St.
Mary’s Classes
                                                            Mathematics                                        Marks – 30
                             Topics: Differentiation and Trigonometric Equations
Q.1 Multiple Choice Questions                                                                                     8 Marks
1. In ∆ ABC if a = 13, b = 14, c = 15 then value of cos A is?
A. 4/5             B. 33/65                           C. 65/33                      D. 5/4
                      dy
2. If x y = y x then dx = …
     x(x logy−y)                  y(y logx−x)                         y2 (1−logx)                 y(1− logx)
A.                           B.                                  C.                          D.
     y(y logx−x)                  x(x logy−y)                         x2 (1−logy)                 x(1− logy)
3. The principal solution of equation cot θ = √3 is
     π 7π             π 5π                   π 8π                     7π π
A. 6 ,  6
                   B. 6 ,6
                                        C. 6 ,  6
                                                                 D.      ,
                                                                       6 6
                                                    dy
4. If y = √tanx + √tanx + √tanx + ⋯ ∞ then value of dx =
     sec2 x                       secx .tanx                          2y−1                            2y−1
A.   2y−1
                             B.     2y−1
                                                                 C. sec2 x                   D. secx .tanx
Q.2 Solve any FOUR of the following                                                                               8 Marks
1. Differentiate the following with respect to x
         2x
sin−1 (       )
       1 + x2
2. State and Prove Cosine Rule (with Diagram).
3. If f(x) = √7 g(x) − 3 , g (3) =4 and g’(3) = 5, find f’(3).
                                                                                                  3    3π
4. A. Find the Cartesian co-ordinate of the point whose polar co-ordinate is (4 ,                       4
                                                                                                          )
     B. Find the polar co-ordinate for the point whose Cartesian co-ordinate is (1, - √3)
                                                       dy
5. If, y = (4)log2 (sinx) + (9)log3 (sinx) find dx
                                  A     B         C    [A(∆ ABC)]2
6. In ∆ ABC prove that sin 2 sin 2 sin 2 =                abcs
Q.3 Solve any FOUR of the following                                                                           12 Marks
                                      B−C        b−c         A
1. In ∆ ABC, prove that sin (          2
                                         )   =(   a
                                                     )   cos 2
                                                       dy     1−y2
2. If √1 − x 2 + √1 − y 2 = a (x – y) then show that        = √
                                                       dx     1−x2
3. Prove the following.
A. tan−1 1 + tan−1 2 + tan−1 3 = π
              4       12         33
B. cos−1 5 + cos−1 13 = cos−1 65
4. Find the derivate of 7x with respect tox 7 .
5. Find the general solution of the following
A. √3 cosecθ + 2 = 0
B. cot 4θ = - 1
         2θ
C. tan    3
              = √3
Q.4 Find the principal solution of the following                     2 Marks
                  1                               2
A. cos θ =                         B. sec θ =
                  2                               √3