0% found this document useful (0 votes)
6 views496 pages

Maths Paper 3 Pack

This document is an examination paper for Cambridge International AS & A Level Mathematics, specifically Paper 3 Pure Mathematics 3 from February/March 2021. It includes instructions for candidates, information about the total marks, and a series of mathematical questions covering topics such as logarithms, polynomials, differential equations, and complex numbers. The paper is structured to require candidates to show their workings and provide answers to specified accuracy.

Uploaded by

shaynemakurumure
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
6 views496 pages

Maths Paper 3 Pack

This document is an examination paper for Cambridge International AS & A Level Mathematics, specifically Paper 3 Pure Mathematics 3 from February/March 2021. It includes instructions for candidates, information about the total marks, and a series of mathematical questions covering topics such as logarithms, polynomials, differential equations, and complex numbers. The paper is structured to require candidates to show their workings and provide answers to specified accuracy.

Uploaded by

shaynemakurumure
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 496

www.dynamicpapers.

com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*8483881097*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 February/March 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC21 03_9709_32/2R
© UCLES 2021 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
3

1 Solve the equation ln x3 − 3 = 3 ln x − ln 3. Give your answer correct to 3 significant figures. [3]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/F/M/21 [Turn over


www.dynamicpapers.com
4

2 The polynomial ax3 + 5x2 − 4x + b, where a and b are constants, is denoted by p x. It is given that
x + 2 is a factor of p x and that when p x is divided by x + 1 the remainder is 2.

Find the values of a and b. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
5

3 By first expressing the equation tan x + 45Å = 2 cot x + 1 as a quadratic equation in tan x, solve the
equation for 0Å < x < 180Å. [6]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/F/M/21 [Turn over


www.dynamicpapers.com
6

4 The variables x and y satisfy the differential equation


dy
1 − cos x = y sin x.
dx
It is given that y = 4 when x = π.

(a) Solve the differential equation, obtaining an expression for y in terms of x. [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
7

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Sketch the graph of y against x for 0 < x < 2π. [1]

© UCLES 2021 9709/32/F/M/21 [Turn over


www.dynamicpapers.com
8

5 (a) Express 7 sin x + 2 cos x in the form R sin x + !, where R > 0 and 0Å < ! < 90Å. State the exact
value of R and give ! correct to 2 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
9

(b) Hence solve the equation 7 sin 21 + 2 cos 21 = 1, for 0Å < 1 < 180Å. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21 [Turn over


www.dynamicpapers.com
10

5a
6 Let f x = , where a is a positive constant.
2x − a 3a − x

(a) Express f x in partial fractions. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
11
2a
(b) Hence show that Ó f x dx = ln 6. [4]
a

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21 [Turn over


www.dynamicpapers.com
12
` a ` a ` a ` a
1 2 2 1
7 Two lines have equations r = 3 + s −1 and r = 1 + t −1 .
2 3 4 4

(a) Show that the lines are skew. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
13

(b) Find the acute angle between the directions of the two lines. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21 [Turn over


www.dynamicpapers.com
14

8 The complex numbers u and v are defined by u = −4 + 2i and v = 3 + i.


u
(a) Find in the form x + iy, where x and y are real. [3]
v

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

u
(b) Hence express in the form r ei1 , where r and 1 are exact. [2]
v

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
15

In an Argand diagram, with origin O, the points A, B and C represent the complex numbers u, v and
2u + v respectively.

(c) State fully the geometrical relationship between OA and BC. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(d) Prove that angle AOB = 34 π. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21 [Turn over


www.dynamicpapers.com
16

e2x + 1
9 Let f x = , for x > 0.
e2x − 1

(a) The equation x = f x has one root, denoted by a.

Verify by calculation that a lies between 1 and 1.5. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
17

(c) Find f ′ x. Hence find the exact value of x for which f ′ x = −8. [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21 [Turn over


www.dynamicpapers.com
18

10
y
M

x
O 1

The diagram shows the curve y = sin 2x cos2 x for 0 ≤ x ≤ 12 π, and its maximum point M .

(a) Using the substitution u = sin x, find the exact area of the region bounded by the curve and the
x-axis. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
19

(b) Find the exact x-coordinate of M . [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com
20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/32/F/M/21


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*3201784670*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 February/March 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC22 03_9709_32/RP
© UCLES 2022 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
3

1 Solve the inequality 2x + 3 > 3 x + 2. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/F/M/22 [Turn over


www.dynamicpapers.com
4

2 On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities  z + 2 − 3i ≤ 2 and arg z ≤ 34 π. [4]

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
5

3
ln y

(0.31, 1.21)

(1.06, 0.91)

ln x
O

The variables x and y satisfy the equation xn y2 = C, where n and C are constants. The graph of ln y
against ln x is a straight line passing through the points 0.31, 1.21 and 1.06, 0.91, as shown in the
diagram.

Find the value of n and find the value of C correct to 2 decimal places. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/F/M/22 [Turn over


www.dynamicpapers.com
6

4 The parametric equations of a curve are

x = 1 − cos 1, y = cos 1 − 14 cos 21.

= −2 sin2 12 1 .
dy  
Show that [5]
dx

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
7

5 The angles ! and " lie between 0Å and 180Å and are such that
tan ! + " = 2 and tan ! = 3 tan ".
Find the possible values of ! and ". [6]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/F/M/22 [Turn over


www.dynamicpapers.com
8

6 Find the complex numbers w which satisfy the equation w2 + 2iw* = 1 and are such that Re w ≤ 0.
Give your answers in the form x + iy, where x and y are real. [6]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
9

7 (a) By sketching a suitable pair of graphs, show that the equation 4 − x2 = sec 12 x has exactly one
root in the interval 0 ≤ x < π. [2]

(b) Verify by calculation that this root lies between 1 and 2. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

?
(c) Use the iterative formula xn+1 = 4 − sec 21 xn to determine the root correct to 2 decimal places.
Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/F/M/22 [Turn over


www.dynamicpapers.com
10

8 (a) Find the quotient and remainder when 8x3 + 4x2 + 2x + 7 is divided by 4x2 + 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
11

8x3 + 4x2 + 2x + 7
1

(b) Hence find the exact value of Ô


2

4x2 + 1
dx. [5]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/F/M/22 [Turn over


www.dynamicpapers.com
12

9 The variables x and y satisfy the differential equation

x + 1 3x + 1 = y,
dy
dx
and it is given that y = 1 when x = 1.

Solve the differential equation and find the exact value of y when x = 3, giving your answer in a
simplified form. [9]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
13

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/F/M/22 [Turn over


www.dynamicpapers.com
14

10 The points A and B have position vectors 2i + j + k and i − 2j + 2k respectively. The line l has vector
equation r = i + 2j − 3k + - i − 3j − 2k.

(a) Find a vector equation for the line through A and B. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Find the acute angle between the directions of AB and l, giving your answer in degrees. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
15

(c) Show that the line through A and B does not intersect the line l. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/F/M/22 [Turn over


www.dynamicpapers.com
16

11
y

x
O 1

The diagram shows the curve y = sin x cos 2x for 0 ≤ x ≤ 12 π, and its maximum point M .

(a) Find the x-coordinate of M , giving your answer correct to 3 significant figures. [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
17

(b) Using the substitution u = cos x, find the area of the shaded region enclosed by the curve and the
x-axis in the first quadrant, giving your answer in a simplified exact form. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 9709/32/F/M/22


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*9337495756*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 February/March 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages.

JC23 03_9709_32/2R
© UCLES 2023 [Turn over
www.dynamicpapers.com
2

1 It is given that x = ln 2y − 3 − ln y + 4.

Express y in terms of x. [3]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
3

2 (a) On an Argand diagram, shade the region whose points represent complex numbers z satisfying
the inequalities − 13 π ≤ arg z − 1 − 2i ≤ 13 π and Re z ≤ 3. [3]

(b) Calculate the least value of arg z for points in the region from (a). Give your answer in radians
correct to 3 decimal places. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23 [Turn over


www.dynamicpapers.com
4

3 The polynomial 2x4 + ax3 + bx − 1, where a and b are constants, is denoted by p x. When p x is
divided by x2 − x + 1 the remainder is 3x + 2.

Find the values of a and b. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
5

4 Solve the equation


5z
− zz* + 30 + 10i = 0,
1 + 2i
giving your answers in the form x + iy, where x and y are real. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/F/M/23 [Turn over


www.dynamicpapers.com
6

5 The parametric equations of a curve are

x = t e 2t , y = t2 + t + 3.

dy
(a) Show that = e−2t . [3]
dx

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
7
@ A
1
(b) Hence show that the normal to the curve, where t = −1, passes through the point 0, 3 − 4 .
e
[3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23 [Turn over


www.dynamicpapers.com
8

6 (a) Express 5 sin 1 + 12 cos 1 in the form R cos 1 − !, where R > 0 and 0 < ! < 12 π. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
9

(b) Hence solve the equation 5 sin 2x + 12 cos 2x = 6 for 0 ≤ x ≤ π. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23 [Turn over


www.dynamicpapers.com
10

7
B

O x rad

The diagram shows a circle with centre O and radius r . The angle of the minor sector AOB of the
circle is x radians. The area of the major sector of the circle is 3 times the area of the shaded region.

(a) Show that x = 34 sin x + 12 π. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
11

(b) Show by calculation that the root of the equation in (a) lies between 2 and 2.5. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use an iterative formula based on the equation in (a) to calculate this root correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23 [Turn over


www.dynamicpapers.com
12

8
y

1
2
x
O

The diagram shows the curve y = x3 ln x, for x > 0, and its minimum point M .

