0% found this document useful (0 votes)
18 views3 pages

Mensuration - 2D

The document contains a series of mathematical problems related to geometry, specifically focusing on calculating areas of various shapes such as triangles, parallelograms, trapeziums, and circles. It includes multiple-choice questions with given dimensions and conditions for each problem. The problems are designed for practice and assessment in mathematics, particularly for students preparing for competitive exams.

Uploaded by

sanj
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
18 views3 pages

Mensuration - 2D

The document contains a series of mathematical problems related to geometry, specifically focusing on calculating areas of various shapes such as triangles, parallelograms, trapeziums, and circles. It includes multiple-choice questions with given dimensions and conditions for each problem. The problems are designed for practice and assessment in mathematics, particularly for students preparing for competitive exams.

Uploaded by

sanj
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Join Telegram- Maths by Aditya ranjan

,d lekar j prqHkZqt dk ifjeki 48 lseh gSA ;fn lekarj prqHkZqt


dh ÅapkbZ 6 lseh gS vkSj vklUu Hkqtk dh yackbZ 8 lseh gSA
1. Find the area of a triangle whose base is 7 cm {ks=kiQy Kkr dhft;s\
and corresponding height is 82 cm.
ml f=kHkqt dk {ks=kiQy Kkr dhft, ftldk vk/kj 7 lseh (a) 90 cm2 (b) 80 cm2
rFkk laxr špkbZ 82 lseh gSA (c) 84 cm2 (d) 96 cm2
SSC MTS 08/09/2023 (Shift-03
7. The two adjacent sides of a parallelogram are 12
(a) 574 cm2 (b) 287 cm2 cm and 5 cm respectively. If one of the diagonals
2
(c) 143 cm (d) 191 cm2 is 13 cm long, then what is the area of the
2. Find the area of a triangle whose two sides are 4 parallelogram?

A
cm and 5 cm and the angle between them is 45°. ,d lekarj prqHkZqt dh nks vklUu Hkqtk,¡ Øe'k% 12 lseh vkS
ml f=kHkqt dk {ks=kiQy Kkr dhft,] ftldh nks Hkqtkvksa dh5 lseh gSaA ;fn ,d fod.kZ 13 lseh yack gS] rks lekarj prqHkZ
yackbZ;k¡ 4 lseh vkSj 5 lseh gS] vkSj muds chp 45°
dk dks.k dk {ks=kiQy D;k gS\
gSA

Y
SSC (a) 60 cm2 (b) 30 cm2
(a) 7 2cm 2 (b) 4 2cm 2
(c) 75 cm 2
(d) 25 cm2
8. The length of a rectangular plot is three times its

3.
(c) 6 2cm2 (d) 5 2cm2
H
In an isosceles triangle, if the unequal side is 8 cm
breadth. If the area of the rectangular plot is 2700
m2, then what is the breadth of the rectangular plot?
and equal side is 5 cm. then the area of the triangle
is:
,d vk;rkdkj Hkw[kaM dh yEckbZ mldh PkkSM+kbZ dh rhu x
;fn vk;rkdkj Hkw[kaM dk {ks=kiQy 22700
gS] ehvk;rkdkj
rks
,d lef}ckgq f=kHkqt esa] ;fn vleku Hkqtk 8 lseh vkSj cjkcj
S
Hkw[kaM dh PkkSM+kbZ fdruh gS\
Hkqtk 5 lseh gSA rks f=kHkqt dk {ks=kiQy gS%
SSC
2
(a) 12 m (b) 28 m
(a) 12 cm (b) 25 cm2
K

(c) 30 m (d) 20 m
(c) 6 cm2 (d) 11 cm2
9. If the semi-perimeter and area of a rectangular field
4. What will be the area of a plot of quadrilateral
whose length and breadth are 'x' and 'y' is 12 cm and 28
shape, one of whose diagonals is 20 m and lengths
cm², respectively, then find the value of x4 + x²y² + y4.
of the perpendiculars from the opposite vertices
;fn ml vk;rkdkj eSnku dh v/Z&ifjf/ vkSj {ks=kiQy Øe'k%
LA

on it are 12 m and 18 m, respectively?


