = d(a × b) = a × (db)
4. a · (b × c)=(a × b) · c (scalar triple product)
=(b × c) · a = b · (c × a)
=(c × a) · b
5. a × a = 0
6. a × 0 = 0 × a = 0
Proof:
i j k
a a a a a a
1. a × b = a1 a2 a3 = 2 3 i − 1 3 j + 1 2 k
b2 b3 b1 b3 b1 b2
b1 b2 b3
b2 b3 b b b b
=− i + 1 3 j − 1 2 k = −(b × a)
a2 a3 a1 a3 a1 a2
a1 a2 a3 a1 a2 a3 c1 c2 c3
4. a · (b × c) = b1 b2 b3 = − c1 c2 c3 = a1 a2 a3
c1 c2 c3 b1 b2 b3 b1 b2 b3
= c · (a × b) = (a × b) · c
Theorem 9.3.2. Let θ be the angle between nonzero vectors a and b in V3 . Then
(a) a × b is orthogonal to both a and b.
(b) ka × bk = kak kbk sin θ.
(c) a and b are parallel if and only if a × b = 0.
ka × bk2 = (a × b) · (a × b)
= [a2 b3 − a3 b2 ]2 + [a1 b3 − a3 b1 ]2 + [a1 b2 − a2 b1 ]2
= (a21 + a22 + a23 )(b21 + b22 + b23 ) − (a1 b1 + a2 b2 + a3 b3 )2
= kak2 kbk2 − (a · b)2
= kak2 kbk2 − kak2 kbk2 cos2 θ
= kak2 kbk2 (1 − cos2 θ)
= kak2 kbk2 sin2 θ
Theorem 9.3.3. The area of the parallelogram with two adjacent edges formed by
the vectors a and b.
A = ka × bk
Proof: 3
kak kak sin θ
A = kbk kak sin θ = ka × bk
|{z} | {z } Iθ -
base altitude kbk
Example 9.3.2. Find the area of the parallelogram with two adjacent edges formed
by the vectors a = h3, −1, 1i , and b = h−4, 0, 1i .
Solution:
i j k
−1 1 3 1 3 −1
a × b = 3 −1 1 = i− j+ k = h−1, −7, −4i
0 1 −4 1 −4 0
−4 0 1
√
A = ka × bk = k h−1, −7, −4i k = 66.
Theorem 9.3.4. The distance form the point Q, to the line through the points P
and R.
−→ −→
kP Q × P Rk
d= −→ .
kP Rk
Proof:
−→ sQ
−→ −→ kP Rk
d = kP Qk sin θ = kP Qk sin θ · −→
kP Rk −→
−→ −→ d = kP Qk sin θ
kP Q × P Rk
s Iθ -s
= −→ .
kP Rk
P R
Example 9.3.3. Find the distance form the point Q(1, 2, −1), to the line through
the points P (0, 1, 3) and R(5, −2, 1).
Solution:
−→ −→
P Q = h1, 1, −4i and P R = h5, −3, −2i
−→ −→
P Q × P R = h1, 1, −4i × h5, −3, −2i
i j k
= 1 1 −4 = h−14, −18, −8i
5 −3 −2
−→ −→ √
kP Q × P Rk k h−14, −18, −8i k 584
d= −→ = = √
kP Rk k h5, −3, −2i k 38
Theorem 9.3.5. The volume of the parallelepiped with three adjacent edges formed
by the vectors a, b and c.
V = |c · (a × b)|.
Proof: a×b
6
V =A·h
= ka × bk · |kck cos θ| c
| {z } | {z }
Area of base altitude
|c · (a × b)| h
= ka × bk · b
ka × bk θ *
A
= |c · (a × b)|. -
a
Example 9.3.4. Find the volume of the parallelepiped with three adjacent edges
formed by the vectors a = h−4, −1, 0i , b = h2, 2, −1i , and c = h1, 4, 2i .
Solution:
1 4 2
c · (a × b) = −4 −1 0
2 2 −1
−1 0 −4 0 −4 −1
=1 −4 +2 = −27
2 −1 2 −1 2 2
V = |c · (a × b)| = | − 27| = 27.
(c) Find the area of the parallelogram with two adjacent edges formed by the vectors
a and b.
Exercise 9.3.3. Find the distance form the point Q, to the line through the points
P and R.
(a) Q = (1, 2, 0), P = (6, −1, 2) and R = (3, −4, 1)
Exercise 9.3.4. Find the volume of the parallelepiped with three adjacent edges
formed by the vectors a, b and c.
(a) a = h−4, −1, 0i , b = h2, 2, −1i , and c = h3, 0, 2i .
Exercise 9.3.5. Prove Theorem 9.3.1, Theorem 9.3.2, Theorem 9.3.3 and Theorem
9.3.4
Example 9.4.2. Sketch a graph of the curve traced out by the endpoint of the
vector-valued function r(t) = ht + 1, t2 − 2i from t = −2 to t = 2.
Solution: The endpoint of all position vector r lie on the curve
y
( 3 6
s 2 s 2i
x = f (t) = t + 1 h−1, 2i
C: , −2 ≤ t ≤ 2 h3,
y = g(t) = t2 − 2 AK r(2)3
y = t2 − 2 = (x − 1)2 − 2. r(−2)A1
NA
A -x
−2 −1 A 1 2 3 4
−1 U A r(0)
A
AUs
−2
h1, −2i
Note. If an object moves along the curve C traced out by the endpoint of r, then r′
and r′′ are the velocity and acceleration vectors, respectively.
Definition 9.4.2. Limit of Vector-Valued Functions
For a vector-valued function r(t) = hf (t), g(t), h(t)i, the limit of r(t) as t approaches
a is given by
D E
lim r(t) = lim hf (t), g(t), h(t)i = lim f (t), lim g(t), lim h(t)
t→a t→a t→a t→a t→a
provided all of the indicated limits exist. If any one of the limits fails to exist, then
lim r(t) does not exist.
t→a
D √ E
Example 9.4.3. Find the limit lim t2 , e2t , t2 + 2t .
t→1
Solution:
D √ E D √ E D √ E
lim t2 , e2t , t2 + 2t = lim t2 , lim e2t , lim t2 + 2t = 1, e2 , 3
t→1 t→1 t→1 t→1
Example
9.4.4.