(a) Find the exact coordinates of M . [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
13

(b) Find the exact area of the shaded region bounded by the curve, the x-axis and the line x = 12 . [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23 [Turn over


www.dynamicpapers.com
14

9 The variables x and y satisfy the differential equation


dy
= e3y sin2 2x.
dx
It is given that y = 0 when x = 0.

Solve the differential equation and find the value of y when x = 12 . [7]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
15

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/F/M/23 [Turn over


www.dynamicpapers.com
16

10 With respect to the origin O, the points A, B, C and D have position vectors given by
` a ` a ` a ` a
−−¿ 3 −−¿ 1 −−¿ 1 −−¿ 5
OA = −1 , OB = 2 , OC = −2 and OD = −6 .
2 −3 5 11

−−¿ −−¿
(a) Find the obtuse angle between the vectors OA and OB. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

The line l passes through the points A and B.

(b) Find a vector equation for the line l. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
17

(c) Find the position vector of the point of intersection of the line l and the line passing through
C and D. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23 [Turn over


www.dynamicpapers.com
18

5x2 + x + 11
11 Let f x = .
4 + x2  1 + x

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
19
2
(b) Hence show that Ó f x dx = ln 54 − 18 π. [5]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com
20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2023 9709/32/F/M/23


www.dynamicpapers.com

Cambridge International AS & A Level


* 5 5 5 2 0 0 4 5 5 2 *

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 February/March 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
● You should use a calculator where appropriate.
● You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
● The total mark for this paper is 75.
● The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

DC (LK/SW) 329847/3
© UCLES 2024 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2024 9709/32/F/M/24


www.dynamicpapers.com
3

1 Find the quotient and remainder when x 4 - 3x 3 + 9x 2 - 12x + 27 is divided by x 2 + 5. [3]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

© UCLES 2024 9709/32/F/M/24 [Turn over


www.dynamicpapers.com
4

2 (a) Find the coefficient of x 2 in the expansion of (2x - 5) 4 - x . [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

(b) State the set of values of x for which the expansion in part (a) is valid. [1]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/32/F/M/24


www.dynamicpapers.com
5

3 It is given that z =- 3 + i .

(a) Express z 2 in the form r e ii , where r 2 0 and - r 1 i G r . [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
z2
(b) The complex number ~ is such that z 2 ~ is real and = 12 .
~
Find the two possible values of ~, giving your answers in the form Re ia , where R 2 0 and
- r 1 a G r. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
© UCLES 2024 9709/32/F/M/24 [Turn over
www.dynamicpapers.com
6

4 The positive numbers p and q are such that

p
ln e o = a and ln `q 2 pj = b .
q

Express ln ` p 7 qj in terms of a and b. [4]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
© UCLES 2024 9709/32/F/M/24
www.dynamicpapers.com
7

5 (a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities z - 4 - 2i G 3 and z H 10 - z . [4]

(b) Find the greatest value of arg z for points in this region. [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
© UCLES 2024 9709/32/F/M/24 [Turn over
www.dynamicpapers.com
8

6 The equation of a curve is 2y 2 + 3xy + x = x 2 .

d y 2x - 3y - 1
(a) Show that = . [4]
dx 4y + 3x

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
© UCLES 2024 9709/32/F/M/24
www.dynamicpapers.com
9

(b) Hence show that the curve does not have a tangent that is parallel to the x-axis. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/32/F/M/24 [Turn over


www.dynamicpapers.com
10

7
y

O a x

The diagram shows the curve y = xe 2x - 5x and its minimum point M, where x = a .

ln b l.
1 5
(a) Show that a satisfies the equation a = [3]
2 1 + 2a
............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/32/F/M/24


www.dynamicpapers.com
11

(b) Verify by calculation that a lies between 0.4 and 0.5 . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
© UCLES 2024 9709/32/F/M/24 [Turn over
www.dynamicpapers.com
12

8 (a) Express 3 sin x + 2 2 cos bx + 14 rl in the form R sin (x + a) , where R 2 0 and 0 1 a 1 12 r . State
the exact value of R and give a correct to 3 decimal places. [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/32/F/M/24


www.dynamicpapers.com
13

(b) Hence solve the equation

6 sin 12 i + 4 2 cos b12 i + 14 rl = 3

for - 4r 1 i 1 4r . [5]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/32/F/M/24 [Turn over


www.dynamicpapers.com
14

9 Relative to the origin O, the position vectors of the points A, B and C are given by

OA = 5i - 2 j + k, OB = 8i + 2 j - 6k and OC = 3i + 4 j - 7k .

(a) Show that OABC is a rectangle. [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/32/F/M/24


www.dynamicpapers.com
15

(b) Use a scalar product to find the acute angle between the diagonals of OABC. [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/32/F/M/24 [Turn over


www.dynamicpapers.com
16

36a 2
10 Let f (x) = , where a is a positive constant.
(2a + x) (2a - x) (5a - 2x)

(a) Express f (x) in partial fractions. [5]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/32/F/M/24


www.dynamicpapers.com
17
a
(b) Hence find the exact value of y-a
f (x) d x , giving your answer in the form p ln q + r ln s where p and

r are integers and q and s are prime numbers. [5]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/32/F/M/24 [Turn over


www.dynamicpapers.com
18

11 The variables y and i satisfy the differential equation


dy
(1 + y) (1 + cos 2i) = e 3y .
di
It is given that y = 0 when i = 14 r .

Solve the differential equation and find the exact value of tan i when y = 1. [9]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

© UCLES 2024 9709/32/F/M/24


www.dynamicpapers.com
19

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
© UCLES 2024 9709/32/F/M/24
www.dynamicpapers.com
20

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly
shown.

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2024 9709/32/F/M/24


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*3602942828*

MATHEMATICS 9709/31
Paper 3 Pure Mathematics 3 May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC21 06_9709_31/RP
© UCLES 2021 [Turn over
www.dynamicpapers.com
2

1 Solve the inequality 23x − 1 <  x + 1. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
3

2ex + e−x
= 3, giving your answer correct to 3 decimal places.
2 + ex
2 Find the real root of the equation
Your working should show clearly that the equation has only one real root. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/31/M/J/21 [Turn over


www.dynamicpapers.com
4

2− 3

(a) Given that cos x − 30Å = 2 sin x + 30Å, show that tan x =
1−2 3
3  . [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence solve the equation


cos x − 30Å = 2 sin x + 30Å,
for 0Å < x < 360Å. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
5

1 − cos 21
 tan2 1.
1 + cos 21
4 (a) Prove that [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


1 − cos 21
(b) Hence find the exact value of Ô d1.
3

1 + cos 21
[4]

6

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21 [Turn over


www.dynamicpapers.com
6

5 (a) Solve the equation z2 − 2piz − q = 0, where p and q are real constants. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

In an Argand diagram with origin O, the roots of this equation are represented by the distinct points
A and B.

(b) Given that A and B lie on the imaginary axis, find a relation between p and q. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
7

(c) Given instead that triangle OAB is equilateral, express q in terms of p. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21 [Turn over


www.dynamicpapers.com
8

6 The parametric equations of a curve are

x = ln 2 + 3t, y=
t
2 + 3t
.

(a) Show that the gradient of the curve is always positive. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
9

(b) Find the equation of the tangent to the curve at the point where it intersects the y-axis. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21 [Turn over


www.dynamicpapers.com
10

7
y

x
O a

tan−1 x
The diagram shows the curve y =  and its maximum point M where x = a.
x

(a) Show that a satisfies the equation


@ A
a = tan
2a
1 + a2
. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
11

(b) Verify by calculation that a lies between l.3 and 1.5. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21 [Turn over


www.dynamicpapers.com
12
` a
−−¿ 1
8 With respect to the origin O, the points A and B have position vectors given by OA = 2 and
` a ` a ` a 1
−−¿ 3 2 1
OB = 1 . The line l has equation r = 3 + , −2 .
−2 1 1

(a) Find the acute angle between the directions of AB and l. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
13

(b) Find the position vector of the point P on l such that AP = BP. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21 [Turn over


www.dynamicpapers.com
14

− 23
9 The equation of a curve is y = x ln x for x > 0. The curve has one stationary point.

(a) Find the exact coordinates of the stationary point. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
15

(b) Show that Ó y dx = 18 ln 2 − 9.


8
[5]
1

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/M/J/21 [Turn over


www.dynamicpapers.com
16

= x2 1 + 2x, and x = 1 when t = 0.


dx
10 The variables x and t satisfy the differential equation
dt

Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x.
[11]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
17

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/31/M/J/21


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*4535261400*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC21 06_9709_32/RP
© UCLES 2021 [Turn over
www.dynamicpapers.com
2

1 Solve the inequality 2x − 1 < 3 x + 1. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
3

2 On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities  z + 1 − i ≤ 1 and arg z − 1 ≤ 34 π. [4]

© UCLES 2021 9709/32/M/J/21 [Turn over


www.dynamicpapers.com
4

3 The variables x and y satisfy the equation x = A 3−y , where A is a constant.

(a) Explain why the graph of y against ln x is a straight line and state the exact value of the gradient
of the line. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

It is given that the line intersects the y-axis at the point where y = 1.3.

(b) Calculate the value of A, giving your answer correct to 2 decimal places. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
5
2  
4 Using integration by parts, find the exact value of Ó tan−1 12 x dx. [5]
0

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/M/J/21 [Turn over


www.dynamicpapers.com
6

5 The complex number u is given by u = 10 − 4 6i.

Find the two square roots of u, giving your answers in the form a + ib, where a and b are real and
exact. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
7

6 (a) Prove that cosec 21 − cot 21  tan 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence show that Ó cosec 21 − cot 21 d1 = 12 ln 2.


3
[4]

4

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/M/J/21 [Turn over


www.dynamicpapers.com
8
y
7 A curve is such that the gradient at a general point with coordinates x, y is proportional to  .
x+1
The curve passes through the points with coordinates 0, 1 and 3, e.