prqHkZqt vkdkj ds ,d Hkw•aM dk {ks=kiQy D;k gksxk] ftlds 12 lseh vkSj 28 lseh² gS] ftldh yackbZ'x' vkSj pk
SM+kbZ
'y'
sx + x²y² + y dk eku Kkr dhft,A
gks] rk 4 4
,d fod.kZ dh yackbZ 20 ehVj gS vkSj ml ij foijhr 'kh"kks± ls
Mkys x, yacksa dh yackbZ Øe'k% 12 ehVj vkSj 18 ehVj gS\
(a) 6990 (b) 6609
SSC
(c) 6906 (d) 6960
(a) 250 m2 (b) 400 m2
10. There is a rectangular garden of 240 metres × 80
(c) 200 m2 (d) 300 m2
metres. A path of width 4 metre is build outside
5. The base of a parallelogram is twice its height. If the garden along its four sides. What is the area of
the area of the parallelogram is 338 cm², then find
the path?
its height (in cm).
240 ehVj × 80 ehVj dk ,d vk;rkdkj cxhpk gSA cxhps ds
,d lekarj prqHkZqt dk vk/kj mldh ÅapkbZ dk nksxquk gSA ;fn
lekarj prqHkZqt dk {ks=kiQy 338 ] lseh
² gS rks bldh ÅapkbZ (lseh ckgj pkjksa vksj 4 ehVj pkSM+k ,d iFk cuk;k x;k gSA bl iFk dk
esa) Kkr djsaA {ks=kiQy D;k gS\
SSC
(a) 13 (b) 11 (a) 2826 m2 (b) 2542 m2
(c) 14 (d) 12 (c) 2916 m2 (d) 2624 m2
6. The perimeter of a parallelogram is 48 cm. If the 11. The area of the rhombus (in cm²) having each side
height of the parallelogram is 6 cm and the length equal to 13 cm and one of its diagonals equal to
of the adjacent side is 8 cm. find its area. 24 cm is:

-: ADDRESS :- Page 1
LAKSHYA INSTITUTE, BIRSA CHOWK
3 RD FLOOR , ABOVE M BAAZAR , RANCHI, MOB NO. :-7320927276
ml leprqHkqZt dk {ks=kiQy² esa)
(lsehD;k gS] ftldh izR;sd (a) 250 metres (b) 300 metres
Hkqtk 13 lseh gS vkSj ,d fod.kZ 24 lseh gS\ (c) 200 metres (d) 210 metres
S 18. Three circles of radius 6 cm are kept touching each
(a) 120 (b) 60 other. The string is tightly tied around these three
circles. What is the length of the string?
(c) 110 (d) 130
6 lseh f=kT;k okys rhu o`Ùkksa dks vkil esa Li'kZ djrs g
12. Find the area of a rhombus if the perimeter of the
rhombus is 52 cm, and one of its diagonals is 10
j[kk x;k gSA bu rhu o`Ùkksa ds pkjksa vksj ,d /kxk dldj
cm long. ck¡/k x;k gSA /kxs dh yEckbZ D;k gS\
S
,d leprqHkZqt dk {ks=kiQy Kkr djsa ;fn leprqHkZqt dk ifjeki (a) 36 + 12 cm (b) 36 + 18 cm
52 lseh gS] vkSj bldk ,d fod.kZ 10 lseh yack gSA (c) 24 + 36 cm (d) 36 + 20 cm
S 19. In a circle of radius 42 cm, an arc subtends an angle
(a) 164 cm2 (b) 144 cm2 of 60° at the centre. Find the length of the arc.
(c) 160 cm2 (d) 120 cm2  22 
13. The diagonal of the square is 82 cm. Find the  Take   
 7 
diagonal of another square whose area is triple that
of the first square. 42 lseh f=kT;k okys ,d o`Ùk esa] ,d pki dsaæ ij d k
60º
oxZ dk fod.kZ82 cm gSA ,d nwljs ,sls oxZ dk fod.kZ dks.k varfjr djrk gSA pki dh yackbZ Kkr dhft,A

A
Kkr dhft, ftldk {ks=kiQy igys oxZ ds {ks=kiQy dk frxquk S
(a) 22 cm (b) 44 cm
gSA
(c) 21 cm (d) 42 cm
SSC CGL 06/12/2022 (Shift-04)
(a) 85 cm (b) 83 cm 20. Find the area of a minor sector of a circle whose

