Intext Exercise: 1: 1Hzwrq V¿Uvwodz
Intext Exercise: 1: 1Hzwrq V¿Uvwodz
EĞǁƚŽŶ͛Ɛ>ĂǁƐŽĨDŽƟŽŶ
20.
T2 = 50 N
T = 6g
4 T = 2g = 19.6N
T = T1 + 4g 1 INTEXT EXERCISE: 3
6g - 4g 21. Apparent weight = m ^ g - ah when acceleration is
12. a = 10 = 1.96 m/s2. downward.
mB g
13. Reading in the scale is equal to the tension (force) acting at 22. a =
m A + mB
its ends.
23. Fv = 6it –8 tj + 10 kt
" " " "
F = ma F =m a
Clearly tension on both ends is equal to W . Hence the 6 2 + 8 2 + 10 2 = m1 (1)
reading is W. m = 10 2 kg
48
Physics
24. T =
2m1 m2
& 10 =
2 # 1 # m2 # 10 By virtual work theorem, Tv2 + 2Tv1 = 0
m1 + m g 1 + m2 & m2 = 1 kg
& Ta2 + 2Ta1 = 0
25. Impulse is area under F-t graph & a2 + 2a1 = 0
26. Acceleration is equal to the slope of v-t graph. at t = 2s So option (a) is correct
15
a =+ 3 =+ 5m/s 2 32. Tv - 2Tv' = 0
force = ma & v = 2v'
= 0.25N 33. - 2Ta + Ta' = 0
t = 4s a=0 force = 0 & a' = 2a
15 34. - 3Ta1 + Ta2 = 0
t = 6s a =- 3
& a2 = 3a1
=- 5m/s 2 35. dx dy
force = ma x 2 + d 2 = y 2 & x dt = y dt
= 0.25N RppRsite to mRtiRn
-
& xv A = y (20) & v A = 25ms 1
27. y
d
37°
x
a1 + a2 2
36. a = 2 = 3.5m/s
m3 g - T1 = m3 a
37. By virtual work
T1 - ^m1 g sin θ + T h = m2 a - T # X2 - 7TX1 = 0
T - m1 g = m1 a
a2 + 7a1 = 0
Adding the equations we get,
m g - m g sin θ - m g
a = 3 m +2 m + m 1
1 2 3
10 sin α - T = 1 ]ag
T - 10 sin β = 1 ]ag
10 ^sin α - sin βh Assuming downward as + ve
a= 2 - 1 - 7 - 2 + aD = 0
29. aD = 10 m/s 2 downwards
40.
INTEXT EXERCISE: 4
31. ///////////////////////
49
EĞǁƚŽŶ͛Ɛ>ĂǁƐŽĨDŽƟŽŶ
INTEXT EXERCISE: 5 EXERCISE 1
41. We don’t include the pseudo force in an inertial reference
frame. (Moving with constant velocity) 1. 1HZWRQ¶V¿UVWODZ Fnet = 0 & v = constant
42. Since acceleration of frame, aframe = 0 m/s2
2. 1HZWRQ¶V¿UVWODZGHVFULEHVLQHUWLD
Hence value of pseudo force = |aframe × mass of object| = 0 N
43. R = m ^ g + a h = m ^ g + 4g h = 5 mg 3.
44. F pseudo =- ma frame
dv F-T =bM l bF l
L x M
=- m dt
4. F - W = c W m 3g
=- m ]2t g it g
45. x = t3 + t2 + t 5. Opposite force causes retardation.
dx 6. Force exerted by string is always along the string and of pull
v = dt = 3t2 + 2t + 1 type. When there is a contact between a point and a surface
dv the normal reaction is perpendicular to the surface and of
a = dt = 6t + 2 push type.
ma
F pseudo =- ma frame 7. Force on m1 = Force on m2 & a1 = 2 2
m1
=- ]6t + 2g 2it v t
=- 16it N 8. m
dv
dt = kt & # dv = mk # tdt
0 0
46. F pseudo =- ma frame
& v = m b t2 l
k 2
& F pseudo = 2 4 + 9 = 2 13 N
47. N = m ^ g + a h = 0.5 ]10 + 2g = 6 N
F2
48. 9. &
m F4
ma Where F4 = F3 + F1
a
q mg
49.