Determine all values of t at which the vector-valued function r(t) =
t+1 2
, t , 2t is continuous.
t−1
Solution:
{t|t 6= 1}
Solution:
Exercise 9.4.1. Sketch a graph of the curve traced out by the endpoint of the vector-
valued function
π
(a) r(t) = h3t, t2 i , t = 0, t = 1 (c) r(t) = hcos 2t, sin ti , t = 0, t = 2
π
(b) r(t) = ht2 , 2t − 1i , t = 0, t = 1 (d) r(t) = hcos t, sin 2ti , t = 0, t = 2
Exercise 9.4.3. Determine all values of t at which the given vector-valued function
is continuous.
3 (b) r(t) = htan t, cos t2 , 2t + 3i
(a) r(t) = , cos t, 2t
t
for any values of t for which the limit exists. When the limit exists for t = a, we say
that r is differentiable at t = a.
Theorem 9.5.1. Let r(t) = hf (t), g(t), h(t)i and suppose that the components f, g
and h are all differentiable for some value of t. Then
Proof:
Solution:
Theorem 9.5.2. Suppose that r(t) and s(t) are differentiable vector-valued functions,
f (t) is a differentiable scalar function and c is any scalar constant. Then
d
(a) [r(t) + s(t)] = r′ (t) + s′ (t)
dt
d
(b) [cr(t)] = cr′ (t)
dt
d
(c) [f (t)r(t)] = f ′ (t)r(t) + f (t)r′ (t)
dt
d
(d) [r(t) · s(t)] = r′ (t) · s(t) + r(t) · s′ (t)
dt
d
(e) [r(t) × s(t)] = r′ (t) × s(t) + r(t) × s′ (t)
dt
Proof: Let r(t) = hf1 (t), g1 (t), h1 (t)i and s(t) = hf2 (t), g2 (t), h2 (t)i
d d
(a) [r + s] = [hf1 , g1 , h1 i + hf2 , g2 , h2 i]
dt dt
d
= [hf1 + f2 , g1 + g2 , h1 + h2 i]
dt
= hf1′ + f2′ , g1′ + g2′ , h′1 + h′2 i
= hf1′ , g1′ , h′1 i + hf2′ , g2′ , h′2 i = r′ + s′
d d
(d) [r · s] = [hf1 , g1 , h1 i · hf2 , g2 , h2 i]
dt dt
d
= [f1 f2 + g1 g2 + h1 h2 ]
dt
= f1′ f2 + f1 f2′ + g1′ g2 + g1 g2′ + h′1 h2 + h1 h′2
= [f1′ f2 + g1′ g2 + h′1 h2 ] + [f1 f2′ + g1 g2′ + h1 h′2 ]
= r′ · s + r · s ′
d
Example 9.5.2. For f (t) = 3t3 + 2t, and r(t) = h7tet , cos t3 , te2 i, find [f (t)r(t)].
dt
Solution:
d d
[f (t)r(t)] = [(3t3 + 2t) 7tet , cos t3 , te2 ]
dt dt
=(9t2 + 2) 7tet , cos t3 , te2 +
(3t3 + 2t) 7et + 7tet , −3t2 sin t3 , e2
Example 9.5.3. For r(t) = hln t, t2 , 3t + 1i, and s(t) = h3t , t2 − 1, te2 i, find
d
[r(t) · s(t)].
dt
Solution:
d
[r(t) · s(t)] =r′ (t) · s(t) + r(t) · s′ (t)
dt
d
= ln t, t2 , 3t + 1 · 3t , t2 − 1, te2
dt
d t 2
+ ln t, t2 , 3t + 1 · 3 , t − 1, te2
dt
1
= , 2t, 3 · 3t , t2 − 1, te2 + ln t, t2 , 3t + 1 · 3t ln 3, 2t, e2
t
3t
= + 2t3 − 2t + e2 3t + 3t ln t ln 3 + 2t3 + e2 (3t + 1)
t
D E d
t2
Example 9.5.4. For r(t) = 5 , 3t , and s(t) = hsec t, sin ti, find [r(t) × s(t)].
dt
Solution:
d
[r(t) × s(t)] =r′ (t) × s(t) + r(t) × s′ (t)
dt
d D t2 E D 2 E d
= 5 , 3t × hsec t, sin ti + 5t , 3t × hsec t, sin ti
dt
D 2 E D 2 Edt
t t
= 5 2t ln 5, 3 × hsec t, sin ti + 5 , 3t × hsec t tan t, cos ti
R′ (t) = r(t)
Definition 9.5.3. If R(t) is any antiderivative of r(t) = hf (t), g(t), h(t)i, then
Z
Example 9.5.5. Evaluate the indefinite integral cos t, 2t2 + 3, e4t dt.
Solution:
Z
2 4t 2 3 e4t
cos t, 2t + 3, e dt = sin t + c1 , t + 3t + c2 , + c3
3 4
2 3 e4t
= sin t, t + 3t, +c
3 4
Z 4
t2
Example 9.5.6. Evaluate the definite integral sin t, dt.
1 3
Solution:
Z 4 4
2 t3
sin t, t /3 dt = − cos t, = h− cos 4 + cos 1, 7i
1 9 t=1
(a) r(t) = h3t3 , sin t2 , te3t i (b) r(t) = h3t3 + 2t, sin(t2 + 3t), e3 t3 i
Example 9.6.1. Find the arc length of the curve traced out by the endpoint of the
vector-valued function r = h2t, ln t, t2 i, for 1 ≤ t ≤ e.