Y
circumference 88 cm and the length of its minor
(c) 82 cm (d) 86 cm
 22 
14. A copper wire is bent in the form of a square and it arc is 22 cm  use   .
encloses an area of 30.25 cm2. If the same wire is  7 
bent to form a circle, then find the area of the circle. ml o`Ùk ds y?kq f=kT;k•aM dk {ks=kiQy Kkr dhft,] ftldh
H
,d rkacs ds rkj dks ,d oxZ ds vkdkj esa eksM+k tkrk gS vkSj ;gifjf/ 88 lseh gS vkSj blds y?kq pki dh yackbZ 22 lseh gSA
30.25 cm2 dk {ks=kiQy ifjc¼ djkrk gSA ;fn blh rkj dks
 22 
eksM+dj ,d o`Ùk cuk;k tk,] rks o`Ùk dk {ks=kiQy Kkr dhft,A eku yhft, ]  = 7 
22
( dk iz;ksx djsaA)
S
7
S (a) 154 cm2 (b) 451 cm2
2
(a) 38.50 cm2 (b) 42.25 cm2 (c) 415 cm (d) 145 cm2
2 21. The area of a sector of a circle is 88 cm² and the
(c) 35 cm (d) 30.25 cm2
K

angle of the sector is 36°. Find the radius (in cm)


15. The distance between the parallel sides of a
trapezium is 18 cm. If the area of the trapezium 22
of the circle. [Use  = ].
is 1188 cm², then what is the sum of the lengths 7
of the parallel sides? ,d o`Ùk ds ,d f=kT;[kaM dk {ks=kiQy ²88gSlseh
vkSj f=kT;[kaM
,d leyac prqHkZqt dh lekarj Hkqtkvksa ds chp dh nwjh 18 dk dks.k36° gSA
LA

o`Ùk dh f=kT;k (lseh esa) Kkr dhft,


[ =
lseh gSA ;fn leyac prqHkZqt dk {ks=kiQy 1188
2
gS] lseh
rks
22
lekarj Hkqtkvksa dh yackbZ dk ;ksx D;k gS\ d k mi;ksx dhft,]
S 7
(a) 150 cm (b) 115 cm S
(c) 126 cm (d) 132 cm (a) 3 70 (b) 70
16. A wheel makes 500 revolutions in covering a
distance of 44 km. Find the radius of the wheel (c) 2 70 (d) 5 70
,d ifg;k 44 fd-eh- dh nwjh r; djus ds fy, 500 ckj ?kwerk 22. The area of sector of a circle having radius 14 cm
is 231 cm². Find the degree measure of the
gSA ifg;s dh f=kT;k Kkr djsaA corresponding central angle.
S
 22 
(a) 14 m (b) 21m  Use   
 7 
(c) 28 m (d) 7 m
17. The ratio of the outer and the inner circumference
14 lseh f=kT;k okys ,d o`Ùk ds ,d f=kT;•aM dk {ks=kiQy
of a circular path is 5 : 4. If path is 50 metres wide, 231 lseh2 gSAaxr
l dsaæh; dks.k dk fMxzh eki Kkr dhft,A
then what is the radius of the inner circle?  22
z ksx dhft, 
, d o`Ùkkdkj iFk dh ckgjh rFkk vkarfjd ifjfèk;ksa dk vuqikr 5    7 dk i; 
% 4 gSA ;fn iFk 50 ehVj pkSM+k gks] rks vkarfjd o`Ùk dh f=kT;k S
D;k gS\ (a) 125° (b) 150°
S (c) 140° (d) 135°

-: ADDRESS :- Page 2
LAKSHYA INSTITUTE, BIRSA CHOWK
3 RD FLOOR , ABOVE M BAAZAR , RANCHI, MOB NO. :-7320927276
23. From a circular sheet of circumference 264 cm,  3
two equal maximum-sized circular plates are cut (a) 98  6 – 3 
off. What will be the circumference of each plate?  
22  3
(Use  = ) (b) 98  3 – 4 
7  
264 lseh ifjf/ okyh ,d o`Ùkh; 'khV ls] nks leku vf/dre  3
vkdkj dh o`Ùkkdkj IysVsa dkVh tkrh gSaA çR;sd IysV dh ifjf/
(c) 98  6 – 6 
 