By setting up and solving a differential equation, find the equation of the curve, expressing y in terms
of x. [7]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
9

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/M/J/21 [Turn over


www.dynamicpapers.com
10

8 The equation of a curve is y = e−5x tan2 x for − 12 π < x < 12 π.

Find the x-coordinates of the stationary points of the curve. Give your answers correct to 3 decimal
places where appropriate. [8]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
11

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/M/J/21 [Turn over


www.dynamicpapers.com
12

14 − 3x + 2x2
9 Let f x = .
2 + x 3 + x2 

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
13

(b) Hence obtain the expansion of f x in ascending powers of x, up to and including the term in x2 .
[5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/M/J/21 [Turn over


www.dynamicpapers.com
14

10
D C

r r

x rad x rad
A r M r B

The diagram shows a trapezium ABCD in which AD = BC = r and AB = 2r . The acute angles BAD
and ABC are both equal to x radians. Circular arcs of radius r with centres A and B meet at M , the
midpoint of AB.

(a) Given that the sum of the areas of the shaded sectors is 90% of the area of the trapezium, show
that x satisfies the equation x = 0.9 2 − cos x sin x. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Verify by calculation that x lies between 0.5 and 0.7. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
15

(c) Show that if a sequence of values in the interval 0 < x < 12 π given by the iterative formula
P Q
−1 xn
xn+1 = cos 2−
0.9 sin xn

converges, then it converges to the root of the equation in part (a). [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(d) Use this iterative formula to determine x correct to 2 decimal places. Give the result of each
iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/M/J/21 [Turn over


www.dynamicpapers.com
16
−−¿
11 With respect to the origin O, the points A and B have position vectors given by OA = 2i − j and
−−¿
OB = j − 2k.

(a) Show that OA = OB and use a scalar product to calculate angle AOB in degrees. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
17

The midpoint of AB is M . The point P on the line through O and M is such that PA : OA = 7 : 1.

(b) Find the possible position vectors of P. [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/32/M/J/21


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*2912457036*

MATHEMATICS 9709/33
Paper 3 Pure Mathematics 3 May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC21 06_9709_33/RP
© UCLES 2021 [Turn over
www.dynamicpapers.com
2

Expand 1 + 3x 3 in ascending powers of x, up to and including the term in x3 , simplifying the
2
1
coefficients. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
3

2 Solve the equation 4x = 3 + 4−x . Give your answer correct to 3 decimal places. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/33/M/J/21 [Turn over


www.dynamicpapers.com
4

3 The parametric equations of a curve are

x = t + ln t + 2, y = t − 1e−2t ,
where t > −2.

dy
(a) Express in terms of t, simplifying your answer. [5]
dx

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Find the exact y-coordinate of the stationary point of the curve. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
5

15 − 6x
Let f x =
1 + 2x 4 − x
4 .

(a) Express f x in partial fractions. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

0a1
(b) Hence find Ó f x dx, giving your answer in the form ln
2
, where a and b are integers. [4]
1 b

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21 [Turn over


www.dynamicpapers.com
6

5 (a) By first expanding tan 21 + 21, show that the equation tan 41 = 12 tan 1 may be expressed as
tan4 1 + 2 tan2 1 − 7 = 0. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
7

(b) Hence solve the equation tan 41 = 12 tan 1, for 0Å < 1 < 180Å. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21 [Turn over


www.dynamicpapers.com
8

6 (a) By sketching a suitable pair of graphs, show that the equation cot 21 x = 1 + e−x has exactly one
root in the interval 0 < x ≤ π. [2]

(b) Verify by calculation that this root lies between 1 and 1.5. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
9
A @
(c) Use the iterative formula xn+1 = 2 tan−1
1
1 + e−xn
to determine the root correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21 [Turn over


www.dynamicpapers.com
10

7
y

x
O M N

For the curve shown in the diagram, the normal to the curve at the point P with coordinates x, y
meets the x-axis at N . The point M is the foot of the perpendicular from P to the x-axis.

The curve is such that for all values of x in the interval 0 ≤ x < 12 π, the area of triangle PMN is equal
to tan x.

=
MN dy
(a) (i) Show that . [1]
y dx

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

= tan x.
dy
(ii) Hence show that x and y satisfy the differential equation 12 y2 [2]
dx

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
11

(b) Given that y = 1 when x = 0, solve this differential equation to find the equation of the curve,
expressing y in terms of x. [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21 [Turn over


www.dynamicpapers.com
12

8
y
M

x
O

The diagram shows the curve y =


ln x
and its maximum point M .
x4
(a) Find the exact coordinates of M . [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
13
a
(b) By using integration by parts, show that for all a > 1, Ô dx < 19 .
ln x
[6]
1
x4

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21 [Turn over


www.dynamicpapers.com
14

−−¿ −−¿
9 The quadrilateral ABCD is a trapezium in which AB and DC are parallel. With respect to the
origin O, the position vectors of A, B and C are given by OA = −i + 2j + 3k, OB = i + 3j + k and
−−¿
OC = 2i + 2j − 3k.
−−¿ −−¿
(a) Given that DC = 3AB, find the position vector of D. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) State a vector equation for the line through A and B. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
15

(c) Find the distance between the parallel sides and hence find the area of the trapezium. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21 [Turn over


www.dynamicpapers.com
16

(a) Verify that −1 + 2i is a root of the equation z4 + 3z2 + 2z + 12 = 0.



10 [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Find the other roots of this equation. [7]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
17

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/33/M/J/21


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*5794103083*

MATHEMATICS 9709/31
Paper 3 Pure Mathematics 3 May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC22 06_9709_31/RP
© UCLES 2022 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
3

1 Solve the equation 2 32x−1  = 4x+1 , giving your answer correct to 2 decimal places. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/31/M/J/22 [Turn over


www.dynamicpapers.com
4
−2
(a) Expand 2 − x2

2 in ascending powers of x, up to and including the term in x4 , simplifying the
coefficients. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) State the set of values of x for which the expansion is valid. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
5

3 Solve the equation 2 cot 2x + 3 cot x = 5, for 0Å < x < 180Å. [6]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/31/M/J/22 [Turn over


www.dynamicpapers.com
6

4 The variables x and y satisfy the differential equation

=
dy xy
dx 1 + x2
,

and y = 2 when x = 0.

Solve the differential equation, obtaining a simplified expression for y in terms of x. [7]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
7

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/31/M/J/22 [Turn over


www.dynamicpapers.com
8

5 The polynomial ax3 − 10x2 + bx + 8, where a and b are constants, is denoted by p x. It is given that
x − 2 is a factor of both p x and p′ x.

(a) Find the values of a and b. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
9

(b) When a and b have these values, factorise p x completely. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22 [Turn over


www.dynamicpapers.com
10
3
Let I = Ô
27
6 2 dx.
9 + x2

0

(a) Using the substitution x = 3 tan 1, show that I = Ó cos2 1 d1.


4
[4]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
11

(b) Hence find the exact value of I . [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22 [Turn over


www.dynamicpapers.com
12

2 − a 2i
 
The complex number u is defined by u =
1 + 2i
7 , where a is a positive integer.

(a) Express u in terms of a, in the form x + iy, where x and y are real and exact. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
13

It is now given that a = 3.

(b) Express u in the form rei1 , where r > 0 and −π < 1 ≤ π, giving the exact values of r and 1. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Using your answer to part (b), find the two square roots of u. Give your answers in the form rei1 ,
where r > 0 and −π < 1 ≤ π, giving the exact values of r and 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22 [Turn over


www.dynamicpapers.com
14

8 The equation of a curve is x3 + y3 + 2xy + 8 = 0.

dy
(a) Express in terms of x and y. [4]
dx

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
15

The tangent to the curve at the point where x = 0 and the tangent at the point where y = 0 intersect at
the acute angle !.

(b) Find the exact value of tan !. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22 [Turn over


www.dynamicpapers.com
16

9
G F

D
k E

O C
j

A N B

In the diagram, OABCDEFG is a cuboid in which OA = 2 units, OC = 4 units and OG = 2 units. Unit
vectors i, j and k are parallel to OA, OC and OG respectively. The point M is the midpoint of DF.
The point N on AB is such that AN = 3NB.
−−−¿ −−−¿
(a) Express the vectors OM and MN in terms of i, j and k. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Find a vector equation for the line through M and N . [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
17
?
(c) Show that the length of the perpendicular from O to the line through M and N is 53 . [4]
6

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22 [Turn over


www.dynamicpapers.com
18

10
y

x
O a π

The curve y = x sin x has one stationary point in the interval 0 < x < π, where x = a (see diagram).


(a) Show that tan a = − 12 a. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
19

(b) Verify by calculation that a lies between 2 and 2.5. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Show that if a sequence of values in the interval 0 < x < π given by the iterative formula
xn+1 = π − tan−1 12 xn converges, then it converges to a, the root of the equation in part (a). [2]


........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(d) Use the iterative formula given in part (c) to determine a correct to 2 decimal places. Give the
result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com
20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 9709/31/M/J/22


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*0788354854*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC22 06_9709_32/RP
© UCLES 2022 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
3

1 Solve the equation ln e2x + 3 = 2x + ln 3, giving your answer correct to 3 decimal places. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/M/J/22 [Turn over


www.dynamicpapers.com
4

2 Solve the equation 3 cos 21 = 3 cos 1 + 2, for 0Å ≤ 1 ≤ 360Å. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
5

3 The polynomial ax3 + x2 + bx + 3 is denoted by p x. It is given that p x is divisible by 2x − 1 and


that when p x is divided by x + 2 the remainder is 5.

