0% found this document useful (0 votes)
12 views26 pages

Module 3a FEA

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
12 views26 pages

Module 3a FEA

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 26

FINITE ELEMENT

ANALYSIS
Dr. Richa Agrawal

MODULE 3 - ONE DIMENSIONAL PROBLEMS


Finite Element Method (FEM)

1 1 2 2 3 3 4 4 5
P

L
• Divide the domain in no. of small parts – ‘elements’
• Solve the Governing Differential Equation (GDE) over the
general element and obtain the equation in matrix form –
‘Element Matrix Equation’ (EME)
• Assemble all the equations – Global Matrix Equation
(GME)
• Impose the global boundary conditions and solve to get
the solution
Terms in FEM

1 1 2 2 3 3 4 4 5
P

• Discretization- Process of dividing the domain in no. of


elements
• Element: Any part within the domain – specific length,
geometric and material properties remain consistent.
• Order of element – linear, quadratic, cubic or any polynomial
• Nodes – End point of the element
• Internal nodes – increase with order of element
• Tribology – Process of numbering the nodes
Terms in FEM

1 2 3 4
P

• Global Coordinates – Coordinates with respect to starting point


of domain
• Local Coordinates – Coordinates within the general element for
EME with respect to the starting point of element
• Global Boundary Conditions – Pertain to specific points in
given domain (EBC or NBC)
• Local Boundary Conditions – Holds true at any point of domain
(NBC)
FEM

Preprocessor Solver Postprocessor

• Geometry (Area, • EME • Validation


length, MOI) • GME • Representation
• Material ( E,  • GBC
etc.) • Determine
• Discretization unknown PV &
• Applying LBC SV
Rod Subjected to Axial Load

1 1 2 2 3
P

• GDE in Local Coordinate

𝑑 𝑑𝑢
𝐸𝐴 =0 (𝑑𝑥 = 𝑑𝑥)
𝑑𝑥 𝑑𝑥

• Boundary Conditions

𝑑𝑢 𝑑𝑢
𝐸𝐴 = −𝑃𝑒 1 𝐸𝐴 = 𝑃𝑒 2
𝑑𝑥 𝑥=0
𝑑𝑥 𝑥=ℎ𝑒
Rod Subjected to Axial Load
𝑑 𝑑𝑢
𝐸𝐴 =0 (0 < 𝑥 < ℎ𝑒 )
𝑑𝑥 𝑑𝑥

𝑑𝑢 𝑑𝑢
𝐸𝐴 = −𝑃𝑒 1 𝐸𝐴 = 𝑃𝑒 2
𝑑𝑥 𝑥=0
𝑑𝑥 𝑥=ℎ𝑒
ℎ𝑒
𝑤𝑖 𝑅 𝑑𝑥 = 0
0
ℎ𝑒
𝑑 𝑑𝑢
𝑤𝑖 𝐸𝐴 𝑑𝑥 = 0
0 𝑑𝑥 𝑑𝑥

𝑑𝑢 ℎ𝑒 ℎ𝑒 𝑑𝑤𝑖 𝑑𝑢
𝑤𝑖 𝐸𝐴 − 0 𝑑𝑥
𝐸𝐴 𝑑𝑥 = 0
𝑑𝑥 0 𝑑𝑥

𝑑𝑢 𝑑𝑢 ℎ𝑒 𝑑𝑤𝑖 𝑑𝑢
𝑤𝑖 ℎ𝑒 𝐸𝐴 - 𝑤𝑖 0 𝐸𝐴 − 0 𝑑𝑥
𝐸𝐴 𝑑𝑥 = 0
𝑑𝑥 ℎ𝑒 𝑑𝑥 0 𝑑𝑥
Rod Subjected to Axial Load
𝑑 𝑑𝑢 𝑑𝑢 𝑑𝑢
𝐸𝐴 = 0 (0 < 𝑥 < ℎ𝑒 ) 𝐸𝐴 = −𝑃𝑒 1 , 𝐸𝐴 = 𝑃𝑒 2
𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑥=0
𝑑𝑥 𝑥=ℎ𝑒