T – mg = 0 [ Equilibrium of block]
Acceleration relative to wedge is ^g + ah sin i T = 10
Reading of spring balance is same as tension across spring
50. If frame is inertial then resultant force must be zero. balance.
If frame is non-inertial then the resultant of all forces and the 13. F1 + F2 + F3 + F4 + F5 = 0 . If F5 = F (given force)
pseudo force must be zero.
Then a =-c F1 + F2 + F3 + F4 m =- F
m m
50
Physics
14. 2T cos θ = mg
15. 10 - T1 = 2a 23.
T1 - T2 = 3a T2 = 5a
16. Gas molecules will tend for move towards the back of
compartment lowering the pressure in front. Reading of spring balance is same as tension across the
17. balance.
& T = 10 g = 98N
T = 2 a (Newton's II law for 2 kg block)
& a = 49 m/s 2
2mg sin 30º - mg sin θ 24. Weight of man in stationary lift is mg
Acceleration =
2m + m
g (2 sin 30º - sin θ )
Given a = g/6. so = g/6
3
1
& sin T = 2
& T = 30c mg–N = ma
18. F1 t1 = F2 t2 [Newton’s II law for man]
19.
& N = m (g - a)
Weight of man in moving lift is equal to N.
mg 3 g
& m ( g - a) = 2 & a= 3
25.
g
& a= 7 50N
51
EĞǁƚŽŶ͛Ɛ>ĂǁƐŽĨDŽƟŽŶ
32. a1 =
2mg - mg
= g; a2 =
2mg - mg
= 3
g 39. T2 = ^m1 + m2 h a
m 3m T m
mg + mg - mg g T1 = m1 a ` T1 = m +1m
2 1 2
a3 = 2m = 2 ; a1 > a3 > a2
40. 1 .....(1)
h = 2 gt12
33. Coin
F
N = (m + M ') M + m + M '
Relative to lift = g - 0 = g
34. 2
srel = urel t2 + 1/2 arel t2
1 .....(2)
srel = h ` h = 2 gt22
1 2=1 2
2 gt1 2 gt2 & 6t1 = t2@
41.
T2 – 8g = 8a T1 + T2 = mg
[Newton’s II law for 8 kg block] If upper spring is cut
& T2 = 8 × 2.2 + 8 × 9.8
= 96 N
T1 – 12 g – T2 = 12 a
mg - T2 = m # 6 .....(i)
[Newton’s II law for 12 kg block]
& T1 = 12 × 2.2 + 12 × 9.8 + 96
T1 = 240 N If lower spring is cut :
36.
adding (i) and (ii)
2mg–T1 + T2 = m (a + 6)
F – k x = m1 a1 [Newton’s II law for M1] 2mg–mg = m (a + 6)
kx = m2 a2 [Newton’s II law for M2] mg = m (a + 6)
By adding both equations. g = a+6
2
a = 4m/s .
F - m1 a1
F = m1 a1 + m2 a2 & a2 = m2 42.
37. F = m1 a1 + m2 a2 [Newton’s law for system]
2
200 = 10×12 + 20×a a = 4m/s .
38.
V
u = sin θ
52
Physics
44. 5.
N2
sin ]180 - 37cg
mg
sin ]180 - 37cg
=
2. = 2mF sinkkx
v = 2F sin kx
km
2h
T1 cos 45º = T2 cos 45º 9. First case, t1 = g , where h is the initial height
& T1 = T2 ; (T1 + T2) sin 45º = mg
RI WKH FRLQ IURP WKH ÀRRU RI the elevator. Second case,
2 T1 = mg 2h
t2 = g+a
mg
T1 =
2 ` t2 < t1
T1 10. For t < 0 . System is in equilibrium and hence
T sin θ = Mg +
2
mg F1 = F2 = F
T sin T = Mg + 2 .......... (i) 11. Reading of spring balance is less than m
T mg
T cos T = 1 = 2 .......... (ii) if a (.) and reading of spring balance is
2
greater than m if a is upwards
dividing (i) and (ii) 12.