Solution:
Z bp
s= [f ′ (t)]2 + [g ′ (t)]2 + [h′ (t)]2 dt
a z
Z e
s 2 6
1
= 22 + + (2t)2 dt
1 t
s
Z er Z e 2
1 1
= 4 + 2 + 4t dt =2 + 2t dt y
t t :
1 1
Z e e
1 t2
= + 2t dt = ln |t| + 2 PP
t 2 1 PP
1 PP
Pq
P
= (ln e + e2 ) − (ln 1 + 1) = e2 x
Ti
y
:
PP
s
PP 1
s
T
PP i−1
Pq P
x
Theorem 9.6.2. The curvature of the curve given by the vector-valued function r(t)
is
kT′ (t)k kr′ (t) × r′′ (t)k
κ(t) = = .
kr′ (t)k kr′ (t)k3
r′ (t)
where T(t) = kr′ (t)k
.
ds
p
Proof: Since dt
= [f ′ (t)]2 + [g ′ (t)]2 + [h′ (t)]2 = kr′ (t)k, so that
dT
dT dt kT′ (t)k
κ(t) = = ds
= .
ds dt
kr′ (t)k
kT′ (t)k
Solution with Method 1: κ(t) =
kr′ (t)k
r′ (t) = 2, 2t, −t2
√
kr′ (t)k = 4 + 4t2 + t4 = t2 + 2
r′ (t) h2, 2t, −t2 i
T(t) = ′ =
kr (t)k t2 + 2
h0, 2, −2ti · (t2 + 2) − h2, 2t, −t2 i · 2t
T′ (t) =
(t2 + 2)2
h−4t, 4 − 2t2 , −4ti
=
(t2 + 2)2
√
16t2 + 16 − 16t2 + 4t4 + 16t2 2
kT′ (t)k = 2 2
= 2
(t + 2) t +2
′
kT (t)k 2 1
κ(t) = ′ = 2 2
, κ(0) = .
kr (t)k (t + 2) 2
Exercise 9.6.1. Find the arc length of the curve traced out by the of the vector-
valued function
Exercise 9.6.2. Using two different methods to find the curvature of the curve at
the given point.
PARTIAL DIFFERENTIATION
10.1. FUNCTIONS OF SEVERAL VARIABLES
z = f (x1 , x2 , · · · , xn ),
Example
√ 10.1.1. Find the domain and range of the function z = f (x, y) =
x + 3y − 2 and evaluate the value of f at the point (2, 1).
R = {z|z ≥ 0}
√ √ √
(c) f (2, 1) = x + 3y − 2 = 2+3·1−2= 3.
Example 10.1.2. Find the domain and range of the function z = f (x, y) = cos(x2 +
y 2 ) and evaluate the value of f at the point (−2, 1).
R = {z| − 1 ≤ z ≤ 1}
Exercise 10.1.1. Find the domain and range of the function f and evaluate the
value of f at the given point.
(a) f (x, y) = 1
, (3, 1) (c) f (x, y) = sin2 x + cos2 y, (π, 0)
x+y
eyz
(b) f (x, y) = ln(2 + x + y), (−3, 7) (d) f (x, y, z) = z−x2 −y 2
, (2, −3, 1)
lim f (x, y) = L,
(x,y)→(a,b)
y z y
6
'$
6 6
P5'$
P1
C s
f P7
δ Cs (x, y) s P
@
Rsf (x, y)
L+ε @?
R
P3 -
&% &%
4
(a, b) 6 I
@
@
P8 P6
L P2
-x -x
L−ε
ex+y−z
Example 10.2.1. Compute the limit lim .
(x,y,z)→(1,1,2) x − z
Solution:
ex+y−z e0
lim = = −1.
(x,y,z)→(1,1,2) x − z −1
y
Example 10.2.2. Compute the limit lim .
(x,y)→(1,0) x + y − 1
Solution:
y
P1 : x = 1 lim = lim 1 = 1
(1,y)→(1,0) 1 + y − 1 y→0
0
P2 : y = 0 lim = lim 0 = 0 6= 1
(x,0)→(1,0) x + 0 − 1 x→1
y
∴ lim does not exist.
(x,y)→(1,0) x + y − 1
xy 2
Example 10.2.3. Evaluate lim .
(x,y)→(0,0) x2 + y 4
Solution:
0
P1 : x = 0 lim = lim 0 = 0
(0,y)→(0,0) 0 + y 4 y→0
0
P2 : y=0 lim = lim 0 = 0
(x,0)→(0,0) x2 + 0 x→0
x3 x
P3 : y=x lim 2 4
= lim =0
(x,x)→(0,0) x + x x→0 1 + x2
y 2 (y 2 ) y4 1
P4 : x = y2 lim 2 2 4
= lim 4
= 6= 0
(y ,y)→(0,0) (y ) + y
2 y→0 2y 2
2
xy
∴ lim does not exist.
(x,y)→(0,0) x + y 4
2
Theorem 10.2.1. Suppose that |f (x, y) − L| ≤ g(x, y) for all (x, y) in the interior of
some circle centered at (a, b), except possibly at (a, b). If lim g(x, y) = 0, then
(x,y)→(a,b)
lim f (x, y) = L.
(x,y)→(a,b)
Proof: If lim g(x, y) = 0, given any ε > 0 there exists a δ > 0 such that
(x,y)→(a,b)
p
|g(x, y) − 0| = |g(x, y)| < ε whenever 0 < (x − a)2 + (y − b)2 < δ
|f (x, y) − L| ≤ g(x, y) ≤ |g(x, y)| < ε
p
|f (x, y) − L| < ε whenever 0 < (x − a)2 + (y − b)2 < δ
∴ lim f (x, y) = L.
(x,y)→(a,b)
xy 2
Example 10.2.4. Show that the limit lim exist.
(x,y)→(0,0) x2 + y 2
Proof:
xy 2 0
lim 2 2
= lim = 0,
(x,0)→(0,0) x + y (x,0)→(0,0) x2
xy 2 0
lim 2 2
= lim =0
(0,y)→(0,0) x + y (0,y)→(0,0) y 2
xy 2 xy 2
∵ |f (x, y) − L| = 2 −0 ≤ = |x| and lim |x| = 0
x + y2 y2 (x,y)→(0,0)
xy 2
∴ lim =0
(x,y)→(0,0) x2 + y 2
Definition 10.2.2. Suppose that f (x, y) is defined in the interior of a circle centered
at (a, b). We say that f is continuous at (a, b) if lim f (x, y) = f (a, b).
(x,y)→(a,b)
Example 10.2.5. Determine all points at which the function f (x, y) = ln(x2 +y 2 −5)
is continuous.
Solution:
ex+y−z 4xz
(a) lim . (c) lim .
(x,y,z)→(1,0,2) y 2
+ z2
(x,y,z)→(1,1,2) x − z
cos xy exy
(b) lim (d) lim
(x,y)→(π,2) y 2 + 1 (x,y)→(−3,0) x2 + y 2
xy 2 3x3
(a) lim (c) lim
(x,y)→(0,0) x2 + y 2 (x,y,z)→(0,0,0) x2 + y 2 + z 2
x2 y x2 y 2 z 2
(b) lim (d) lim
(x,y)→(0,0) x2 + y 2 (x,y,z)→(0,0,0) x2 + y 2 + z 2
Exercise 10.2.3. Show that the indicated limit does not exist.