𝑢 = 𝐶1 ∅1 + 𝐶2 ∅2
𝑥 𝑥
𝑢 = 𝐶1 1 − + 𝐶2
ℎ𝑒 ℎ𝑒
𝑥 𝑥
∅1 = 1 − ℎ an d ∅2 = ℎ𝑒
𝑒
𝑥
i) 𝑤1 = 1 − ℎ
𝑒
𝑑𝑢 𝑑𝑢 ℎ𝑒 𝑑𝑤𝑖 𝑑𝑢
𝑤𝑖 ℎ𝑒 𝐸𝐴 - 𝑤𝑖 0 𝐸𝐴 − 0 𝐸𝐴 𝑑𝑥 =0
𝑑𝑥 ℎ𝑒 𝑑𝑥 0 𝑑𝑥 𝑑𝑥

𝑒 ℎ𝑒 1 1 1
0-(−𝑃 1 )-EA 0 − ℎ −𝐶1 ℎ + 𝐶2 ℎ 𝑑𝑥=0
𝑒 𝑒 𝑒
𝑃𝑒 1 1 1
𝐸𝐴
= 𝐶1 - 𝐶2 ……..(1)
ℎ𝑒 ℎ𝑒
Rod Subjected to Axial Load
𝑑 𝑑𝑢 𝑑𝑢 𝑑𝑢
𝐸𝐴 = 0 (0 < 𝑥 < ℎ𝑒 ) 𝐸𝐴 = −𝑃𝑒 1 , 𝐸𝐴 = 𝑃𝑒 2
𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑥=0
𝑑𝑥 𝑥=ℎ𝑒

𝑥 𝑥
𝑢 = 𝐶1 1− + 𝐶2
ℎ𝑒 ℎ𝑒
𝑥
i) 𝑤2 =
ℎ𝑒

𝑑𝑢 𝑑𝑢 ℎ𝑒 𝑑𝑤𝑖 𝑑𝑢
𝑤𝑖 ℎ𝑒 𝐸𝐴 - 𝑤𝑖 0 𝐸𝐴 − 0 𝑑𝑥
𝐸𝐴 𝑑𝑥 = 0
𝑑𝑥 ℎ𝑒 𝑑𝑥 0 𝑑𝑥

ℎ𝑒 1 1 1
𝑃𝑒 2 - 0-EA 0 ℎ𝑒
−𝐶1 + 𝐶2 𝑑𝑥 =0
ℎ𝑒 ℎ𝑒

𝑃𝑒 2 1 1
𝐸𝐴
= −𝐶1
ℎ𝑒
+𝐶2
ℎ𝑒
…….(2)
Rod Subjected to Axial Load
𝑑 𝑑𝑢 𝑑𝑢 𝑑𝑢
𝐸𝐴 = 0 (0 < 𝑥 < ℎ𝑒 ) 𝐸𝐴 = −𝑃𝑒 1 , 𝐸𝐴 = 𝑃𝑒 2
𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑥=0
𝑑𝑥 𝑥=ℎ𝑒

𝑃𝑒 1 1 1
𝐸𝐴
= 𝐶1
ℎ𝑒
- 𝐶2 ……..(1)
ℎ𝑒

𝑃𝑒 2 1 1
𝐸𝐴
= −𝐶1
ℎ𝑒
+𝐶2 …….(2)
ℎ𝑒

𝐸𝐴
(𝐶1 − 𝐶2 ) = 𝑃𝑒 1 ……..(1)
ℎ𝑒

𝐸𝐴
(−𝐶1 + 𝐶2 ) = 𝑃𝑒 2 …….(2)
ℎ𝑒

𝐸𝐴 1 −1 𝐶1 𝑃1 𝑒 𝐸𝐴 1 −1 𝑢1 𝑃1 𝑒
= → 𝑢2 = 𝑃2 𝑒
ℎ𝑒 −1 1 𝐶2 𝑃2 𝑒 ℎ𝑒 −1 1
Rod Subjected to Axial Load
2 2 3 4 4
𝐸𝐴 1 −1 𝑢1 𝑃1 𝑒 1 1 3 5
ℎ𝑒 −1 1 𝑢2 = 𝑃2 𝑒 P