M + m/2 2M
tan θ = m/2 = 1 + m
3. T = mg
2T cos T = Mg
A + B + C + D + E = 300i............. (1)
2mg cos T = Mg
M B + C + D + E = –100i.................. (2)
cos T = 2m 1 1
A + C + D + E = 2400j.................. (3)
M 1 2m equation (1) - equation(3) give
4. T = 2m2 m3 B = 300i–2400j................ (4)
2 m2 + m3 g
equatiRn ^1 h - equatiRn ^2 h give
m1 g 2m2 m3 A = 400i............................ ^5 h
2 = m2 + m3 g
Adding equatiοn ^4 h and ^5 h
4m m
m1 = m +2 m3 & A + B = 700i–2400j
2 3
1 1 = 4 A+B
a] A + Bg = 100
m2 + m3 m1
= 7i–24j
53
EĞǁƚŽŶ͛Ɛ>ĂǁƐŽĨDŽƟŽŶ
13. 19. (a) – Pulling force on bricks = 2F
(b) – Pulling force on bricks = F
(c) – Pulling force on bricks = F
(d) – Pulling force on pulley = F/2
Resultant acceleration 20. Maximum tension in string Tmax sin 30° = 40
2 40
g 1 g & Tmax = 1 = 80N
m +e go +
3 3
c
2
= . . g cos 150º 2
2 2 2 2 2
For monkey Tmax –mg = ma & a = 6m/s –2
g
. sin 150º 21. Acceleration of system
2 1
= b 44 + 11 l g = 53 # 10 = 6 ms -2
tan a = = -
3g g 3
+ . cos 150 o
2 2 Relative acceleration of blocks = 12ms –2
a = 30c
Now 2 + 4 = 1 (12) t 2 & t = 1 sec
i.e. Resulting acceleration is in vertical direction 2
22. In (A) T = kx1 = 2g
14. Acceleration of two mass system is a = F leftward
2m In (B) T = kx2 = 3g–3× = 12 g
g
N 5 5
g 4
F In (C) T = kx3 = 2g–2× = g
60°
3 3
30° x1 5x2 3x3
2 = 12 = 4
FBD of block A 23. F1 - T = m1 a & T - F2 = m2 a
mF
N cos 60°–F = ma = 2m solving N = 3F F -F
& a = m1 + m2
1 2
15. Before cutting the spring
` T = F1 - m1 c m1 + m2 m = 1m2 + m2 1
F -F m F +m F
1 2 1 2
24. 25 - 20 = 2a
2
& a = 2 . 5m / s
25. a1 + a2 = 2a .....(1) T - Mg = Ma1 .....(2)
T2 = mg T - mg = ma2 .....(3)
a1 - a2 = 2a .....(4)
After
2mg - mg = 2 ma a1 & a2 are accelerations of M & m w.r.t. earth.
a = g/2 26. 1 (3 + a) = 20
2
T3 = mg/2 & ai = gm/s
a f = a 3 kg = 3
mg mg 2-1 9 2g
T2 - T3 = mg - 2 = 2 ` Δa =
3
16. T = M # a .....(i) 27. a = 0.3 g = g
2 0.9 3
T .....(ii) g 2g
20 - 2 = 2 # a V = 0+ 3 2 =
3
1 Ma
20 - 2 # 2 = 2a V
` the string tight again after f = g = 2 sec
3
T
& 2 = 1 # g & T = 20N
28.
