0% found this document useful (0 votes)
47 views8 pages

Integrals Mock Derived 1

Uploaded by

Shiva kumar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
47 views8 pages

Integrals Mock Derived 1

Uploaded by

Shiva kumar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 8

IIT JEE Mock Test – Integrals (Definite &

Indefinite) — Derived Level


Name: Integrals_mock_Derived_1

Pattern: 25 Questions | 10 Single-Correct MCQs | 5 Multiple-Correct MCQs | 5 Integer | 5 Numerical

Marking: +4 (correct MCQ), −1 (wrong MCQ); no negative for Integer/Numerical. Numerical answers
to 2 d.p.

Black & white • Font size 10 • Questions → Answer Key → Step-by-step Solutions
Question Paper

Section A — Single Correct MCQs (10)


1. Evaluate ∫₀¹ x²/(1+x²) dx. (A) 1−π/4 (B) π/4−1/2 (C) 1/2−π/4 (D) π/4

2. The value of ∫₀¹ ln x dx is: (A) −1 (B) 0 (C) 1 (D) −1/2

3. Evaluate ∫₀^{π/2} sin³x dx. (A) 1/2 (B) 2/3 (C) 3/4 (D) 1/3

4. The value of ∫₀^{π/2} ln(sin x) dx equals: (A) −π ln2 (B) −(π/2)ln2 (C) 0 (D) ln2

5. If F(x)=∫₀^x e^{t²} dt, then F′(x) equals: (A) 2x e^{x²} (B) e^{x²} (C) e^{2x} (D) cannot be
differentiated

6. Evaluate ∫₀¹ x/(1+x) dx. (A) 1−ln2 (B) ln2 (C) 1/2 (D) 1−1/2 ln2

7. If f is integrable on [0,a], then ∫₀^a f(x) dx equals: (A) ∫₀^a f(a−x) dx (B) −∫₀^a f(a−x) dx (C)
∫_{−a}^a f(x) dx (D) none

8. The improper integral ∫₁^∞ 1/x^p dx converges for: (A) p<1 (B) p=1 (C) p>1 (D) all p

9. Evaluate ∫₀^{π} |sin x| dx. (A) 1 (B) 2 (C) π (D) 4

10. An antiderivative of 1/[x(1+x)] is: (A) ln|x|+ln|1+x| (B) ln|x|−ln|1+x| (C) 1/(1+x)−1/x (D) −ln|
x|−ln|1+x|

Section B — Multiple Correct MCQs (5)


11. Let f be integrable on [−a,a]. Then: (A) If f is odd, ∫_{−a}^a f(x) dx=0 (B) If f is even, ∫_{−a}^a f(x)
dx=2∫₀^a f(x) dx (C) If f is odd, ∫₀^a f(x) dx=0 (D) If f is even, ∫₀^a f(x) dx=0

12. For I(m,n)=∫₀^{π/2} sin^m x cos^n x dx with m,n>−1: (A) I(m,n)=I(n,m) (B) I(m,n)= (m−1)/m ·
I(m−2,n) for m>0 (C) I(m,n)= (n−1)/n · I(m,n−2) for n>0 (D) I(2,2)=π/16

13. Regarding substitution in integrals: (A) For ∫ dx/(1+x²), x=tan θ gives ∫ dθ=θ+C (B) For
∫√(a²−x²) dx, x=a sin θ is useful (C) For ∫ dx/(x√(x²−a²)), x=a sec θ is useful (D) For ∫ e^{x} sin x dx,
use x=a tan θ

14. Convergence of improper integrals: (A) ∫₀¹ dx/√x converges (B) ∫₀¹ dx/x diverges (C) ∫₁^∞
dx/x² converges (D) ∫₀^∞ e^{−x} dx diverges

15. For J_n=∫₀^{π/2} sin^n x dx (n>0): (A) J_n = (n−1)/n · J_{n−2} (B) J_{2k} = ( (2k−1)!! / (2k)!! ) ·
(π/2) (C) J_{2k+1} = (2k)!!/(2k+1)!! (D) J_1=1

