Solutions
SHORT NOTES
Vapour Pressure                                                                     ⇒ VT < (V1 + V2)
Pressure exerted by vapours over the liquid surface at equilibrium.                 ⇒ DHsolution < 0
    T↑ ⇒ V.P.↑
    Attractive Forces↑ ⇒ V.P. ↓                                                                                                           PAº
Raoult’s Law                                                                                       V.P.
(1) Volatile binary liquid mix:                                                                               Ptotal
                                                                                                    PBº
     Volatile liq.        A                      B                                                                               PA
     Mole fraction        XA / YA                XB / YB ⇒ liq/vapour
     V.P. of pure liq.    PAº                    PBº
                                                                                                                       PB
Binary liquid solution:
                                                                                                          0            XA             1
                                                      PAº
                                                                                                          1            XB             0
                   PBº
                                                                                  Fig.: A solution that shows -ve deviation from Raoult’s law
                                                                                              Table: Deviation from Raoult’s Law
                       O             XA          1                                                                      Negative
                                                                                        Positive deviation (DH                                   Zero deviation
By Raoult’s law ⇒ PT =    XA + PA0           PB0 XB   = PA + PB      ...(i)                    = +ve)
                                                                                                                         deviation
                                                                                                                                                   (DH = 0)
By Dalton’s law ⇒ PA = YA PT                                         ...(ii)                                            (DH = – ve)
                  PB = YB PT                                       ...(iii)                                             acetone +
                                                                                 (i)    ethanol + cyclohexane                                   benzene + toluene
                                                                                                                        chloroform
Ideal and Non-Ideal Solutions
Ideal Solutions                                                                            acetone + carbon             benzene +                  n-hexane +
                                                                                 (ii)
              Solution-A                          Solution-B                                  disulphide                chloroform                  n-heptane
               A.......A                           B.......B
                                                                                                                        nitric acid +            ehyl bromide +
                  F1                                  F2                        (iii)     acetone + benzene
                                                                                                                        chloroform                ethyl iodide
                  V1                                        V2
                                                                                                                         acetone +              chlorobenzene +
                                                                                (iv)      ethanol + acetone
                                                                                                                          aniline                bromo benzene
                                                                                                                       water + nitric
                                 A.......B                                       (v)       ethanol + water
                                                                                                                           acid
                                    F
                                                                                        carbon tetrachloride +         diethyl ether +
                                       VT                                       (vi)
                                                                                             chloroform                  chloroform
                         F1  F2  F
      Ideal solution :                 ⇒ DHsolution = 0
                         VT= V1 + V2
                                                                               Azeotropic mixtures: Some liquids on mixing in a particular
Non-Ideal Solutions
                                                                               composition form azeotropes which are binary mixture having
(1) Solution showing +ve deviation :
     F < F1 or F2                                                              same composition in liquid and vapour phase and boil at a
   		VT > V1 + V2                                                              constant temperature. Azeotropic mixture cannot be separated by
 Q DHsolution > 0                                                              fractional distillation.
                                                                               Types of Azeotropic Mixtures
                                                                                 (i) Maximum boiling Azeotropic mixtures: The mixture of
                                                                                     two liquids whose boiling point are more than either of
                                                                                     the two pure components. They are formed by non-ideal
                                                                                     solutions showing negative deviation. For example, HNO3
                                                                                     (68%) + water (32%) mixture boils at 393.5 K.
                                                                                (ii) Minimum boiling Azeotropic mixtures: The mixture
                                                                                     of two liquids whose boiling point is less than either
                                                                                     of the two pure components. They are formed by
    Fig.: A solution that shows +ve deviation from Raoult’s law
                                                                                     non-ideal soluton showing positive deviation. For
(2) Solution showing -ve deviation:                                                  example, ethanol (95.5%) + water (4.5%) water boils at
    ⇒ F > F1 and F2                                                                  351.15 K.
1
Colligative Properties
Properties depends on relative no. of particles of non volatile
solute in solution.
    No. of particle of               Colligative
                               ⇒
    Non volatile solute              Properties
(1) Relative lowering of V.P. :
     PA0 - PA          nB       n                                                        (3) Depression in FP:
                =i            i B [For dilute solution]                                      DTf = Tf – Tf′ = i Kf × m
        PAº          nA + nB    nA
                                                                                                              RTf2
    where nB = mole of Non-volatile solute.                                                  where Kf =
                                                                                                           1000´ f
    i = Van’t Hoff’s factor.                                                                 Tf = F.P. of pure solvent
(2) Elevation in B.P. :                                                                      Kf = molal depression constant
                                                                                             lf = latent heat of fusion per gm.
	DTb = (Tb′ – Tb) = i. Kb × m.
                                                                                         (4) Osmotic pressure:
                    RTb2
    where Kb =                                                                               p ∝ (PA0 – PA)                     Pext = Posmotic = 
                  1000 × lv
                                                                                             p = iC. R.T.
    where Tb = B.P. of pure solvent.
                                                                                             where p = osmotic pressure
    l = Latent heat of vapourization (per gm)                                                C = molarity (mole/lit)            Solution          Solvent
     Kb = molal elevation constant                                                           Sol. (1) and Sol (2)
      M = Molar mass                                                                         If p1 = p2 Isotonic
                ∆H vap                                                                                  soln (1) hypertonic
    where lv =                                                                             If pl > p2
                M                                                                                       soln (2) hypotonic
                        Table: Van’t Hoff factor for different cases of solutes undergoing Ionisation and Association
    Solute                Example                  Ionisation/association (x degree)               y*         Van’t Hoff factor      Abnormal mol. wt. (m1′)
     Non-
                urea, glucose, sucrose etc.                          none                           1                  1                 normal mol.wt.
  electrolyte
   Ternary                                                     2A+ + B2-                                                                     m1
                K2SO4, BaCl2                            A 2 B                                    3              (1 + 2x)
  electrolyte                                            1-x            2x          x                                                        (1 + 2x )
                                                              A3+ + 3B-                                                                       m1
  Electrolyte   K3[Fe(CN)6],                            A3 B                                     4              (1 + 3x)
                                                         1-x            x           3x                                                        (1 + 3x )
  Associated                                                       A 2
                                                               2A                                1             x 2− x                   2m1
  Solute
             benzoic acid in benzene                                                                           1 −  =   
                                                               1-x           x /2                   2           2  2                      (2 - x )
                                                                     1                              1                                          2m1
                forming dimer                                     A 2
                                                               A                                             x         2− x
                                                           (1-x )    2 x /2                         2        1 −         =                (2 - x )
                                                                                                              2            2 
                                                                                                                                           é        m1      ù
                                                                                                    1           é æ1 ö ù                   ê                ú
                any solute                                         A n
                                                               nA                                            ê1 + çç -1÷÷ x ú           ê æ 1 ö÷ ú
                                                               1-x           x /n                   n           êë çè n ÷ø úû              ê 1 + ççç -1÷÷ x ú
                                                                                                                                          êë è n ø úû
                                                                                                                                                 ml
                                                                    1
                                                                  A n                            1                       x
                forming polymer An                           A                                                 1− x +                               x
                                                           (1-x)    n x /n                          n                       n               1− x +
                                                                                                                                                       n
                one mole of solute giving y                       yB
                                                               A                                                                             m1
  General                                                                                           y            [1 + (y –1)x]
                mol of products                                1-x           xy                                                           [1 + (y -1)x]
* number of products from one mole of solute