2
a = 5 m/s
& M = 8 kg
17. Acceleration
Net force 3 # 250 - (100) g sin θ
= Total mass = 100 2F + N - Mg = Ma
750 - 260 -2 2F - N - mg = ma
= 100 = 4.9 ms
18. Let acceleration of masses 29. By setting string length constant
w.r.t. pulley be a L = 3l1 + 2l2
Mg–T–Ma0 = Ma & 3v0 = 2v A
T + ma0 –mg = ma 3
v A = 2 v0
& (M–m) g– (M–m) a0 = (m + M) a v A = v A - vB
& a = (g–a0) v
= 20
But a0 2 g so a 1 0 and T 1 0
towards right
& Tension in string will be zero
54
Physics
V1 + V2 34.
30. a VP =
2
Pulley P1 Vp
V1
uo mu By virtual work
V2
- 2TX2 + TX1 = 0 2a2 = a1
un
2X2 = X1
P1
2c M2 m = M1
x nv1 nv2 v2 p nu
F - 2T T
P2 P3 nv
vn
vn T
M
F - 2T = 3
0 + v1 3F 12 a2 = F - 2T = 2 m/s 2
T = 7 = 70 N M2 7
u= 2 ..... (i)
Pulley P2 35.
v +v
v = 1 2 2 & 2v = v1 + v2 ..... (ii) If pulley C is massless the tension in the
–v + u strings must be zero.
Pulley P3 v = 22 ..... (iii) Therefore acceleration of A & B must be
Eliminate v1 & v2 to get g
& 2u + u - 2u = 2v & 3u = 4v
3
v= 4u
36.
31. Solving problem in the frame of pulley 2a1 = a2
u
V cos T = u & V = cos T
6g - T c M + m = 0 m
1 25
33. l1 + l2 + l3 + l4 = C 0
"2
"3 "1 6Mm0 g
d,1 + d,2 + d,3 + d,4 = 0 "4 T = m + 25 M
v 0
dt dt dt dt T 6m0 g
2 m/s a1 = g - M = g - 25M + m0
= d 25M + m 0 n g
–v–v + 0 + v + 2 = 0 & v = 2m/s
25M - 5m
0
55
EĞǁƚŽŶ͛Ɛ>ĂǁƐŽĨDŽƟŽŶ
38. F.B.D. of mass m is w.r.t. trolley
T sin (α–θ) + mg sin θ–FP = 0
[Equilibrium of mass in x direction w.r.t. trolley]
& T sin (α–θ) + mg sin θ–mg sin θ = 0
& T sin (α–θ) = 0
since T cant be zero , sin (α–θ) must be zero
Equating compounds along the length of rod
45. FBD of block w.r.t. wedge
u cos i = v sin i
VB = u cot i N
30°
39. Acceleration of bolt with respect to car mg
mg 30°
mg 2 - mg ` 2 j
3 1
= c 2 mg
3 -1
& t= m
Bolt have acceleration perpendicular to inclined plane with
respect to car so it will hit the surface of car at point Q as Now from S = ut + 1 at 2 . 1 = 1 c 3 - 1 m gt 2
shown so distance from point P = 3m 2 2 2
4
40. The free body diagram of cylinder is as shown.
^ 3 - 1h g
& t= = 0.74 s
Since net acceleration of cylinder is horizontal,
N AB cos 30° = mg .....(i) EXERCISE 3
or N AB = 2 mg
3 1. N = mg + F sin 30°
and NBC –N AB sin 30° = ma 1
= 700 + 200 # 2 = 800 newton
or NBC = ma + N AB sin 30°...... (ii)
N
Hence N AB remains constant and
NBC increases with increase in a.