3x2 x2 yz
(a) lim (c) lim
(x,y)→(0,0) x2 + y 2 (x,y,z)→(0,0,0) x4 + y 4 + z 4
2x2 y xyz
(b) lim (d) lim
(x,y,z)→(0,0,0) x + y 3 + z 3
3
(x,y)→(0,0) x4 + y 2
Example 10.3.3. Find the partial derivative fyxy of f (x, y) = 2 sec−1 (x3 ) − 4xy 2 +
x ln 3y.
Solution:
x
fy = −8xy +
y
1
fyx = −8y +
y
1
fyxy = −8 − 2
y
(a) f (x, y) = cos−1 xy, (1, 0) (c) f (x, y) = tan−1 xy , (1, −2)
xy
(b) f (x, y) = 6xy
, (1, 1) (d) f (x, y) = x−y
, (2, −2)
4x2 +5y 2
dx dy
dt dt
t t
Proof:
dz =fx (x, y)dx + fy (x, y)dy
dz dx dy
=fx (x, y) + fy (x, y) .
dt dt dt
Example 10.4.2. Use the chain rule to find the derivative g ′ (t) where
g(t) = f (x(t), y(t)), f (x, y) = x2 y + sin y, x(t) = t3 + 1, y(t) = e2t .
Solution:
∂f dx ∂f dy
g ′ (t) = +
∂x dt ∂y dt
= 2xy · 3t + (x2 + cos y) · 2e2t
2
= 2(t3 + 1)e2t · 3t2 + (t3 + 1)2 + cos(e2t ) · 2e2t
s
∂z ∂f ∂x ∂f ∂y z = f (x, y)
= +
∂s ∂x ∂s ∂y ∂s JJ
∂z ∂f ∂x ∂f ∂y ∂f
J ∂f
= + J
∂t ∂x ∂t ∂y ∂t ∂x ∂y
J
J
xs ys
A A
∂x A ∂x ∂y A ∂y
Comments: A ∂t A ∂t
∂s ∂s
A A
dz =fx (x, y)dx + fy (x, y)dy A A
dz dx dy s t s t
=fx (x, y) + fy (x, y)
dt dt dt
∂z ∂x ∂y
=fx (x, y) + fy (x, y)
∂t ∂t ∂t
∂z ∂x ∂y
=fx (x, y) + fy (x, y) .
∂s ∂s ∂s
∂g ∂g
Example 10.4.3. Use the chain rule to find the derivative ∂u and ∂v where
g(u, v) = f (x(u, v), y(u, v)), f (x, y) = 4x2 y 3 , x(u, v) = u3 − v sin u, y(u, v) = 4u2 .
Solution:
∂g ∂f ∂x ∂f ∂y
= +
∂u ∂x ∂u ∂y ∂u
= (8xy 3 )(3u2 − v cos u) + (12x2 y 2 )(8u)
= [8(u3 − v sin u)(4u2 )3 ](3u2 − v cos u) + [12(u3 − v sin u)2 (4u2 )2 ](8u)
∂g ∂f ∂x ∂f ∂y
= +
∂v ∂x ∂v ∂y ∂v
= (8xy )(− sin u) + (12x2 y 2 )(0)
3
∂w ∂x ∂y ∂z ∂w ∂x ∂y ∂z
= Fx + Fy + Fz = Fx + Fy + Fz
∂x ∂x ∂x ∂x ∂y ∂y ∂y ∂y
∂z ∂z
0 = Fx + Fz 0 = Fy + Fz
∂x ∂y
∂z Fx ∂z Fy
=− for Fz 6= 0; =− for Fz 6= 0;
∂x Fz ∂y Fz
Exercise 10.4.2. Use the chain rule to find the indicated derivative(s)
2
(a) g ′ (t) where g(t) = f (x(t), y(t)), f (x, y) = ex y + sin y, x(t) = t3 + 1, y(t) = e2t
(b) g ′ (t) where g(t) = f (x(t), y(t)), f (x, y) = ln xy 2 +sin(xy), x(t) = 2t3 +t, y(t) =
e2t
∂g ∂g
(c) ∂u
and ∂v where g(u, v) = f (x(u, v), y(u, v)), f (x, y) = 4x2 y 3 , x(u, v) = u3 −
v sin u, y(u, v) = 4u2 .
∂g ∂g
(d) and ∂v where g(u, v) = f (x(u, v), y(u, v)), f (x, y) = xy 3 − 4x2 , x(u, v) =
∂u
u2
√
e , y(u, v) = v 2 + 1 sin u
∂z ∂z
Exercise 10.4.3. Use implicit differentiation to find ∂x
and ∂y
.
(a) F (x, y, z) = xyz − 4y 2 z 2 + cos(xy) = 0
(b) F (x, y, z) = 3y 2 z − e4x cos(3z) − 3y 2 = 0.
Example
D √ 10.5.1.
E For f (x, y) = x2 y − 4y 3 , compute Du f (2, 1) for the directions (a)
u = 12 , 23 and (b) u in the direction from (2, 1) to (4, 0).
Solution:
fx (x, y) = 2xy,
fy (x, y) = x2 − 12y 2
D √ E
(a) For u = 12 , 23
h4 − 2, 0 − 1i h2, −1i 2 1
u= = = √ , −√
k h4 − 2, 0 − 1i k k h2, −1i k 5 5
Du f (a, b) = fx (2, 1)u1 + fy (2, 1)u2
2 1 16
= 4 · √ − 8 · −√ =√ .
5 5 5
Solution:
▽f (x, y) = 2x + 4y 2 , 8xy − 5y 4
Du f (x, y) = ∇f (x, y) · u.
Proof:
Example 10.5.3. Using the gradient of f (x, y) = x2 y−4y 2 to compute the directional
derivative of f (x, y) at the point (2, −1) in the direction of the vector h1, 2i.