Find the values of a and b. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/M/J/22 [Turn over


www.dynamicpapers.com
6

4 The equation of a curve is y = cos3 x sin x. It is given that the curve has one stationary point in the
interval 0 < x < 12 π.

Find the x-coordinate of this stationary point, giving your answer correct to 3 significant figures. [6]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
7

5 (a) By sketching a suitable pair of graphs, show that the equation ln x = 3x − x2 has one real root.
[2]

(b) Verify by calculation that the root lies between 2 and 2.8. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

/
(c) Use the iterative formula xn+1 = 3xn − ln xn to determine the root correct to 2 decimal places.
Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22 [Turn over


www.dynamicpapers.com
8

6 The variables x and y satisfy the differential equation

= xey−x ,
dy
dx
and y = 0 when x = 0.

(a) Solve the differential equation, obtaining an expression for y in terms of x. [7]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
9

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Find the value of y when x = 1, giving your answer in the form a − ln b, where a and b are
integers. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22 [Turn over


www.dynamicpapers.com
10

7 The equation of a curve is x3 + 3x2 y − y3 = 3.

dy x2 + 2xy
(a) Show that = 2 . [4]
dx y − x2

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
11

(b) Find the coordinates of the points on the curve where the tangent is parallel to the x-axis. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22 [Turn over


www.dynamicpapers.com
12

x2 + 9x
8 Let f x = .
3x − 1 x2 + 3

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
13
3
(b) Hence find Ó f x dx, giving your answer in a simplified exact form. [5]
1

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22 [Turn over


www.dynamicpapers.com
14

9 The lines l and m have vector equations


r = −i + 3j + 4k + , 2i − j − k and r = 5i + 4j + 3k + - ai + bj + k
respectively, where a and b are constants.

(a) Given that l and m intersect, show that 2b − a = 4. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
15

(b) Given also that l and m are perpendicular, find the values of a and b. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) When a and b have these values, find the position vector of the point of intersection of l and m.
[2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22 [Turn over


www.dynamicpapers.com
16

10 The complex number −1 + 7i is denoted by u. It is given that u is a root of the equation

2x3 + 3x2 + 14x + k = 0,


where k is a real constant.

(a) Find the value of k. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Find the other two roots of the equation. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
17

(c) On an Argand diagram, sketch the locus of points representing complex numbers z satisfying
the equation  z − u  = 2. [2]

(d) Determine the greatest value of arg z for points on this locus, giving your answer in radians. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 9709/32/M/J/22


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*9937725522*

MATHEMATICS 9709/33
Paper 3 Pure Mathematics 3 May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC22 06_9709_33/2R
© UCLES 2022 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
3

1 Find, in terms of a, the set of values of x satisfying the inequality


23x + a  < 2x + 3a ,
where a is a positive constant. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/33/M/J/22 [Turn over


www.dynamicpapers.com
4

2 Solve the equation cos 1 − 60Å = 3 sin 1, for 0Å ≤ 1 ≤ 360Å. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
5

3 (a) Show that the equation log3 2x + 1 = 1 + 2 log3 x − 1 can be written as a quadratic equation
in x. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence solve the equation log3 4y + 1 = 1 + 2 log3 2y − 1, giving your answer correct to 2 decimal
places. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22 [Turn over


www.dynamicpapers.com
6

4 The curve y = e−4x tan x has two stationary points in the interval 0 ≤ x < 12 π.

dy
(a) Obtain an expression for and show it can be written in the form sec2 x a + b sin 2xe−4x , where
dx
a and b are constants. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
7

(b) Hence find the exact x-coordinates of the two stationary points. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22 [Turn over


www.dynamicpapers.com
8

5 The complex number 3 − i is denoted by u.

(a) Show, on an Argand diagram with origin O, the points A, B and C representing the complex
numbers u, u* and u* − u respectively.

State the type of quadrilateral formed by the points O, A, B and C. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

u*
(b) Express in the form x + iy, where x and y are real. [3]
u

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
9

u*    
(c) By considering the argument of , or otherwise, prove that tan−1 34 = 2 tan−1 13 . [2]
u

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22 [Turn over


www.dynamicpapers.com
10

1
6 The parametric equations of a curve are x = , y = ln tan t, where 0 < t < 12 π.
cos t

dy cos t
(a) Show that = . [5]
dx sin2 t

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
11

(b) Find the equation of the tangent to the curve at the point where y = 0. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22 [Turn over


www.dynamicpapers.com
12

5x2 + 8x − 3
7 Let f x = .
x − 2 2x2 + 3

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
13

(b) Hence obtain the expansion of f x in ascending powers of x, up to and including the term in x2 .
[5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22 [Turn over


www.dynamicpapers.com
14

8 At time t days after the start of observations, the number of insects in a population is N . The variation
dN
= kN 2 cos 0.02t, where
3
in the number of insects is modelled by a differential equation of the form
dt
k is a constant and N is a continuous variable. It is given that when t = 0, N = 100.

(a) Solve the differential equation, obtaining a relation between N , k and t. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
15

(b) Given also that N = 625 when t = 50, find the value of k. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Obtain an expression for N in terms of t, and find the greatest value of N predicted by this model.
[2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22 [Turn over


www.dynamicpapers.com
16
−−¿
9 With respect to the origin O, the point A has position vector given by OA = i + 5j + 6k. The line l has
vector equation r = 4i + k + , −i + 2j + 3k.

(a) Find in degrees the acute angle between the directions of OA and l. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Find the position vector of the foot of the perpendicular from A to l. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
17

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Hence find the position vector of the reflection of A in l. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22 [Turn over


www.dynamicpapers.com
18
a
10 The constant a is such that Ó x2 ln x dx = 4.
1

@ A 13
35
(a) Show that a = . [5]
3 ln a − 1

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
19

(b) Verify by calculation that a lies between 2.4 and 2.8. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com
20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 9709/33/M/J/22


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*2968750175*

MATHEMATICS 9709/31
Paper 3 Pure Mathematics 3 May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC23 06_9709_31/2R
© UCLES 2023 [Turn over
www.dynamicpapers.com
2

1 Solve the equation


3e2x − 4e−2x = 5.
Give the answer correct to 3 decimal places. [3]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
3

2 (a) Sketch the graph of y = 2x + 3. [1]

(b) Solve the inequality 3x + 8 > 2x + 3. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23 [Turn over


www.dynamicpapers.com
4

3 Find the coefficient of x3 in the binomial expansion of 3 + x 1 + 4x. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
5

4 (a) Show that the equation sin 21 + cos 21 = 2 sin2 1 can be expressed in the form

cos2 1 + 2 sin 1 cos 1 − 3 sin2 1 = 0. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence solve the equation sin 21 + cos 21 = 2 sin2 1 for 0Å < 1 < 180Å. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23 [Turn over


www.dynamicpapers.com
6

5 The equation of a curve is x2 y − ay2 = 4a3 , where a is a non-zero constant.

dy 2xy
(a) Show that = . [4]
dx 2ay − x2

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
7

(b) Hence find the coordinates of the points where the tangent to the curve is parallel to the y-axis.
[4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23 [Turn over


www.dynamicpapers.com
8

6 Relative to the origin O, the points A, B and C have position vectors given by
` a ` a ` a
−−¿ 2 −−¿ 4 −−¿ 3
OA = 1 , OB = 3 and OC = −2 .
3 2 −4
The quadrilateral ABCD is a parallelogram.

(a) Find the position vector of D. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
9

(b) The angle between BA and BC is 1.

Find the exact value of cos 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


(c) Hence find the area of ABCD, giving your answer in the form p q, where p and q are integers.
[4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23 [Turn over


www.dynamicpapers.com
10

7 The variables x and y satisfy the differential equation


dy 4 tan 2x
cos 2x = ,
dx sin2 3y

where 0 ≤ x < 14 π. It is given that y = 0 when x = 16 π.

Solve the differential equation to obtain the value of x when y = 16 π. Give your answer correct to
3 decimal places. [8]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
11

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/31/M/J/23 [Turn over


www.dynamicpapers.com
12

3 − 3x2
8 Let f x = .
2x + 1 x + 22

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
13
4
(b) Hence find the exact value of Ó f x dx, giving your answer in the form a + b ln c, where a, b
0
and c are integers. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23 [Turn over


www.dynamicpapers.com
14
a
9 The constant a is such that Ó xe−2x dx = 18 .
0

(a) Show that a = 12 ln 4a + 2. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
15

(b) Verify by calculation that a lies between 0.5 and 1. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use an iterative formula based on the equation in (a) to determine a correct to 2 decimal places.
Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23 [Turn over


www.dynamicpapers.com
16

10 The polynomial x3 + 5x2 + 31x + 75 is denoted by p x.

(a) Show that x + 3 is a factor of p x. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


(b) Show that z = −1 + 2 6i is a root of p z = 0. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
17

(c) Hence find the complex numbers z which are roots of p z2  = 0. [7]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2023 9709/31/M/J/23


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*7943719452*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC23 06_9709_32/2R
© UCLES 2023 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
3

1 Solve the inequality 5x − 3 < 23x − 7. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/M/J/23 [Turn over


www.dynamicpapers.com
4

2 Solve the equation ln 2x2 − 3 = 2 ln x − ln 2, giving your answer in an exact form. [3]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
5

3 (a) On an Argand diagram, sketch the locus of points representing complex numbers z satisfying
 z + 3 − 2i = 2. [2]

(b) Find the least value of  z  for points on this locus, giving your answer in an exact form. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23 [Turn over


www.dynamicpapers.com
6

4 Solve the equation 2 cos x − cos 21 x = 1 for 0 ≤ x ≤ 2π. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
7

5 The complex number 2 + yi is denoted by a, where y is a real number and y < 0. It is given that
f a = a3 − a2 − 2a.

(a) Find a simplified expression for f a in terms of y. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