Section C — Integer-type (5)


16. Evaluate ∫₀^{π} sin x dx and enter the integer value.

17. Compute ⌊100 · ∫₀¹ dx/(1+x²)⌋ (greatest integer function).

18. Evaluate N = ∫₀^{π} |sin x| dx + ∫₀^{π} |cos x| dx (enter integer).


19. Evaluate ∫_{−1}^1 (x³ + x) dx (enter integer).

20. Evaluate ∫₀¹ ⌊3x⌋ dx (enter integer).

Section D — Numerical-type (5) (Answer to 2 d.p.)


21. Evaluate ∫₀¹ ln(1+x) dx (answer to 2 d.p.).

22. Evaluate ∫₀^{π/2} x sin x dx (answer to 2 d.p.).

23. Evaluate ∫₀¹ (x⁴ − x³ + x − 1/(1+x)) dx (answer to 2 d.p.).

24. Compute area under y=e^{−x} from x=0 to x=2 (i.e., ∫₀² e^{−x} dx) (to 2 d.p.).

25. Evaluate the improper integral ∫₀^{∞} e^{−1.25 x} dx (to 2 d.p.).


Answer Key — Summary

Section A — Single Correct MCQs


1-A, 2-A, 3-B, 4-B, 5-B, 6-A, 7-A, 8-C, 9-B, 10-B

Section B — Multiple Correct MCQs


11-A,B | 12-A,B,C,D | 13-A,B,C | 14-A,B,C | 15-A,B,C

Section C — Integer-type
16-2 | 17-78 | 18-4 | 19-0 | 20-1

Section D — Numerical-type
21-0.39 | 22-1.00 | 23--0.24 | 24-0.86 | 25-0.80
Step-by-Step Detailed Solutions

Section A — Single Correct MCQs


Q1. Solution:

• Rewrite integrand: x²/(1+x²) = 1 − 1/(1+x²).

• Integrate: ∫₀¹ (1 − 1/(1+x²)) dx = [x − arctan x]₀¹ = 1 − π/4.

• Correct option: (A) 1 − π/4.

Q2. Solution:

• Use ∫ ln x dx = x ln x − x.

• Evaluate from 0 to 1 using limit at 0⁺: (1·0 − 1) − (0 − 0) = −1.

• Correct: (A) −1.

Q3. Solution:

• Use reduction or identity: sin³x = sin x (1 − cos²x).

• Let u = cos x ⇒ du = −sin x dx. Then ∫₀^{π/2} sin³x dx = ∫₁^{0} (1−u²)(−du) = ∫₀^{1} (1−u²) du = [u
− u³/3]₀¹ = 2/3.

• Correct: (B) 2/3.

Q4. Solution:

• Classic result via Fourier/duplication/symmetry: ∫₀^{π/2} ln(sin x) dx = −(π/2) ln 2.

• Correct: (B).

Q5. Solution:

• By the Fundamental Theorem of Calculus: F′(x) = e^{x²}.

• Correct: (B).

Q6. Solution:

• Write x/(1+x) = 1 − 1/(1+x).

• ∫₀¹ x/(1+x) dx = [x − ln(1+x)]₀¹ = 1 − ln 2.

• Correct: (A).

Q7. Solution:

• Property: ∫₀^a f(x) dx = ∫₀^a f(a−x) dx (substitute x = a−t).


• Correct: (A).

Q8. Solution:

• p–test: ∫₁^∞ 1/x^p converges iff p>1.

• Correct: (C).

Q9. Solution:

• |sin x| on [0,π] equals sin x on [0,π]; ∫₀^{π} sin x dx = 2.

• Correct: (B).

Q10. Solution:

• Partial fractions: 1/[x(1+x)] = 1/x − 1/(1+x).

• Antiderivative: ln|x| − ln|1+x| + C.

• Correct: (B).

Section B — Multiple Correct MCQs


Q11. Solution:

• If f is odd on [−a,a], areas cancel ⇒ ∫_{−a}^a f=0 (A true).

