Practical No: 03                                              Date: 04-08-2025
Name Shruti Mohan Pisal                               PRN: 2305080
                       Signal Convolution Techniques using MATLAB
               Title
Objectives:
     Sr. No. Statements
              Understand the concept of linear convolution and its role in LTI systems.
      1
              Implement linear convolution and circular convolution using MATLAB.
      2
              Analyze and compare the results of both convolution types.
      3
Program/ Code/ Blocks:
 1             clc; clear; close all;
               t = 0:0.01:3
               x1_ct = cos(2*pi*0.5*t);
               x2_ct = exp(-t);
               % Convolve using numerical approximation
               y_ct = conv(x1_ct, x2_ct) * 0.01;
               t_conv = 0:0.01:(length(y_ct)-1)*0.01;
               % Plot CT signals and convolution
               figure(1);
               subplot(3,1,1); plot(t, x1_ct); title('CT Signal x1(t) = cos(πt)'); xlabel('Time (s)');
               ylabel('Amplitude'); grid on;
               subplot(3,1,2); plot(t, x2_ct); title('CT Signal x2(t) = exp(-t)'); xlabel('Time (s)');
               ylabel('Amplitude'); grid on;
               subplot(3,1,3); plot(t_conv, y_ct); title('Convolution y(t) = x1(t) * x2(t)'); xlabel('Time
               (s)'); ylabel('Amplitude'); grid on;
               n1 = 0:5;
               x1_dt = [2 1 0 -1 -2 1];
               n2 = 0:3;
               x2_dt = [1 2 1 -1];
               % Linear convolution
               y_dt = conv(x1_dt, x2_dt);
               n3 = 0:length(y_dt)-1;
               figure(2);
               subplot(3,1,1); stem(n1, x1_dt, 'filled'); title('DT Sequence x1[n]'); xlabel('n');
               ylabel('x1[n]'); grid on;
               subplot(3,1,2); stem(n2, x2_dt, 'filled'); title('DT Sequence x2[n]'); xlabel('n');
               ylabel('x2[n]'); grid on;
               subplot(3,1,3); stem(n3, y_dt, 'filled'); title('Convolution y[n] = x1[n] * x2[n]');
               xlabel('n'); ylabel('y[n]'); grid on;
                              SignalProcessingLAB(EC3174)
Output:
          SignalProcessingLAB(EC3174)
SignalProcessingLAB(EC3174)
Inference:
              Learned that convolution combines two signals to represent the response of an LTI
    1        system.
             Observed that convolution increases the signal length and modifies its shape.
    2
             Understood that convolution is the basis of filtering in signal processing
    3
                             SignalProcessingLAB(EC3174)
4
Output:
Output:
          SignalProcessingLAB(EC3174)
6
Output:
Output:
          SignalProcessingLAB(EC3174)
8
Output:
Output:
          SignalProcessingLAB(EC3174)
 10
Output:
Inference:
             SignalProcessingLAB(EC3174)