𝑈 = 𝑈1 ∅1 + 𝑈2 ∅2 L

𝑥 𝑥
𝑈 = 𝑈1 1− + 𝑈2
ℎ𝑒 ℎ𝑒

𝑑𝑢 1 1
= 𝜀 = 𝑈1 − + 𝑈2
𝑑𝑥 ℎ𝑒 ℎ𝑒

1 𝑈1
𝜀= −1 1 𝑈
𝐿 2
𝐸 𝑈
σ = −1 1 𝑈1
𝐿 2
Problem 1
40 mm 15 mm 30 mm 15 KN

E = 200 x 103 N/mm2

200 mm 500 mm 200 mm

𝐸𝐴 1 −1 𝑢1 𝑃1 𝑒
ℎ𝑒 −1 1 𝑢2 = 𝑃2 𝑒
Problem 2 E = 5 x 1010 Pa

E = 10 x 1010 Pa

A = 1 cm2 3000 N A = 2 cm2

10 cm 10 cm 10 cm

𝐸𝐴 1 −1 𝑢1 𝑃1
𝐿 −1 1 𝑢2 = 𝑃2

𝐸1 𝐴1 1 −1 105 ×100 1 −1 5 1 −1
𝐾1 = = =10 = 𝐾2
𝐿1 −1 1 100 −1 1 −1 1
𝐸3 𝐴3 1 −1 54 ×200 1 −1 1 −1
𝐾3 = = =105
𝐿3 −1 1 100 −1 1 −1 1
Problem 2
1 2 2 3 3 4
5 1 −1 1 1 −1
5 2 5 1 −1 3
𝐾1 = 10 𝐾2 = 10 𝐾3 = 10
−1 1 2 −1 1 3 −1 1 4
1 2 3 4
1 −1 0 0 1

−1 2 −1 0 2
𝐾= 105
0 −1 2 −1 3
0 0 −1 1 4

1 −1 0 0 𝑈1 𝑃1
−1 2 −1 0 𝑈2 𝑃2
105 =
0 −1 2 −1 𝑈3 𝑃3
0 0 −1 1 𝑈4 𝑃4
2 −1 𝑈2 𝑃
105 = 2
−1 2 𝑈3 𝑃3

2 −1 𝑈2 3000
105 =
−1 2 𝑈3 0
𝑈2 = 0.02𝑚𝑚 𝑈3 = 0.01 𝑚𝑚
𝑅1 = 𝐾 𝑈 − P
𝑈1 0
𝑈2 0.02
1 −1 0 0 − 𝑃 = 105 1 −1 0 0 = −2000 N
𝑈3 0.01
𝑈4 0
0
0.02
𝑅4 = 105 0 0 −1 1 = −1000 N
0.01
0
1 𝑈
𝜀= −1 1 𝑈1 , σ = 𝜀 × 𝐸
𝐿 2
−4
𝜀1 = 2 × 10 𝜎1 = 20𝑀𝑃𝑎
𝜀2 = −1 × 10−4 𝜎2 = −10 𝑀𝑃𝑎
𝜀3 = −1 × 10−4 𝜎3 = −5𝑀𝑃𝑎
Problem 3
55 kN
E = 2 x 105 MPa
A = 110 mm2 A = 220 mm2

1.2 m 2.4 m
1.2 mm

𝐸𝐴 1 −1 𝑢1 𝑃1
𝐿 −1 1 𝑢2 = 𝑃2

𝐸1 𝐴1 1 −1 105 ×100 1 −1 5 1 −1
𝐾1 = = =10
𝐿1 −1 1 100 −1 1 −1 1
𝐸2 𝐴2 1 −1 54 ×200 1 −1 1 −1
𝐾2 = = =105
𝐿2 −1 1 100 −1 1 −1 1
Problem 3
55 kN
E = 2 x 105 MPa
A = 110 mm2 A = 220 mm2