• If f is even, integral doubles from 0..a ⇒ (B true).

• (C) is false in general; (D) false unless f=0.

Q12. Solution:

• Symmetry gives I(m,n)=I(n,m) (A).

• Reduction: I(m,n)= (m−1)/m I(m−2,n) for m>0 (B), similarly for n (C).

• Direct eval: I(2,2)=∫₀^{π/2} sin²x cos²x dx = (1/4)∫₀^{π/2} sin²2x dx = (1/8)∫₀^{π/2} (1−cos4x) dx


= (1/8)·(π/2) = π/16 (D).

• Thus A,B,C,D all correct.

Q13. Solution:

• (A) True: x=tanθ ⇒ dx=(1+tan²θ)dθ, integral simplifies to θ+C.

• (B) True: x=a sinθ simplifies √(a²−x²).

• (C) True: x=a secθ gives √(x²−a²)=a tanθ and dx fits.

• (D) False: for ∫ e^x sin x dx use integration by parts or complex exponentials, not trig substitution.

Q14. Solution:
• (A) ∫₀¹ x^{−1/2} dx converges (=2). (B) ∫₀¹ x^{−1} diverges (log).

• (C) ∫₁^∞ x^{−2} converges. (D) ∫₀^∞ e^{−x} dx converges (=1).

• So A,B,C true; D is false (it converges, statement says diverges).

Q15. Solution:

• Standard Wallis/reduction results: (A) J_n=(n−1)/n·J_{n−2}.

• (B) Even n=2k: J_{2k}=( (2k−1)!!/(2k)!! )·(π/2).

• (C) Odd n=2k+1: J_{2k+1}=(2k)!!/(2k+1)!!.

• (D) J_1=∫₀^{π/2} sin x dx = 1 ⇒ true.

• Thus A,B,C true; D true as well. (All A,B,C,D).

Section C — Integer-type
Q16. Solution:

• ∫ sin x dx = −cos x. Evaluate: [−cos x]₀^{π} = (−(−1)) − (−1) = 2.

Q17. Solution:

• ∫₀¹ dx/(1+x²) = [arctan x]₀¹ = π/4. Multiply by 100 ⇒ 25π ≈ 78.5398; floor ⇒ 78.

Q18. Solution:

• From earlier: ∫₀^{π} |sin x| dx = 2 and ∫₀^{π} |cos x| dx = 2.

• Sum N = 4.

Q19. Solution:

• Both x³ and x are odd; integral over [−1,1] cancels.

• Value = 0.

Q20. Solution:

• On [0,1): 3x∈[0,3). Floor is 0 on [0,1/3), 1 on [1/3,2/3), 2 on [2/3,1).

• Integral = 0·(1/3) + 1·(1/3) + 2·(1/3) = 1.

Section D — Numerical-type
Q21. Solution:

• Integrate by parts or known formula: ∫ ln(1+x) dx = (1+x)ln(1+x) − x.

• Evaluate 0→1: (2 ln2 − 1) − (0) = 2 ln2 − 1 ≈ 0.39.

Q22. Solution:
• Integrate by parts: let u=x, dv=sin x dx ⇒ du=dx, v=−cos x.

• ∫ x sin x dx = −x cos x + ∫ cos x dx = −x cos x + sin x.

• Evaluate 0→π/2: [−(π/2)·0 + 1] − [−0·1 + 0] = 1.00.

Q23. Solution:

• Integrate termwise: ∫₀¹ x⁴ dx=1/5; ∫ x³ dx=1/4; ∫ x dx=1/2; ∫ 1/(1+x) dx=ln(1+x).

• Total = (1/5) − (1/4) + (1/2) − ln2 = -0.24.

Q24. Solution:

• ∫ e^{−x} dx = −e^{−x}. Evaluate 0→2: (−e^{−2}) − (−1) = 1 − e^{−2} ≈ 0.86.

Q25. Solution:

• ∫₀^{∞} e^{−ax} dx = 1/a for a>0. With a=1.25 ⇒ 0.80.

You might also like