 
(b) Given that Re f a = −20, find arg a. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23 [Turn over


www.dynamicpapers.com
8

6 The equation cot 21 x = 3x has one root in the interval 0 < x < π, denoted by !.

(a) Show by calculation that ! lies between 0.5 and 1. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Show that, if a sequence of positive values given by the iterative formula
P @ AQ
−1 1
xn+1 = 3 xn + 4 tan
1
3xn
converges, then it converges to !. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
9

(c) Use this iterative formula to calculate ! correct to 2 decimal places. Give the result of each
iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23 [Turn over


www.dynamicpapers.com
10

7 The equation of a curve is 3x2 + 4xy + 3y2 = 5.

dy 3x + 2y
(a) Show that =− . [4]
dx 2x + 3y

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
11

(b) Hence find the exact coordinates of the two points on the curve at which the tangent is parallel
to y + 2x = 0. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23 [Turn over


www.dynamicpapers.com
12

8 (a) The variables x and y satisfy the differential equation

dy 4 + 9y2
= 2x+1 .
dx e
It is given that y = 0 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x. [7]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
13

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) State what happens to the value of y as x tends to infinity. Give your answer in an exact form.
[1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23 [Turn over


www.dynamicpapers.com
14

2x2 + 17x − 17
9 Let f x = .
1 + 2x 2 − x2

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
15
1
(b) Hence show that Ó f x dx = 52 − ln 72. [5]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23 [Turn over


www.dynamicpapers.com
16

10
y
M

x
O


The diagram shows the curve y = x + 5 3 − 2x and its maximum point M .

(a) Find the exact coordinates of M . [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
17

(b) Using the substitution u = 3 − 2x, find by integration thearea of the shaded region bounded by
the curve and the x-axis. Give your answer in the form a 13, where a is a rational number. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23 [Turn over


www.dynamicpapers.com
18

11 The points A and B have position vectors i + 2j − 2k and 2i − j + k respectively. The line l has equation
r = i − j + 3k + - 2i − 3j + 4k.

(a) Show that l does not intersect the line passing through A and B. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
19

(b) Find the position vector of the foot of the perpendicular from A to l. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com
20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2023 9709/32/M/J/23


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*5471210840*

MATHEMATICS 9709/33
Paper 3 Pure Mathematics 3 May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages.

JC23 06_9709_33/2R
© UCLES 2023 [Turn over
www.dynamicpapers.com
2

1 Solve the equation ln x + 5 = 5 + ln x. Give your answer correct to 3 decimal places. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
3

2 Find the quotient and remainder when 2x4 − 27 is divided by x2 + x + 3. [3]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/33/M/J/23 [Turn over


www.dynamicpapers.com
4

3 On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities  z − 3 − i ≤ 3 and  z  ≥  z − 4i. [4]

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
5

4 The parametric equations of a curve are


cos 1
x= , y = 1 + 2 cos 1.
2 − sin 1
dy
Show that = 2 − sin 12 . [5]
dx

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/33/M/J/23 [Turn over


www.dynamicpapers.com
6

5
y

x
O a 1

The diagram shows the part of the curve y = x2 cos 3x for 0 ≤ x ≤ 16 π, and its maximum point M , where
x = a.
@ A
−1 2
(a) Show that a satisfies the equation a = 3 tan
1 . [3]
3a

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
7

(b) Use an iterative formula based on the equation in (a) to determine a correct to 2 decimal places.
Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23 [Turn over


www.dynamicpapers.com
8

6 (a) Express 3 cos x + 2 cos x − 60Å in the form R cos x − !, where R > 0 and 0Å < ! < 90Å.
State the exact value of R and give ! correct to 2 decimal places. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
9

(b) Hence solve the equation


3 cos 21 + 2 cos 21 − 60Å = 2.5
for 0Å < 1 < 180Å. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23 [Turn over


www.dynamicpapers.com
10

7 (a) Use the substitution u = cos x to show that


π 1
Ó sin 2x e2 cos x dx = Ó 2ue2u du. [4]
0 −1

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
11
π
(b) Hence find the exact value of Ó sin 2x e2 cos x dx. [4]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23 [Turn over


www.dynamicpapers.com
12

8 The variables x and y satisfy the differential equation

dy y2 + 4
=
dx x y + 4

for x > 0. It is given that x = 4 when y = 2 3.

Solve the differential equation to obtain the value of x when y = 2. [8]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
13

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/33/M/J/23 [Turn over


www.dynamicpapers.com
14

9 The lines l and m have equations


l : r = ai + 3j + bk + , ci − 2j + 4k,
m : r = i + 2j + 3k + - 2i − 3j + k.
Relative to the origin O, the position vector of the point P is 4i + 7j − 2k.

(a) Given that l is perpendicular to m and that P lies on l, find the values of the constants a, b and c.
[4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
15

(b) The perpendicular from P meets line m at Q. The point R lies on PQ extended, with
PQ : QR = 2 : 3.

Find the position vector of R. [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23 [Turn over


www.dynamicpapers.com
16

21 − 8x − 2x2
10 Let f x = .
1 + 2x 3 − x2

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
17

(b) Hence obtain the expansion of f x in ascending powers of x, up to and including the term in x2 .
[5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23 [Turn over


www.dynamicpapers.com
18

5a − 2i
11 The complex number z is defined by z = , where a is an integer. It is given that arg z = − 14 π.
3 + ai

(a) Find the value of a and hence express z in the form x + iy, where x and y are real. [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
19

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Express z3 in the form rei1 , where r > 0 and −π < 1 ≤ π. Give the simplified exact values of
r and 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com
20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2023 9709/33/M/J/23


www.dynamicpapers.com

Cambridge International AS & A Level


* 3 3 5 3 6 0 8 2 6 2 *

MATHEMATICS 9709/31
Paper 3 Pure Mathematics 3 May/June 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
● You should use a calculator where appropriate.
● You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
● The total mark for this paper is 75.
● The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

DC (DE/CGW) 329950/3
© UCLES 2024 [Turn over
www.dynamicpapers.com
2

Expand (3 + x) (1 - 2x) 2 in ascending powers of x, up to and including the term in x 2 , simplifying the
1
1
coefficients. [4]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

© UCLES 2024 9709/31/M/J/24


www.dynamicpapers.com
3

2 Solve the equation ln (x - 5) = 7 - ln x . Give your answer correct to 2 decimal places. [4]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

© UCLES 2024 9709/31/M/J/24 [Turn over


www.dynamicpapers.com
4

3
y

(1.31, 1.50)

(0.336, 1.00)

O ln x

The variables x and y satisfy the equation a y = bx , where a and b are constants. The graph of y
against ln x is a straight line passing through the points (0.336, 1.00) and (1.31, 1.50), as shown in the
diagram.

Find the values of a and b. Give each value correct to the nearest integer. [4]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
© UCLES 2024 9709/31/M/J/24
www.dynamicpapers.com
5

4 The complex number u is given by u = - 1 - i 3 .

(a) Express u in the form r (cos i + i sin i) , where r 2 0 and - r 1 i G r . Give the exact values of r
and i . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

The complex number v is given by v = 5 bcos 16 r + i sin 16 rl.


v
(b) Express the complex number in the form re ii where r 2 0 and - r 1 i G r . [2]
u
............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
© UCLES 2024 9709/31/M/J/24 [Turn over
www.dynamicpapers.com
6

e sinx
5 The equation of a curve is y = for 0 G x G 2r .
cos 2 x
dy
Find and hence find the x-coordinates of the stationary points of the curve. [7]
dx
....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

© UCLES 2024 9709/31/M/J/24


www.dynamicpapers.com
7

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
© UCLES 2024 9709/31/M/J/24 [Turn over
www.dynamicpapers.com
8

6 (a) By sketching a suitable pair of graphs, show that the equation cosec 12 x = e x - 3 has exactly one
root, denoted by a , in the interval 0 1 x 1 r . [2]

(b) Verify by calculation that a lies between 1 and 2. [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/31/M/J/24


www.dynamicpapers.com
9

(c) Show that if a sequence of values in the interval 0 1 x 1 r given by the iterative formula

xn + 1 = ln (cosec 12 xn + 3)

converges, then it converges to a . [1]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

(d) Use this iterative formula with an initial value of 1.4 to determine a correct to 2 decimal places.
Give the result of each iteration to 4 decimal places. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

(e) State the minimum number of calculated iterations needed with this initial value to determine a
correct to 2 decimal places. [1]

............................................................................................................................................................

............................................................................................................................................................
© UCLES 2024 9709/31/M/J/24 [Turn over
www.dynamicpapers.com
10

BLANK PAGE

© UCLES 2024 9709/31/M/J/24


www.dynamicpapers.com
11

7 (a) On a single Argand diagram sketch the loci given by the equations z - 3 + 2i = 2 and
w - 3 + 2i = w + 3 - 4i where z and w are complex numbers. [4]

(b) Hence find the least value of z - w for points on these loci. Give your answer in an exact form.
[2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/31/M/J/24 [Turn over


www.dynamicpapers.com
12

8 Use the substitution u = 1 - sin x to find the exact value of

3
2r sin 2x
y r 1 - sin x
dx .

Give your answer in the form a + b 2 where a and b are rational numbers to be determined. [7]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
© UCLES 2024 9709/31/M/J/24
www.dynamicpapers.com
13

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
© UCLES 2024 9709/31/M/J/24 [Turn over
www.dynamicpapers.com
14

9 The equations of two straight lines l1 and l2 are

l1 : r = i - 2j + 3k + m (2i - j + ak) and l2 : r =- i - j - k + n (3i - 2j - 2k) ,

where a is a constant.

The lines l1 and l2 are perpendicular.

(a) Show that a = 4 . [1]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

The lines l1 and l2 also intersect.