22
fdruh gksxh\ ( = dk ç;ksx dhft,)  3
7 (d) 98  6 – 4 
S  
(a) 264 cm (b) 135 cm 28. If the area of a regular pentagon is 3920 3 cm²,
(c) 176 cm (d) 132 cm then how long is its each side?
24. Find the area (in cm²) of a circle with a maximum
radius that can be inscribed in a rectangle of ;fn ,d le iapHkqt dk {ks=kiQy
3920 3 lseh gS]bldh
2

length 18 cm and breadth 12 cm. izR;sd Hkqtk fdruh yach gS\


ml vf/dre f=kT;k okys ,d o`Ùk dk {ks=kiQy ²(lseh
esa) S
Kkr dhft,] ftls 18 lseh yackbZ vkSj 12 lseh pkSM+kbZ okys (a) 38 cm
(b) 56 cm
,d vk;r esa mRdh.kZ(inscribe) fd;k tk ldrk gSA

A
(c) 46 cm
S
(d) 58 cm
(a) 72 (b) 136
29. The length and the breadth of the floor of a rect-
(c) 36 (d) 28
angular hall are 126 feet and 90 feet, respectively.
25. The area (in cm2) of biggest circle that could be

Y
What will be the area (in square feet) of each of
drawn in a square of side 18 cm is:
the largest identical square tiles that can be used
18 lseh Hkqtk okys fdlh oxZ esa [khaps tk ldus okys lcls cM+s
to tile this floor in a way that no part of the floor
o`Ùk dk {ks=kiQy (oxZ lseh esa) gksxk& remains uncovered?
S ,d vk;rkdkj gkWy ds iQ'kZ dh yackbZ vkSj pkSM+kbZ Ø
(a) 91
(c) 49
(b) 81
(d) 168
H 126 iQhV vkSj 90 iQhV gSA çR;sd lcls cM+h leku oxkZd
Vkby dk {ks=kiQy (oxZ iQqV esa) D;k gksxk ftldk mi;ksx b
26. Three circles each of radius 5 cm touch one
another. The area (in cm2) subtended between iQ'kZ ij bl rjg ls Vkby yxkus ds fy, fd;k tk ldrk gS
fd iQ'kZ dk dksbZ Hkh fgLlk •qyk u jgs\
S
them is:
S
5 cm dh f=kT;k okys rhu o`Ùk ,d nwljs dks Li'kZ djrs gSaA
(a) 196 feet²
muds chp varfjr {ks=kiQy
cm(2 esa) fdruk gS\
(b) 256 feet²
S
(c) 324 feet²
K

    (d) 484 feet²


(a) 50  3   (b) 25  3  
 2  2 30. For a given circle of radius 4 cm, the angle of its
    sector is 45°. Find the area (in cm2) of the sector.
(c) 25  2 3   (d) 25  3   (Use = 3.14).
 2  2
4 bdkbZ f=kT;k okys fdlh fn, x, o`Ùk ds fy,] blds f=kT;•aM
LA

27. Two circles of radius 7 units each, intersect in


such a way that the common chord is of length 7 dk dks.k 45° gSA
f=kT;•aM dk {ks=kiQy ( Kkr dhft,A
cm2 esa)
units. What is the common area in square units ( = 3-14 dk ç;ksx dhft,A)
of the intersection? S
izR;sd 7 bdkbZ f=kT;k okys nks o`Ùk bl izdkj izfrPNsn djrs gSa
(a) 6.18
fd mHk;fu"B thok dh yackbZ 7 bdkbZ gksA izfrPNsnu dk mHk;fu"B
(b) 7.28
{ks=kiQy oxZ bdkb;ksa esa D;k gksxk\ (c) 6.28
S (d) 7.18

ANSWER KEY
1. (b) 2. (d) 3. (a) 4. (d) 5. (a) 6. (d) 7. (a) 8. (c) 9. (d) 10. (d)

11. (a) 12. (d) 13. (d) 14. (a) 15. (d) 16. (a) 17. (c) 18. (a) 19. (b) 20. (a)

21. (c) 22. (d) 23. (d) 24. (c) 25. (b) 26. (d) 27. (d) 28. (b) 29. (c) 30. (c)

-: ADDRESS :- Page 3
LAKSHYA INSTITUTE, BIRSA CHOWK
3 RD FLOOR , ABOVE M BAAZAR , RANCHI, MOB NO. :-7320927276

You might also like