Solution:
∇f (x, y) = 2xy, x2 − 8y
∇f (2, −1) = h−4, 12i
h1, 2i 1 2
u= √ = √ , √
5 5 5
1 2 20
Du f (2, −1) = h−4, 12i · √ , √ =√
5 5 5
Exercise 10.5.1. Compute the directional derivative of f at the given point in the
direction of the indicated vector. D √ E
(a) f (x, y) = x2 y + 4y 2 , (2, 1), u = 21 , 23
D E
3 2 1 √1
(b) f (x, y) = x y − 4y , (2, −1), u = √
2
, 2
p
(c) f (x, y) = x2 + y 2 , (3, −4), u in the direction of h3, −2i
(d) f (x, y) = cos(2x − y), (π, 0), u in the direction from (π, 0) to (2π, π)
Exercise 10.5.2. Find the gradient of the given function at the indicated point.
s
O XX
X XX
absolute
XXminimum
s9
XXz
6 Xy
local minimum
+
x
Definition 10.6.3. The point (a, b) is a critical number of the function f (x, y) if
(a, b) is in the domain of f and one of the following is true.
Theorem 10.6.1. If f (x, y) has a local extremum at (a, b), then (a, b) must be a
critical number of f .
x2 y3
Example 10.6.1. Find all critical numbers of f (x, y) = xe− 2 − 3 +y .
Solution:
x2 y3 x2 y3 x2 y3
fx (x, y) = e− 2 − 3 +y + x(−x)e− 2 − 3 +y = (1 − x2 )e− 2 − 3 +y = 0
⇒ x = ±1
x2 y3
fy (x, y) = x(−y 2 + 1)e− 2 − 3 +y = 0
⇒ x = 0 or y = ±1.
The critical numbers are (1, 1), (−1, 1), (1, −1) and (−1, −1).
(a) If D(a, b) > 0 and fxx (a, b) > 0, then f has a local minimum at (a, b).
(b) If D(a, b) > 0 and fxx (a, b) < 0, then f has a local maximum at (a, b).
Comments:
(
fxx (a, b) > 0 and fyy (a, b) > 0 a local minimum at (a, b)
D(a, b) > 0
fxx (a, b) < 0 and fyy (a, b) < 0 a local maximum at (a, b)
(
fxx (a, b) > 0 and fyy (a, b) < 0 a saddle point at (a, b)
D(a, b) < 0
fxx (a, b) < 0 and fyy (a, b) > 0 a saddle point at (a, b)
z
6
4 saddle point
3
2
1
O
1 XX1XX
2 3
XXX4 5
2
XX z
Xy
3
4
x+
Example 10.6.2. Locate and classify all critical numbers for f (x, y) = 2x2 −y 3 −2xy.
Solution:
fx = 4x − 2y = 0, ⇒ y = 2x
2
fy = −3y − 2x = 0
= −12x2 − 2x = −2x(6x + 1) = 0
1
⇒ x = 0 or x = −
6
1 1
f have two critical numbers(0, 0) and − ,− .
6 3
Exercise 10.6.1. Locate and classify (use second derivatives test) all critical numbers
MULTIPLE INTEGRALS
11.1. DOUBLE INTEGRALS
provided the limit exists and is the same for every choice of the evaluation points
(ui , vi ) in Ri , for i = 1, 2, · · · , n. When this happens, we say that f is integrable over
R. z
6
y
z = f (x, y) 6
d
Ri
O XX c
XX
a X XX d c
XXXX XXzXy
X
b
XX R -x
XXX
+
O a b
x ZZ ZZ
Note. Area of R: A = 1 dA and Volume V = f (x, y) dA.
R R
Proof for dA = dydx: For each fixed value of x, the area of the cross section is the
area under the curve z = f (x, y) for c ≤ y ≤ d, which is given by
Z d
z
A(x) = f (x, y) dy 6
ZcZ
V = f (x, y) dA z = f (x, y)
R
Z b
= A(x) dx
a
Z bZ d O XX c
= f (x, y) dy dx. a A(x) XXXXX d
XXz
a
| c {z XXXXX Xy
} b
A(x) XX R
XXX
+
x
Proof for dA = dxdy: For each fixed value of y, the area of the cross section is the
area under the curve z = f (x, y) for a ≤ x ≤ b, which is given by
Z b
A(y) = f (x, y) dx z
ZZ a 6
V = f (x, y) dA
Z
R z = f (x, y)
d
= A(y) dy
c
Z dZ b
O XX c
= f (x, y) dx dy. X
c
| a {z
a
A(y)XXXX d XXz
XX Xy
XXX
}
A(y) b
XXX R
XX
+
x
ZZ
Example 11.1.1. Evaluate (6x2 + 4xy 3 ) dA, where R = {(x, y)|0 ≤ x ≤ 2, 1 ≤
R
y ≤ 4}.
Solution:
ZZ Z 4 Z 2
2 3
(6x + 4xy ) dA = (6x2 + 4xy 3 ) dx dy
R
Z1 4 0
2
= 2x3 + 2x2 y 3 x=0
dy
1
Z 4
= 16 + 8y 3 dy
1
4
= (16y + 2y 4 ) y=1
= 558.
provided the limit exists and is the same for every choice of the evaluation points
(ui , vi ) in Ri , for i = 1, 2, · · · , n. When this happens, we say that f is integrable over
R. z
6
y
z = f (x, y) 6
d
R
O XX c
XXX
a XXX
d
Xz
Xy c
b
R -x
+
O a b
x
Theorem 11.1.2. Fubini’s Theorem (Stronger Form)
Suppose that f (x, y) is continuous on a region R ⊂ ℜ2 .
(a) If R is defined by R = {(x, y)|a ≤ x ≤ b and g1 (x) ≤ y ≤ g2 (x)}, with g1 and
g2 continuous on [a, b], then
ZZ Z b Z g2 (x)
f (x, y) dA = f (x, y) dy dx.
R a g1 (x)
Proof for (a): For each fixed value of x, the area of the cross section is the area under
the curve z = f (x, y) for g1 (x) ≤ y ≤ g2 (x), which is given by
Z g2 (x)
A(x) = f (x, y) dy
g1 (x)
ZZ Z b Z bZ g2 (x)
V = f (x, y) dA = A(x) dx = f (x, y) dy dx.