(b) Find the position vector of the point of intersection. [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/31/M/J/24


www.dynamicpapers.com
15

The point A has position vector - 5i + j - 9k .

(c) Show that A lies on l1 . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

The point B is the image of A after a reflection in the line l2 .

(d) Find the position vector of B. [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/31/M/J/24 [Turn over


www.dynamicpapers.com
16

dy 2
10 (a) Given that 2x = tan y , show that = . [3]
dx 1 + 4x 2
............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
3

(b) Hence find the exact value of y 1


2
x tan -1 (2x) dx . [7]
2

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
© UCLES 2024 9709/31/M/J/24
www.dynamicpapers.com
17

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
© UCLES 2024 9709/31/M/J/24 [Turn over
www.dynamicpapers.com
18

11 In a field there are 300 plants of a certain species, all of which can be infected by a particular disease. At
time t after the first plant is infected there are x infected plants. The rate of change of x is proportional
to the product of the number of plants infected and the number of plants that are not yet infected. The
dx
variables x and t are treated as continuous, and it is given that = 0.2 and x = 1 when t = 0 .
dt
(a) Show that x and t satisfy the differential equation
dx
1495 = x (300 - x) . [2]
dt
............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

(b) Using partial fractions, solve the differential equation and obtain an expression for t in terms of a
single logarithm involving x. [9]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2024 9709/31/M/J/24


www.dynamicpapers.com
19

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
© UCLES 2024 9709/31/M/J/24
www.dynamicpapers.com
20

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly
shown.

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2024 9709/31/M/J/24


* 0000800000001 *

, ,

Cambridge International AS & A Level

¬WŠ. 4mHuOªEŠ`z5€W
¬I{yX¨tnh~‡˜|šw›‘‚
¥uEUuUEUeE5 Eue•UU
* 9 3 7 3 1 9 5 2 5 5 *

MATHEMATICS 9709/31
Paper 3 Pure Mathematics 3 May/June 2025

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
● You should use a calculator where appropriate.
● You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
● The total mark for this paper is 75.
● The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages.

DC (PQ/SW) 342946/3
© UCLES 2025 [Turn over
* 0000800000002 *

DO NOT WRITE IN THIS MARGIN


2
, ,

1 (a) Sketch the graph of y = 2x - 3 . [1]

DO NOT WRITE IN THIS MARGIN


DO NOT WRITE IN THIS MARGIN
(b) Solve the inequality 3x - 1 1 2x - 3 . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊÝü·þ×
© UCLES 2025 ĬÉùúÕĤøĜÏóñûÄĤÇãęĂ
ĥåÕÕµµąµĕąĥÅŵÅÕõÕ
9709/31/M/J/25
* 0000800000003 *
DO NOT WRITE IN THIS MARGIN

3
, ,

2 It is given that 2 ln p + ln ( p - 1) - 12 ln (q + 1) = 3.

Find q in terms of p. [3]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊÝú·þ×
© UCLES 2025 ĬÉúùÍĦüĬêąĀ®ĘĜēãĩĂ
ĥååĕõÕĥÕąõµÅÅÕåĕĥÕ
9709/31/M/J/25 [Turn over
* 0000800000004 *

DO NOT WRITE IN THIS MARGIN


4
, ,

z + 5i
3 Find the complex numbers z for which is real and z = 17 . Give your answers in the form
z-5
z = x + iy , where x and y are real. [6]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊßü·Ā×
© UCLES 2025 ĬÉúüÍĠĊĝÍċćµ¶¸±³đĂ
ĥĕõĕµÕĥõĥÕÅÅąÕąĕõÕ
9709/31/M/J/25
* 0000800000005 *
DO NOT WRITE IN THIS MARGIN

5
, ,

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊßú·Ā×
© UCLES 2025 ĬÉùûÕĪĆčìíúôĢÀĥ³ġĂ
ĥĕąÕõµąĕõåĕÅąµĥÕĥÕ
9709/31/M/J/25 [Turn over
* 0000800000006 *

DO NOT WRITE IN THIS MARGIN


6
, ,

4 The parametric equations of a curve are

x = e tant , y = 3 tan 2 t .

Find the equation of the tangent to the curve at the point (e, 3). Give your answer in the form y = mx + c ,
where m and c are exact. [6]

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊÞú¶þ×
© UCLES 2025 ĬÉúûÚĤĞėäúċĉøĈěđĂ
ĥÅåÕõĕ൵ŵÅŵÅĕµÕ
9709/31/M/J/25
* 0000800000007 *
DO NOT WRITE IN THIS MARGIN

7
, ,

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊÞü¶þ×
© UCLES 2025 ĬÉùüÒĦĢħÕĀöÀÖÀÔěġĂ
ĥÅÕĕµõĥÕåµĥÅÅÕåÕåÕ
9709/31/M/J/25 [Turn over
* 0000800000008 *

DO NOT WRITE IN THIS MARGIN


8
,  ,

5 The polynomial 3x 3 + pax 2 + 7a 2 x + qa 3 is denoted by f (x) , where p, q and a are constants and a ! 0 .

When f (x) is divided by (x + 2a) the remainder is -22a 3 . When f (x) is divided by (3x - a) the
remainder is -a 3 .

Find the values of p and q. [5]

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊàú¶Ā×
© UCLES 2025 ĬÉùùÒĠĔĢâĂíÇøĤòċęĂ
ĥõąĕõõĥõÅĕĕÅąÕąÕµÕ
9709/31/M/J/25
* 0000800000009 *
DO NOT WRITE IN THIS MARGIN

9
,  ,

1 1 1
6 It is given that z1 = 3e 4 ri , z2 = 32 e 6 ri and ~ = 2e 2 ri .

(a) State the values of ~z1 and ~z2 . Give your answers in the form re ii , where r 2 0 and
- r 1 i G r. [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

(b) On a sketch of an Argand diagram with origin O, show the points A, B, C and D representing the
complex numbers z1 , z2 , ~z1 and ~z2 respectively. [2]
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN

(c) State the geometric effects of multiplying z1 and z2 by ~. [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊàü¶Ā×
© UCLES 2025 ĬÉúúÚĪĐĒ×øĄĂäĜæċĩĂ
ĥõõÕµĕąĕÕĥÅÅąµĥĕåÕ
9709/31/M/J/25 [Turn over
* 0000800000010 *

DO NOT WRITE IN THIS MARGIN


10
, ,

7 (a) Express 5 sin bx + 16 rl - 4 cos x in the form R sin (x - a) , where R 2 0 and 0 1 a 1 12 r . State the
exact value of R and give the value of a correct to 3 decimal places. [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊÝú¸þ×
© UCLES 2025 ĬÉüùÛĞĜøàĉöĝĜĢ˳ġĂ
ĥåĥÕõõÅõĥåĕąąõąÕąÕ
9709/31/M/J/25
* 0000800000011 *
DO NOT WRITE IN THIS MARGIN

11
, ,

(b) Hence solve the equation 5 sin b2i + 16 rl - 4 cos 2i = 7 for 0 G i G r . Give your answers correct
to 2 decimal places. [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊÝü¸þ×
© UCLES 2025 ĬÉûúÓĬĘĈÙïċìÀĚ³đĂ
ĥåĕĕµĕåĕõÕÅąąĕĥĕĕÕ
9709/31/M/J/25 [Turn over
* 0000800000012 *

DO NOT WRITE IN THIS MARGIN


12
, ,

8 With respect to the origin O, the points A and B have position vectors 2i + 4k and 5i + j + 6k
respectively. The line l1 passes through the points A and B.

(a) Find a vector equation for the line l1 . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

The line l2 has equation r = 2i + j + 5k + n (i + 2j + 3k) .

(b) Show that l1 and l2 do not intersect. [4]

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊßú¸Ā×
© UCLES 2025 ĬÉûûÓĢĦāÞñĄãжĤãĩĂ
ĥĕÅĕõĕåµĕõµąÅĕÅĕąÕ
9709/31/M/J/25
* 0000800000013 *
DO NOT WRITE IN THIS MARGIN

13
, ,

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

(c) Find the acute angle between the directions of l1 and l2 . [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊßü¸Ā×
© UCLES 2025 ĬÉüüÛĨĪñÛćíĦº¾¸ãęĂ
ĥĕµÕµõÅÕąąĥąÅõåÕĕÕ
9709/31/M/J/25 [Turn over
* 0000800000014 *

DO NOT WRITE IN THIS MARGIN


14
, ,

a
9 The constant a is such that ; 6x ln x dx = 4 .
1

1 5
(a) Show that a = exp f e 2 + 3op, where exp(x) denotes e x . [5]
6 a

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊàûµĂ×
© UCLES 2025 ĬÉûúÚĪĕĉéāúÉĖė´ēđĂ
ĥµµĕõĕąõĥĕĥÅąµąĕÅÕ
9709/31/M/J/25
* 0000800000015 *
DO NOT WRITE IN THIS MARGIN

15
, ,

(b) Verify by calculation that a lies between 2 and 2.1. [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊàùµĂ×
© UCLES 2025 ĬÉüùÒĠęùÐ÷ćĀÂğĨēġĂ
ĥµÅÕµõĥĕõĥµÅąÕĥÕÕÕ
9709/31/M/J/25 [Turn over
* 0000800000016 *

DO NOT WRITE IN THIS MARGIN


16
, ,

10 (a) Find the quotient and remainder when x 3 + 5x 2 - 2x - 15 is divided by x 2 - 3. [3]

.....................................................................................................................................................

.....................................................................................................................................................

.....................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

(b) The variables x and y satisfy the differential equation

dy x 3 + 5x 2 - 2x - 15
= .
dx 6y (x 2 - 3)

It is given that y = 2 when x = 2 .