41. T sin θ = m ^ g sin α + a0h
56
Physics
i = 45° 8. It is given that v = 10 x m s -1
Taking components along x & y dv
)RUFHLVGH¿QHGE\ F = m ... (i)
1 2-1 1 dt
F1 = 2 - = = Multiplying and dividing equation (i) by dx
2 2 2
dv dx
1 2+1 3 F = m dt dx
F2 = 2 + = =
2 2 2 dx dv dv
& F = m dt dx = m dx ... (ii)
F1: F2 = 1: 3 Finding the values of the terms in equation (ii)
x=3 dv 10 5
4. 50 = V # 10 dx = 2 x = x
V = 5 m/s dv 5
v dx = a = 10 x # = 50 m s -2
V = 0 + a # 20 x
1
5 = a # 20 Hence, the force is F = 2 # 50 = 25 N
1 9. Given, the position vector of the particle is
a = 4 m/s2
r = 10t it + 15t2 tj + 7kt
1
F = ma = 20 # 4 = 5 N The velocity of the particle can be calculated as follows:
20 kg t = 20 sec dr
F v = dt
V
= dt _10t it + 15t2 tj + 7kt i
d
u=0
50 m
a T = 10it + 30t tj
dv
And, the acceleration of the particle is given by a = dt
5. 4g sin 60° - T = 4a ... (1)
= dt ^10i + 30t tj h = 30tj
d
4 g sin 60° Hence, the force on the particle can be written as
T a
F=ma
= 30 mjt
10. 2 N Sin T = mg
4 g sin 30° mg
N= cosec T= mg R
T - g sin 30° = a ... (2) 2 2 l2
Solving (1) and (2) we get, R2 -
4
20 3 - T = 4T - 20
T = 4 ^ 3 + 1hN
R
N N
q l/2 l/2
6. Centripetal force will be provided by the spring force. Let the When l =R,
mg
57
EĞǁƚŽŶ͛Ɛ>ĂǁƐŽĨDŽƟŽŶ
12. F.B.D of bead w.r.t truck. N sin θ = mA
N a N + mA sin θ = mg cos θ
ar = g sin T + A cos T
37o m (12) mg sin T cos T
Solving A =
M + m sin 2 T
mg sin T cos T
2
mg
48 30 18 Mg sin T + mg sin T
a = 12 cos 37°10 sin 37° - = m/s2 =
M + m sin 2 T
5 5 5
Now,
1 18 36 ] M + mgg sin T
# # t2 = & t=2s =
2 5 5 M + m sin 2 T
13. (T + 450) - 1000 = 100a .....(1) A m cos θ
ar = ] M + mg
& T - ]450 + 250g = 25a .....(2)
tan β = y = ar sin T = sin T
a
14. ax ar cos T - A A
N1 90q
N2 cos T - a
r
& 2mg = a + 2m k ac
1. a AC = a A - aC m
cos θ
2
` a A = a AC + aC . Also a = b + c
2g cos 2 T
2. & ac =
1 + 2 cos 2 T
8.
T ' = mg
T = m1 a1x
T ' sin D + mg sin D = T = m'g
T cos θ = m2 a2x
m' = ] M + mg sin α
3. L = 1 g sin θt 2 9. T = 10 (10 + 1 - 0.5 cos 60c)
2
T = 10 (10.75)
x = 1 gt 2
2 T = 107.5N
L = sin θ 10. T = 5N
x 10g sin 30c - 5 = 10a
4.
& ablock = 4.5 m/s ]"g . So, apulley = 2.25 m/s2 ]!g
2
58
Physics
12. From geometry rA = 10m N3 = Mg + N1 cos θ .....(1)
N1 cos θ = mg .....(2)
N1 sin θ = N2 .....(3)
N1 sin θ = F .....(4)
VA cos α = VB cos β From (1), (2), (3), (4) we get required condition
13. v cos T = u 17.
v = u sec T amG = a 2 + a 2 - 2a 2 cos a
dv = dT = 2a sin α/2
dt u sec T tan T dt fff.. (i)
b
tan T = y
dT b dy 18. 2V1 = V2 + VP
sec 2 T dt = – 2 dt
y
- 2a1 = a2 + aP
=+ b2 cos 2 T cos
u
T
y
2
= 1b b 2 cos Tu
y
= b T tan 2 T......... (ii)
u cos 19. N1 = mg cos 37c + ma sin 37c
59
EĞǁƚŽŶ͛Ɛ>ĂǁƐŽĨDŽƟŽŶ
22. Both men have different masses and same tension force 28. F.B.D. of block B w.r.t. wedge
acting on them, therefore they can’t have same acceleration.