R a a g1 (x)
| {z }
A(x)
z
6
y
r
z = f (x, y) 6 y = g2 (x)
O XX c
r
a A(x) XXXXX d
XXz
X
y
b y = g1 (x)
R -x
+
O a b
x
Proof for (b): For each fixed value of y, the area of the cross section is the area under
the curve z = f (x, y) for h1 (y) ≤ x ≤ h2 (y), which is given by
Z h2 (y)
A(y) = f (x, y) dx
h1 (y)
ZZ Z h2 (y) Z d Z h2 (y)
V = f (x, y) dA = A(y) dy = f (x, y) dx dy.
R h1 (y) c h1 (y)
| {z }
A(y)
z
6
y
z = f (x, y) 6
d
x = h1 (y)r r x = h (y)
R
O XX c
X
A(y)XXXXX
2
a d
Xz
Xy c
b R
-x
+
O
x
2
Example
Z Z 11.1.2. Let R be the region bounded by the graphs of x = y and x = 2−y.
Write f (x, y) dA as the iterated integrals with dA = dxdy and dA = dydx.
R
Solution: y
3 6
2
x=y =2−y x = y2
2
2
y +y−2=0 @
1 @
y = 2, −1 @
@ -x
−2 −1 1 @
2 3 4
−1 R @@
ZZ Z 1 Z 2−y −2 @
f (x, y) dA = f (x, y) dx dy @ x=2−y
R −2 y2
Z Z √ Z Z
1 x 4 2−x
= √
f (x, y) dy dx + √
f (x, y) dy dx
0 − x 1 − x
√
Example 11.1.3. Z ZLet R be the region bounded by the graphs of y = x, x = 0 and
y = 3. Evaluate (2xy 2 + 2y sin x) dA.
R
ZZ
(c) (2x − y) dA, where R is bound by y = −3 and y = 1 − x2
R
ZZ
2
(d) ex dA, where R is bound by y = x2 and y = 1
R
y y θ = θ2
6
θ=β 6
∆r r = r2
∆A
θ = θ1
R " "
θ = α r = r1 ""
"
r = g2 (θ) ∆θ"""
k "
""
r = g1 (θ) - "
-
x x
Proof:
∆θ ∆θ 1
∆A = πr22 · − πr12 · = (r22 − r12 )∆θ
2π 2π 2
1
= (r2 + r1 )(r2 − r1 )∆θ
2
= r∆r∆θ
1
where r = (r2 + r1 ), ∆r = r2 − r1 .
2
Xn n
X
V = lim Vi = lim f (ri , θi ) ∆Ai
n→∞ n→∞ | {z } |{z}
i=1 i=1 area of base
height
n
X
= lim f (ri , θi )ri ∆ri ∆θi
n→∞
i=1
Z β Zg2 (θ)
= f (r, θ) r dr dθ
α g1 (θ)
Example 11.2.1. Find the area of the region bounded by the curves r = 2 − 2 sin θ.
Solution:
ZZ Z 2π Z 2−2 sin θ
A= dA = r dr dθ
R 0 0
Z 2π 2 2−2 sin θ
y
r
= dθ 1
0 2 r=0
Z x
1 2π −3 −2 −1 1 2 3
= [(2 − 2 sin θ)2 − 0] dθ
2 0 −1
Z 2π R
−2
= (2 − 4 sin θ + 2 sin2 θ) dθ
Z0 2π −3
= [2 − 4 sin θ + (1 − cos 2θ)] dθ −4
0
2π
1
= 3θ + 4 cos θ − sin 2θ = 6π
2 0
√ √
Solution: R = {(x, y)| − 2 ≤ x ≤ 2 and − 4 − x2 ≤ y ≤ 4 − x2 } is a circle of
radius centered at the origin.
Z Z √ Z Z y
2 4−x2 p 2π 2 √ 6
√
x2 + y 2 dy dx = r2 r dr dθ
−2 − 4−x2 0 0
r = 2
2
Z 2π R
r3
= dθ M θ - x
0 3 r=0 2
Z 2π
8 16π
= dθ =
0 3 3
Exercise 11.2.1. Find the area of the region bounded by the curves
Area in xy-plane: dA = A
Z ZR ZZ q
Surface area in space: dS = [fx (x, y)]2 + [fy (x, y)]2 + 1 dA
R R
Proof: Let Ti be the portion of the tangent plane lying above Ri . To find the area of
the parallelogram ∆Ti note that its sides are given by the vectors
ai =< ∆xi , 0, fx (xi , yi )∆xi >,
bi =< 0, ∆yi , fy (xi , yi )∆yi >,
i j k
ai × bi = ∆xi 0 fx (xi , yi )∆xi
0 ∆yi fy (xi , yi )∆yi
=< −fx (xi , yi )∆xi ∆yi , −fy (xi , yi )∆xi ∆yi , ∆xi ∆yi >,
q
∆Ti = kai × bi k = [fx (xi , yi )]2 + [fy (xi , yi )]2 + 1 ∆xi ∆yi
| {z }
∆Ai
n
X n q
X
S = lim ∆Ti = lim [fx (xi , yi )]2 + [fy (xi , yi )]2 + 1 ∆Ai
k∆|→0 k∆k→0
Z Z qi=1 i=1
Example 11.3.1. Find the surface area of that portion of the surface z = y 2 + 4x
lying above the triangular region R in the xy-plane with vertices at (0, 0), (0, 2) and
(2, 2). y
z 6
6 3
hhh 4
hhhh
2 s s
3 (0, 2)
z = y 2 + 4x (2, 2)
2 (((
(((( R
1
Os
1 y=x
s2 3
1 XX1XX
2 R XXX4XX
s s
5
3 z
Xy -x
4 (0, 0) 1 2 3
+
x
Solution:
ZZ q
S= [fx (x, y)]2 + [fy (x, y)]2 + 12 dA
R
ZZ p Z 2Z yp
= 2 2
4 + 4y + 1 dA = 4y 2 + 17 dx dy
Z 2Rp y
0
Z 2 0p
= 4y 2 + 17 x dy = 4y 2 + 17 y dy
0 x=0 0
2
1 2 3 2 1 3 3
= (4y + 17) 2 · = 33 − 17
2 2
8 3 y=0 12
Example 11.3.2. Find the surface area of that portion of the paraboloid z = 1 +
x2 + y 2 that lies below the plane z = 5.