DO NOT WRITE IN THIS MARGIN


Solve the differential equation to obtain an expression for y 2 in terms of x. [5]

.....................................................................................................................................................

.....................................................................................................................................................

.....................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊÞûµĄ×
© UCLES 2025 ĬÉüüÒĦīðëùĀćĤÃÆăęĂ
ĥąĕÕõõĥµĕÅÅÅÅÕÅÕÅÕ
9709/31/M/J/25
* 0000800000017 *
DO NOT WRITE IN THIS MARGIN

17
, ,

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

.....................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

.....................................................................................................................................................

.....................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊÞùµĄ×
© UCLES 2025 ĬÉûûÚĤħĀÎÿñ¸»ĒăĩĂ
ĥąĥĕµĕąÕąµĕÅŵåĕÕÕ
9709/31/M/J/25 [Turn over
* 0000800000018 *

DO NOT WRITE IN THIS MARGIN


18
,  ,

11
y

O a 1 x
2r

The diagram shows the curve y = cos x sin 2x for 0 G x G 12 r . The curve has a maximum point at M,

DO NOT WRITE IN THIS MARGIN


where x = a .

(a) Find the exact value of a. [6]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊßû·Ă×
© UCLES 2025 ĬÉùüÛĨģĪåòćÝĀÁâ»ġĂ
ĥÕõĕõõŵµõÅąÅõÅÕõÕ
9709/31/M/J/25
* 0000800000019 *
DO NOT WRITE IN THIS MARGIN

19
,  ,

(b) The region enclosed between the x-axis and the curve is rotated through 2r radians about the
x-axis.

Find the exact volume of the solid generated. [5]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊßù·Ă×
© UCLES 2025 ĬÉúûÓĢğĚÔĈúĬܹö»đĂ
ĥÕąÕµĕåÕåąĕąÅĕåĕĥÕ
9709/31/M/J/25
* 0000800000020 *

DO NOT WRITE IN THIS MARGIN


20
, ,

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly
shown.

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
ĬÕĊ®Ġ´íÈõÏĪÅĊÝû·Ą×
© UCLES 2025 ĬÉúúÓĬčďçĊñģúĕØëĩĂ
ĥĥÕÕõĕåõÅåĥąąĕąĕõÕ
9709/31/M/J/25
* 0000800000001 *

, ,

Cambridge International AS & A Level

¬WŠ. 4mHuOªEŠ_{5€W
¬Ivq\§‘Rvsgb_LK©‚
¥E••5uE5EUU •EuEU
* 2 6 9 4 0 2 6 8 3 3 *

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 May/June 2025

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
● You should use a calculator where appropriate.
● You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
● The total mark for this paper is 75.
● The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

DC (PQ/SW) 342945/3
© UCLES 2025 [Turn over
© UCLES 2025
,
* 0000800000002 *

ĥĕąĕõĕąÕõĕąÅąÕåµĥÕ
ĬÉøòÙģĜ÷éċąÌĚÕüóġĂ
ĬÕĊ®Ġ´íÈõÏĪÅĊÞù·þ×
,
2

9709/32/M/J/25
BLANK PAGE

DO NOT WRITE IN THIS MARGIN DO NOT WRITE IN THIS MARGIN DO NOT WRITE IN THIS MARGIN DO NOT WRITE IN THIS MARGIN DO NOT WRITE IN THIS MARGIN
* 0000800000003 *
DO NOT WRITE IN THIS MARGIN

3
, ,

e x + 2e -x
1 Solve the equation = 4 . Give your answer correct to 3 decimal places. [5]
ex - 3

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊÞû·þ×
© UCLES 2025 ĬÉ÷ñÑĥĘćÐíüý¾ÝàóđĂ
ĥĕõÕµõĥµĥĥÕÅąµÅõõÕ
9709/32/M/J/25 [Turn over
* 0000800000004 *

DO NOT WRITE IN THIS MARGIN


4
, ,

3
2 (a) Expand (6 - x) (1 - 2x)- 2 in ascending powers of x, up to and including the term in x 2 , simplifying
the coefficients. [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


(b) State the set of values of x for which the expansion is valid. [1]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊàù·Ā×
© UCLES 2025 ĬÉ÷ôÑğĦĂëóóĆĠāþģĩĂ
ĥååÕõõĥĕąÅåÅŵĥõĥÕ
9709/32/M/J/25
* 0000800000005 *
DO NOT WRITE IN THIS MARGIN

5
, ,

3 On an Argand diagram shade the region whose points represent complex numbers z which satisfy both
the inequalities z - 3i G 2 and 14 r G arg (z - 1 - 2i) G 34 r . [5]
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN

Ĭ×Ċ®Ġ´íÈõÏĪÅĊàû·Ā×
© UCLES 2025 ĬÉøóÙĩĪòÎąþüùÚģęĂ
ĥåÕĕµĕąõĕµõÅÅÕąµõÕ
9709/32/M/J/25 [Turn over
* 0000800000006 *

DO NOT WRITE IN THIS MARGIN


6
, ,

4 Solve the equation 3 cot x - 4 cot 2x = 3 for 0° G x G 180° . [6]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊÝû¶þ×
© UCLES 2025 ĬÉ÷óÖģĂüÖĂïºÜā»ËĩĂ
ĥõõĕµµąÕÕÕÕÅąÕåõåÕ
9709/32/M/J/25
* 0000800000007 *
DO NOT WRITE IN THIS MARGIN

7
, ,

5 The square roots of -1 - 4 5 i can be expressed in the Cartesian form x + iy , where x and y are real and
exact.

By first forming a quartic equation in x or y, find the square roots of -1 - 4 5 i in exact Cartesian form.
[5]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊÝù¶þ×
© UCLES 2025 ĬÉøôÎĥþČãøĂïĀùğËęĂ
ĥõąÕõÕĥµÅåąÅąµÅµµÕ
9709/32/M/J/25 [Turn over
* 0000800000008 *

DO NOT WRITE IN THIS MARGIN


8
,  ,

6 (a) By sketching a suitable pair of graphs, show that the equation

x - 2 = 2 sin 12 x

has only one root in the interval 0 1 x 1 r . [2]

DO NOT WRITE IN THIS MARGIN


DO NOT WRITE IN THIS MARGIN
(b) Show by calculation that this root lies between 1 and 1.5. [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊßû¶Ā×
© UCLES 2025 ĬÉøñÎğðýØúĉøÞÕ½ÛġĂ
ĥÅÕÕµÕĥĕåąõÅŵĥµåÕ
9709/32/M/J/25
* 0000800000009 *
DO NOT WRITE IN THIS MARGIN

9
,  ,

(c) Use the iterative formula xn + 1 = 2 - 2 sin 12 xn with an initial value of 1.03 to calculate the root
correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

ĬÛĊ®Ġ´íÈõÏĪÅĊßù¶Ā×
© UCLES 2025 ĬÉ÷òÖĩôíáĀø±úÝęÛđĂ
ĥÅåĕõµąõµõåÅÅÕąõµÕ
9709/32/M/J/25 [Turn over
* 0000800000010 *

DO NOT WRITE IN THIS MARGIN


10
, ,

7 (a) Express 7 sin i + 24 cos i in the form R cos (i - a) , where R 2 0 and 0 1 a 1 12 r . Give the value
of a correct to 4 decimal places. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊÞû¸þ×
© UCLES 2025 ĬÉõñ×ĝøěÚñĂÎÂ×éģęĂ
ĥĕµĕµÕÅĕąµõąÅĕĥµĕÕ
9709/32/M/J/25
* 0000800000011 *
DO NOT WRITE IN THIS MARGIN

11
, ,

(b) Hence solve the equation 7 sin 13 x + 24 cos 13 x = 24.5 for 0 1 x 1 r . [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊÞù¸þ×
© UCLES 2025 ĬÉöòÏīüīßćïěĖßíģĩĂ
ĥĕÅÕõµåõĕÅåąÅõąõąÕ
9709/32/M/J/25 [Turn over
* 0000800000012 *

DO NOT WRITE IN THIS MARGIN


12
, ,

8 The variables x and i satisfy the differential equation


dx
sin 2i = (4x + 3) cos 2i ,
di
1
and x = 0 when i = 12 r .

Solve the differential equation and obtain an expression for x in terms of i. [7]

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊàû¸Ā×
© UCLES 2025 ĬÉöóÏġĊĞÜĉøĔ¸ăÏóđĂ
ĥåĕÕµµåÕõĥÕąąõåõĕÕ
9709/32/M/J/25
* 0000800000013 *
DO NOT WRITE IN THIS MARGIN

13
, ,

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊàù¸Ā×
© UCLES 2025 ĬÉõô×ħĆĎÝïĉÕĤûċóġĂ
ĥåĥĕõÕŵĥĕąąąĕŵąÕ
9709/32/M/J/25 [Turn over
* 0000800000014 *

DO NOT WRITE IN THIS MARGIN


14
, ,

9 With respect to the origin O, the points A, B and C have position vectors given by

1 -2 2
OA = f- 4p, OB = f 1p and OC = f 3 p.
2 3 5

(a) Find a vector equation for the line through A and B. [2]

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

(b) Using a scalar product, find the exact value of cos BAC. [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊßúµĂ×
© UCLES 2025 ĬÉöòÖĩùĦÏùþúÀâÿÃĩĂ
ĥąĥÕµµąĕąąąÅÅÕĥõÕÕ
9709/32/M/J/25
* 0000800000015 *
DO NOT WRITE IN THIS MARGIN

15
, ,

(c) Hence find the exact area of triangle ABC. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊßüµĂ×
© UCLES 2025 ĬÉõñÎğõĖêÿó¯ĜÚÛÃęĂ
ĥąĕĕõÕĥõĕõÕÅŵąµÅÕ
9709/32/M/J/25 [Turn over
* 0000800000016 *

DO NOT WRITE IN THIS MARGIN


16
, ,

10 (a) Find the quotient and remainder when x 2 is divided by 1 + 4x 2 . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................
0.5
(b) Find the exact value of ; x tan -1(2x) dx . [6]
0

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊÝúµĄ×
© UCLES 2025 ĬÉõôÎĥćēÍāü¸ºöùÓġĂ
ĥµÅĕµÕĥÕõÕåÅąµåµÕÕ
9709/32/M/J/25
* 0000800000017 *
DO NOT WRITE IN THIS MARGIN

17
, ,

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊÝüµĄ×
© UCLES 2025 ĬÉöóÖģċģì÷ąñĞþÝÓđĂ
ĥµµÕõµąµĥåõÅąÕÅõÅÕ
9709/32/M/J/25 [Turn over
* 0000800000018 *

DO NOT WRITE IN THIS MARGIN


18
,  ,

11
y
M

DO NOT WRITE IN THIS MARGIN


O 1 x
2r

The diagram shows the graph of y = 5 sin 2x cos 2 x for 0 G x G 12 r and its maximum point M.