(c) is incorrect.
23. aB = 4a A T = 10aB .....(1)
40g - 4T = 40a A .....(2)
From (1) & (2)
40g = 4 (10 # 4a A) + 40a A
& 400 = 200a A
& a A = 2m/s 2
for block A
TB = 80N
N cos 45º = 1.7a .....(i)
24.
for block B
0.6g sin 45º + 0.6a cos 45º = 0.6b .....(ii)
N + 0.6 a cos 45º = 0.6 g cos 45º ....(iii)
by solving (i), (ii) & (iii)
3g 23g
a = 20 and b =
20 2
T = m1 g
Now vertical componentof acceleration of
when thread is burnt, tension in spring remains same = m1 g 23g
(m1 –m2) B = b cos 45º = 40
m1 g–m2 g = m2 a m2 g = a = upwards and horizontal component of acceleration of
17g
B = b sin 45º–a = 40
29.
q
q
Tsin q T 2q
2q
60
Physics
End of rope is coming down with 5 m/s2. So, acceleration of 7 3
(1) w.r.t. his rope is 30 + 5 = 35 m/s2 upwards. Acceleration ma # 4 = mg # 4
of monkey (2) with respect to his rope is zero because he is g 3
just holding the string. a= 7
mg
31. a = Acceleration of ball w.r.t block = g sin 60 + a cos 60
2M + m g 3 g 3
mg = 2 + 14
v = 2e
2
o# h
2M + m 8g 3 4g 3
0.25 # 10 = 14 = 7
= 2= G # 16.2 # 10 -2
L = 2 #c
2 + 0.25 1 4g 3 m # 2
t
5 # 16.2 # 10 -2 7
v2 = 7L
0.25 t= &n=7
v = 0.6 m/s 2g 3
35.
32. Let plank moves distance x upwards. Length of string,
passing through hands of B, loosened by 3x.
Length of rope passing through “B” = 3x
°
T1
30
Length of rope passing through “A” = 4x
=
V1
q
as A itself moves distance x upwards.
60°
`x=4
33. a T1
8 T V2 m
T
T1 sin ]ig V1 = T1 V2
a
1 V1 sin ]ig = V2
& a1 sin ]ig + V1 cos i dt = a2
di
mg
x = vt = 2
34. 37. N = F = 3 mg = 5 mg
sin 37c 4 3
a 5k
4
N a
Ng = mg + N cos 37c
ma 4
Ng = mg + F cot 37c = mg + F 3
60° N
38. y = x tan 37c
aB = a A 3 (-)
4
mg 39-40
block
ball Insect will move with acceleration a1 ( = acceleration of m2 )
Let block starts moving with acceleration a towards relative to ground
a1 = d m1 + m2 n g
right. From F.B.D of block m -m mg
use m1 = 2
1 2
g+a
N sin 60 = ma
With respect to block 41. FBD of Block in ground frame :
N + ma sin 60 = mg cos 60 applying N.L. 150 + 450–10M = 5M
ma 600
sin 60 + ma sin 60 = mg cos 60 & 15M = 600 & M = 15
ma ]1 + sin2 60g = mg cos 60 sin 60 & M = 40 Kg
61
EĞǁƚŽŶ͛Ɛ>ĂǁƐŽĨDŽƟŽŶ
42. If lift is stopped & equilibrium is reached then Before string between pulley & C is cut
T = 450 N 450 + N = 400 TAB = 3mg, TCD = 4mg
N & N =- 50 After string between pulley & C is cut
So block will lose the contact with TAB = 0
weighing machine thus reading of
6mg 3
Mg = 400 M weighing machine will be zero. a = 4m = 2 g
T
TCD + 2mg = 2m b 2 g l
T = 40 g 3
N
N1
So, a = Dv = 10 + 14 = 120 m/s2
Dt 0.2
f
F cos 45° t
2. F = 10i + 5jt
m = 100g = 0.1 kg
mg F sin 45°
= ^mg + t h
1 a
2
a = 200, b = 100 ` b =2
N' is zero, till F cos 45c # fmax 3. N
t # ^mg + t h
1
2
t # mg
t # 20 sec . Mg
During T # 20 sec, N' = 0 and acceleration both blocks
When lift is at rest, N = mg
remains to be zero. t.20 sec, System starts moving forward
with an acceleration ‘a’ & 60 # 10 = 600 N
When lift moves with downward acceleration: In frame of
F cos 45c - fmax
where a = lift, pseudo force will be in upward direction.