z
6 z = 1 + x2 + y 2
8
6 y
=5
4 z 6
2 r = 2
R
O M θ -x
1 XX1XX
2 3
XXX4 5 2
2 XX
3 z
Xy
4
x+
Solution:
z = 5 = 1 + x2 + y 2 , ⇒ x2 + y 2 = 4
ZZ q
S= [fx (x, y)]2 + [fy (x, y)]2 + 1 dA
R
ZZ p
= 4x2 + 4y 2 + 1 dA
R
Z 2π Z 2√
= 4r2 + 1 rdr dθ
0 0
Z r=2
1 2π 2 2 3
= (4r + 1) 2 dθ
8 0 3 r=0
Z 2π
1 3 3
= (17 2 − 1 2 ) dθ
12 0
π 3
= (17 2 − 1)
6
(d) The portion of the surface z = 3x + y lying above the triangular region R in
the xy-plane with vertices at (0, 0), (2, 2) and (2, 0).
provided the limit exists and is the same for every choice of the evaluation points
(ui , vi , wi ) in Qi , for i = 1, 2, · · · , n. When this happens, we say that f is integrable
over Q.
z z
6 6
4 XX Q 4 XX Q
XX
XXXX XXX
XX X X X XXX
X 3
X XX XX 3
XX XX XX
X X XX X
X X
XX X XXX X X
X
X X X
2X X X
XXX 2
X X X X XXX
XXX XX X X XX
X
X
XXXXX 1XXX 1
XXXXXXX
X X
XXX1 O
XXX 1
XXXX 2
3
O XX1 2
1 XX XX 3
XX XXXXX X
X
4 X
X XX4 5
2XX X X X 5
XX 2 XXXz
3XXXXXXXX z
Xy XX
3 XXX X
X Xy
4 XXX 4
XXX
+
x x+
∆Vi = ∆zi ∆yi ∆xi
ZZZ
Note. The volume of box Q: V = 1 dV.
Q
ZZZ
Example 11.4.1. Evaluate 2xey sin z dV , where Q = {(x, y, z)|1 ≤ x ≤ 2, 0 ≤
Q
y ≤ 1 and 0 ≤ z ≤ π}.
Solution:
ZZZ Z π Z 1 Z 2
y
2xe sin z dV = 2xey sin z dx dy dz
Q 0 0 1
Z π Z 1 2
2x2
= ey sin z dy dz
0 0 2 x=1
Z π Z 1
= 3ey sin z dy dz
0 0
Z π
=3 ey sin z|1y=0 dz
0
1 π
= 3(e − 1)(− cos z) z=0
= 6(e − 1).
provided the limit exists and is the same for every choice of the evaluation points
(ui , vi , wi ) in Qi , for i = 1, 2, · · · , n. When this happens, we say that f is integrable
over Q.
z z
6 6
4 XX 4
XX
XXXX
XX X X X
X 3
X X XX XX 3
XX X
X X XX X X
XX X
XXX XXX X X
X
X X X2 X X 2
X X X
XXXXX X XXX
X
XXX X X
1XX
X
1
XXXXXXXX Q Q
XXXX X
1X
X
OXX
XX
1
XXX2
3
O XX1 2
1 XX XX 3
XX X X
X
XX XX
2X X4
XX 5 2 X
X XXX4 5
XX
3XXXXXXXX XzXy 3 X X z
Xy
4 XXX 4
x+ x+
∆Vi = ∆zi ∆yi ∆xi
ZZZ
Example 11.4.2. Evaluate 6xy dV , where Q is bounded by x = 0, y = 0, z =
Q
0 and 2x + y + z = 4. z
y
4 s
6
6
4 s
J
3 JJ A
2x + y + z = 4 A
2 J
J A
A
1 J 2 2x + y = 4
Os
J R AA
1 J
1 XXX A
s X5
XX 2 3J 4
s
R XX XX
2 XXJX As -x
3 XzXy 2 4
4
+
x
De-Yu Wang CSIE CYUT 198
11.5. TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL
COORDINATES
Solution:
ZZZ ZZ Z g2 (x,y)
f (x, y, z) dV = f (x, y, z) dz dA
Q R g1 (x,y)
ZZ Z 4−2x−y
= 6xy dz dA
R 0
Z 2 Z 4−2x
= 6xy(4 − 2x − y) dy dx
0 0
Z 2 y=4−2x
y2 2y
2
y3
= 6 4x − 2x −x dx
0 2 2 3 y=0
Z 2 Z 0
3
= 8x(2 − x) dx = − 8(2 − u)u3 du (u = 2 − x)
0 2
Z 2 2
3 8u5 4
= 8(2 − u)u du = 4u −
0 5 u=0
64
= .
5
x = r cos θ z
y = r sin θ 6
s
z=z P (r, θ, z)
z
O XX
X XX
: X
X θ r Xz
X X y
S
+
x
x y
(b) z 2 = x2 + y 2 = r2 , z = ± r.
where k1 (r, θ) ≤ k2 (r, θ), for all (r, θ) in the region R of the xy-plane defined by
z
6
O
X
HHXX
ee H XX
HH XXzXy
e∆θ HH
+
re
x e r∆θ
e
Z Z √ Z
1 1−x2 2−x2 −y 2
Example 11.5.2. Evaluate the triple integral √
(x2 +
−1 − 1−x2 x2 +y 2
3
y 2 ) 2 dz dy dx in cylindrical coordinates.
Solution:
Z Z √ Z Z Z Z
1 1−x2 2−x2 −y 2 2π 1 2−r 2
3 3
2 2
√
(x + y ) dz dy dx =
2 (r2 ) 2 dz rdr dθ
−1 − 1−x2 x2 +y 2 0 0 r2
Z 2π Z 1Z 2−r 2
= r4 dz dr dθ
r2
Z0 2π Z0 1
= r4 (2 − r2 − r2 ) dr dθ
0 0
Z 2π 5 1
r r7
=2 − dθ
0 5 7 r=0
8π
= .
35
−→
(b) 0 ≤ φ ≤ π is angle from the positive z-axis to the vector OP ;
s
P (ρ, φ, θ)
x = ρ sin φ cos θ
φ 7
y = ρ sin φ sin θ j
ρ z
z = ρ cos φ O
XXX X
: XX
X r Xz
X X y
θ S
+
x
x y
Z 2 Z √
4−x2 Z √4−x2 −y2
Example 11.5.4. Evaluate the triple integral (x2 + y 2 +
−2 0 0
z 2 ) dz dy dx in spherical coordinates.