1.2 m 2.4 m
1.2 mm

𝐸𝐴 1 −1 𝑢1 𝑃1
𝐿 −1 1 𝑢2 = 𝑃2

𝐸1 𝐴1 1 −1 1 −1
𝐾1 = = =105
𝐿1 −1 1 −1 1

𝐸2 𝐴2 1 −1 1 −1
𝐾2 = = =105
𝐿2 −1 1 −1 1
Problem 3
1 2 3
2
5 0.183 −0.183 1 50.183 −0.183 2
𝐾1 = 10 𝐾2 = 10
−0.183 −0.1831 2
2
−0.183 0.183 3
1 3
0.183 −0.183 0 1

𝐾 = 105 −0.183 0.366 −0.186 2


0 −0.186 0.186 3
0.183 −0.183 0 𝑈1 𝑃1
105 −0.183 0.366 −0.186 𝑈2 = 𝑃2
0 −0.186 0.186 𝑈3 𝑃3
Problem 4
P = 20 KN

Rigid Plate

4 −4
𝐾1 = 104
−4 4
Al.
500 mm
5.2 −5.2
Steel 𝐾2 = 104
Steel −5.2 5.2

500 mm Brass 6.5 −6.5


𝐾3 = 104
−6.5 6.5

Properties Steel Aluminum Brass


C/S Area (mm2) 200 370 370
E (N/mm2) 2 x 105 7 x 104 8.8 x 104
1 1 1

Problem 4 2

1 2 4

3 3 3

4 + 5.2 + 4 −5.2 −4 − 4 𝑈1 𝑃1
104 −5.2 5.2 + 6.5 −6.5 𝑈2 = 𝑃2
−4 − 4 −6.5 4 + 6.5 + 4 𝑈3 𝑃3

13.2 −5.2 −8 𝑈1 𝑃1
104 −5.2 11.7 −6.5 𝑈2 = 𝑃2
−8 −6.5 14.5 𝑈3 𝑃3
Problem 5 – Taper Bar

𝐷1 − 𝐷2
𝐷𝑥 = 𝐷2 + (L − x)
𝐿

Dx
Problem 5 – Taper Bar

20 mm2

80 mm2
500 N

60 mm

𝐷1 − 𝐷2
𝐷𝑥 = 𝐷2 + (L − x)
𝐿
Problem 6
E = 200 GPa
1.5 m

150 mm2

60 kN
240 mm2
3m

1.5 mm
Vertical Taper Bar E = 200 Gpa
Thickness = 20 mm
 = 7800 kg/m3

180 mm

160 mm
500 mm 500 mm

140 mm

200 mm 50 kN 200 mm 50 kN
110mm
80 mm

𝐷1 − 𝐷2
𝐷𝑥 = 𝐷2 + (L − x)
𝐿
Vertical Taper Bar E = 200 Gpa
Thickness = 20 mm
 = 7800 kg/m3

21.3 −21.3
𝐾1 = 105
−21.3 21.3
160 mm
500 mm 22 −22
𝐾2 = 105
−22 22

21.3 −21.3 0 𝑈1 𝑃1
105 −21.3 43.3 −22 𝑈2 = 𝑃2
200 mm 50 kN 0 −22 22 𝑈3 𝑃3
110 mm

𝑊1 = 𝐴1 𝐿1 𝜌 𝑔 = 160 × 20 × 300 × 7800 × 10−9 × 9.81 = 𝑁

𝑊2 = 𝐴2 𝐿2 𝜌 𝑔 = 110 × 20 × 200 × 7800 × 10−9 × 9.81 = 𝑁


Vertical Taper Bar E = 200 Gpa
Thickness = 20 mm
 = 7800 kg/m3

21.3 −21.3 0 𝑈1 𝑃1
105 −21.3 43.3 −22 𝑈2 = 𝑃2
150 mm
0 −22 22 𝑈3 𝑃3
500 mm

21.3 −21.3 0 0 36.7


105 −21.3 43.3 −22 𝑈2 = 50053.5
0 −22 22 𝑈3 16.8
200 mm 50 kN
100 mm 𝑈2 = 0.023 = 𝑈3

You might also like