^ m A + mB h
N'+Ma
t - ^m A g + t h
1
2
=
5
t - mA g
= Mg
10
at t = 40 sec, a = 2 m/ sec 2 N' = M (g - a) = 60 ]10 - 1.8g & N' = 492 N
at t - 60 sec, a = 4 m/ sec 2
Dp
4. Fav =
45. Before spring 2 is cut TAB = 3 mg Dt
After spring 2 is cut, TAB = 3mg 0.12 # 25
= 0.1 = 30 N
a = m = 2it + tj + kt
F
6. Statement I is correct, because lift is moving with zero
acceleration. Statement II is incorrect as force exerted will be
less than the weight.
62
Physics
7. Drawing the FBD of the point where F is applied 12. At equilibrium
T
30° mg
F = T sin i = # sin i
cos i
F 10 # 10 = 100N
= cos 45° # sin 45°
13. F = ma = F0 e -bt
v t
T' = 3 kg
# dv = Fm # e0 -bt
dt
0 0
12 t1 14. l A = 2l , lB = b 3l l
5 5
12 Kl = K A l A = KB lB
t2 Kl = K A b 25l l
5K & 5K
KA = 2 KB = 3
t1 8 t2
8
15. Vertical component of acceleration of A
a1 = ^ g sin Th . sin T = g sin 60c. sin 60c = g. 34
6t = 4t
2
1
2
2 That for B
9. Given that a particle is projected with velocity v0 along the
X-axis. A damping force is acting on the particle which is a2 = g sin 30c. sin 30c = g 14
proportional to the square of the distance from the origin i.e., ` ^a AB h= =
3g g g 2
1. v = a ^ yxt + 2xyt h
v0 0
1
F 2.
100 N
100 N
10 kg
T
= 100 , along the vertical direction
2
T ma cos T = mg cos ]90 - Tg
= F , along the horizontal direction.
2 & a = tan θ & a = dy
g g dx
& F = 100N
11. Here, v = K _ yi^ + xj^ i
^ & d ^kx 2h = a & a
x = 2gk
dx g
3. F = 2T sin θ
dx ^ dy ^ _ ^ ^i
dt i + dt j = K yi + xj
dx dy dy dy/dt Kx
,
dt = Ky and dt = Kx dx = dx/dt = Ky
ydy = xdx
Integrating both sides # ydy = # xdx or y2 = x2 + constant
T cos θ F cos T F x
a= m a = 2m sin T = 2m
a2 - x2
63
EĞǁƚŽŶ͛Ɛ>ĂǁƐŽĨDŽƟŽŶ
4. After string is cut, FBD of m 5. 2mg cos θ = 2 mg
mg 1 =
a= m =g. cos θ = cos 45c & θ = 45c
2
FBD of 2m (when string is cut tension in the spring takes
¿QLWH WLPH WR EHFRPH ]HUR +RZ HYHU WHQVLRQ LQ WKH VWULQJ
immediately become zero.)
3mg
3mg - 2mg g
2m
a= 2m = 2 -
2mg
64