Solution:
Z 2 Z √
4−x2 Z √4−x2 −y2 Z π Z π Z 2
2
2 2 2
(x + y + z ) dz dy dx = ρ2 ρ2 sin φ dρ dφ dθ
−2 0 0 0 0 0
Z Z π 2
π 5
2 ρ
= sin φ dφ dθ
0 0 5 ρ=0
Z Z π
π 2 32
= sin φ dφ dθ
0 0 5
Z π
π
32 2
= − cos φ dθ
0 5 φ=0
32π
= .
5
Z 1 Z √
1−x2 Z √x2 +y2
(b) √
3z dz dy dx
−1 − 1−x2 0
(a) x2 + y 2 + z 2 = 6 (c) z = 2
p
(b) y = x2 (d) z = − x2 + y 2
Exercise 11.5.4. Evaluate the triple integral in the spherical coordinate system.
Z 2 Z √4−x2 Z √4−x2 −y2 p
(a) 2 2 2
√ 2 2 x + y + z dz dy dx
−2 0 − 4−x −y
Z 1 Z √
1−x2 Z √1−x2 −y2
3
(b) √ √ (x2 + y 2 + z 2 ) 2 dz dy dx
0 − 1−x2 − 1−x2 −y 2
Z Z √ Z
4 16−x2 0 p
(c) √ x2 + y 2 + z 2 dz dy dx
0 0 − 16−x2 −y 2
∂x ∂x
∂(x, y) ∂u ∂v
= .
∂(u, v) ∂y ∂y
∂u ∂v
(b) For x = g(u, v, w), y = (u, v, w) and z = k(u, v, w), the Jacobian is
∂x ∂x ∂x
∂u ∂v ∂w
∂(x, y, z) ∂y ∂y ∂y
= .
∂(u, v, w) ∂u ∂v ∂w
∂z ∂z ∂z
∂u ∂v ∂w
2u
Example 11.6.1. Find the Jacobian of the transformation x = , y = 3uv + v 2 .
v
Solution:
∂x ∂x 2 2u
∂(x, y) − 2 12u
= ∂u ∂v = v v = + 4.
∂(u, v) ∂y ∂y v
3v 3u + 2v
∂u ∂v
Solution:
∂x ∂x ∂x
∂ρ ∂φ ∂θ
sin φ cos θ ρ cos φ cos θ −ρ sin φ sin θ
∂(x, y, z) ∂y ∂y ∂y
= = sin φ sin θ ρ cos φ sin θ ρ sin φ cos θ
∂(ρ, φ, θ) ∂ρ ∂φ ∂θ
cos φ −ρ sin φ 0
∂z ∂z ∂z
∂ρ ∂φ ∂θ
ρ cos φ cos θ −ρ sin φ sin θ
= cos φ
ρ cos φ sin θ ρ sin φ cos θ
sin φ cos θ −ρ sin φ sin θ
+ ρ sin φ
sin φ sin θ ρ sin φ cos θ
= cos φ(ρ2 sin φ cos φ cos2 θ + ρ2 sin φ cos φ sin2 θ)
+ ρ sin φ(ρ sin2 φ cos2 θ + ρ sin2 φ sin2 θ)
=ρ2 sin φ(cos2 φ + sin2 φ) = ρ2 sin φ.
Proof: Consider the region ∆A with vertices M (g(u, v), h(u, v)), N (g(u +
∆u, v), h(u + ∆u, v)), P (g(u + ∆u, v + ∆v), h(u + ∆u, v + ∆v)), and Q(g(u, v +
∆v), h(u, v + ∆v)),
Q P
M N
−−→ −−→
∆x∆y = ∆A ≈ M N × M Q
i j k
−−→ −−→
M N × M Q = g(u + ∆u, v) − g(u, v) h(u + ∆u, v) − h(u, v) 0
g(u, v + ∆v) − g(u, v) h(u, v + ∆v) − h(u, v) 0
i j k
∂x ∂y
∂x ∂y
∂u ∂u ∆u∆vk
≈ ∂u ∆u ∂u ∆u 0 =
∂x ∂y
∂x ∂y
∆v ∆v 0 ∂v ∂v
∂v ∂v
∂(x, y)
= ∆u∆vk
∂(u, v)
−−→ −−→ ∂(x, y)
∆A ≈ M N × M Q ≈ ∆u∆v
∂(u, v)
Example 11.6.3. Use Theorem 11.6.1 to derive the evaluation formula for polar
coordinates:
ZZ ZZ
f (x, y) dA = f (r cos θ, r sin θ)r dr dθ.
R S
Proof:
∂x ∂x
∂(x, y)
= ∂r ∂θ = cos θ −r sin θ = r cos2 θ + r sin2 θ = r
∂(r, θ) ∂y ∂y sin θ r cos θ
ZZ Z∂r
Z ∂θ
∂(x, y)
f (x, y) dA = f (r cos θ, r sin θ) dr dθ
R S ∂(r, θ)
ZZ
= f (r cos θ, r sin θ)r dr dθ.
S
ZZ
Example 11.6.4. Evaluate the integral (x + 2y) dA, where R is the region
R
bounded by the lines y = −1 − 2x, y = 3 − 2x, y = x − 1 and y = x − 3.
u+v u − 2v
Solution: Let u = y + 2x and v = x − y, then x = and y =
3 3
1 1
∂(x, y) 3 3 1
= 1 −2 = −
∂(u, v) 3
3 3
ZZ Z 3Z 3
u + v 2(u − 2v) ∂(x, y)
(x + 2y) dA = + du dv
R 1 −1 3 3 ∂(u, v)
Z 3Z 3
1
= (u − v) − du dv
1 −1 3 y
1
Z 3 2
u
3 6 y =x−1
= − uv dv @
3 1 2 @ v =1 y =x−3
u=−1 1
Z @ v=3
1 3 @ - x
= (4 − 4v) dv @
3 1 @ 1 2 3
−1@ R @
1 3
@ @ y = 3 − 2x
= 4v − 2v 2 v=1
3 @ @
u=3
8 @
−3 @ y = −1 − 2x
=− .
3 @ u = −1