(a) Find the exact x-coordinate of M. [6]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊàú·Ă×
© UCLES 2025 ĬÉøô×ħÿąÓĊóĎÖøčīęĂ
ĥĥåÕµÕÅÕÕĥåąąĕåµĥÕ
9709/32/M/J/25
* 0000800000019 *
DO NOT WRITE IN THIS MARGIN

19
,  ,

(b) By using the substitution u = cos x , find the area of the region bounded by the curve, the x-axis
between x = 0 and x = 14 r , and the line x = 14 r . [5]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊàü·Ă×
© UCLES 2025 ĬÉ÷óÏġăõæðþÛĂĀÉīĩĂ
ĥĥÕĕõµåµÅĕõąąõÅõõÕ
9709/32/M/J/25
* 0000800000020 *

DO NOT WRITE IN THIS MARGIN


20
, ,

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly
shown.

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
ĬÕĊ®Ġ´íÈõÏĪÅĊÞú·Ą×
© UCLES 2025 ĬÉ÷òÏīñôÑòąÔääīûđĂ
ĥÕąĕµµåĕåµąąÅõĥõĥÕ
9709/32/M/J/25
* 0000800000001 *

, ,

Cambridge International AS & A Level

¬WŠ. 4mHuOªEŠ_{6€W
¬=}|Q£z—gˆ‰i\-SS™‚
¥u¥•5U •¥¥uE U UEU
* 9 7 2 3 0 4 5 4 4 0 *

MATHEMATICS 9709/33
Paper 3 Pure Mathematics 3 May/June 2025

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
● You should use a calculator where appropriate.
● You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
● The total mark for this paper is 75.
● The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

DC (PQ/SW) 342947/2
© UCLES 2025 [Turn over
* 0000800000002 *

DO NOT WRITE IN THIS MARGIN


2
, ,

1 (a) Sketch the graph of y = 3x - 2a , where a is a positive constant. [1]

DO NOT WRITE IN THIS MARGIN


DO NOT WRITE IN THIS MARGIN
(b) Hence or otherwise solve the inequality 3x - 2a 1 x + 5a . [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊÞù¸þ×
© UCLES 2025 Ĭ½ÿûÔħîñÐùïÆĤÇģīđĂ
ĥåõĕõµÅõÕååąąĕĥĕĥÕ
9709/33/M/J/25
* 0000800000003 *
DO NOT WRITE IN THIS MARGIN

3
, ,

2 Solve the equation 2 ln (2x + 3) - ln (2x + 5) = ln (3x) . [4]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊÞû¸þ×
© UCLES 2025 Ĭ½ĀüÜġòāéÿĂă¸¯·īġĂ
ĥåąÕµÕåĕÅÕõąąõąÕõÕ
9709/33/M/J/25 [Turn over
* 0000800000004 *

DO NOT WRITE IN THIS MARGIN


4
, ,

1
r
4 2
3 Find the exact value of ; 1 3 cos 5x dx . [4]
r
5

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊàù¸Ā×
© UCLES 2025 Ĭ½ĀùÜīĄĈÎāĉČĖēĕûęĂ
ĥĕÕÕõÕåµåõąąÅõåÕĥÕ
9709/33/M/J/25
* 0000800000005 *
DO NOT WRITE IN THIS MARGIN

5
, ,

4 (a) It is given that z1 = r1 e ii1 and z2 = r2 e ii2 .

Show that (z1 z2)* = z 1* z2*. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................
1
(b) z = 3e 4 ri is a root of the equation z 2 + bz + c = 0 , where b and c are real.

State the other root and hence find the values of b and c. [3]

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊàû¸Ā×
© UCLES 2025 Ĭ½ÿúÔĝĀøë÷ø½ÂīÁûĩĂ
ĥĕåĕµµÅÕµąÕąÅĕÅĕõÕ
9709/33/M/J/25 [Turn over
* 0000800000006 *

DO NOT WRITE IN THIS MARGIN


6
, ,

5 The equation of a curve is xy + y 2 e -x = 4 .

dy y 2 - ye x
(a) Show that = . [4]
dx xe x + 2y

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

(b) Find the gradients of the tangents to the curve when x = 0 . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊÝûµþ×
© UCLES 2025 Ĭ½ĀúÏħĨîãôą¸âēäÓęĂ
ĥÅąĕµĕÅõõĥõąąĕĥÕåÕ
9709/33/M/J/25
* 0000800000007 *
DO NOT WRITE IN THIS MARGIN

7
, ,

z+4
6 Find the complex numbers z for which is real and z = 10 . Give your answers in the form
z + 4i
z = x + iy , where x and y are real. [6]

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊÝùµþ×
© UCLES 2025 Ĭ½ÿù×ġĬþÖĆüñöīøÓĩĂ
ĥÅõÕõõåĕĥĕåąąõąĕµÕ
9709/33/M/J/25 [Turn over
* 0000800000008 *

DO NOT WRITE IN THIS MARGIN


8
,  ,

3a - 5x
7 Let f (x) = , where a is a positive constant.
(3a + 2x) (2a - x)

(a) Express f (x) in partial fractions. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊßûµĀ×
© UCLES 2025 Ĭ½ÿü×īĚċáČóúØÇÖÃđĂ
ĥõåÕµõåµąµÕąÅõåĕåÕ
9709/33/M/J/25
* 0000800000009 *
DO NOT WRITE IN THIS MARGIN

9
,  ,

(b) Hence obtain the expansion of f (x) in ascending powers of x, up to and including the term in x 2 .
[4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

(c) State the set of values of x for which the expansion in part (b) is valid. [1]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊßùµĀ×
© UCLES 2025 Ĭ½ĀûÏĝĖûØîþ¯Ą¯ĂÃġĂ
ĥõÕĕõĕÅÕĕÅąąÅĕÅÕµÕ
9709/33/M/J/25 [Turn over
* 0000800000010 *

DO NOT WRITE IN THIS MARGIN


10
, ,

8 (a) Prove the identity cot 2 i - tan 2 i / 4 cot 2i cosec 2i . [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊÞû·þ×
© UCLES 2025 Ĭ½þüÎĩĒčßăüԼŲûĩĂ
ĥåÅĕµõąµåąÕÅÅÕåĕĕÕ
9709/33/M/J/25
* 0000800000011 *
DO NOT WRITE IN THIS MARGIN

11
, ,

(b) Hence solve the equation cot 2 x - tan 2 x = 5 sec 2x for 0° 1 x 1 90° . [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊÞù·þ×
© UCLES 2025 Ĭ½ýûÖğĎĝÚõąĕĠ­ĦûęĂ
ĥåµÕõĕĥÕµõąÅŵÅÕąÕ
9709/33/M/J/25 [Turn over
* 0000800000012 *

DO NOT WRITE IN THIS MARGIN


12
, ,

9 With respect to the origin O, the points A, B and C have position vectors given by

OA = i + 2j, OB = i + 3j - 2k and OC = 2i - j + 3k .

The line l passes through B and C.

(a) Find a vector equation for l. [2]

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

(b) The point P is the foot of the perpendicular from A to l.

Find the position vector of P. [4]

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÙĊ®Ġ´íÈõÏĪÅĊàû·Ā×
© UCLES 2025 Ĭ½ýúÖĥĠĬÝûþĎ¾đÈīġĂ
ĥĕĥÕµĕĥõÕÕõÅąµĥÕĕÕ
9709/33/M/J/25
* 0000800000013 *
DO NOT WRITE IN THIS MARGIN

13
, ,

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

(c) The point D is the reflection of A in l.

Find the position vector of D. [2]

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÛĊ®Ġ´íÈõÏĪÅĊàù·Ā×
© UCLES 2025 Ĭ½þùÎģĤĜÜýóÛĚĩĔīđĂ
ĥĕĕĕõõąĕÅååÅąÕąĕąÕ
9709/33/M/J/25 [Turn over
* 0000800000014 *

DO NOT WRITE IN THIS MARGIN


14
, ,

10 The variables x and y satisfy the differential equation


dy
sin 4y = x sin 2y sin 3x .
dx
1
It is given that y = 12 r when x = 12 r .

(a) Solve the differential equation, obtaining a relation between x and y. [8]

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊßú¶Ă×
© UCLES 2025 Ĭ½ýûÏĝďĤêċøø¶´ĘÛęĂ
ĥµĕÕµĕŵåµåąÅĕåÕÕÕ
9709/33/M/J/25
* 0000800000015 *
DO NOT WRITE IN THIS MARGIN

15
, ,

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

(b) Given that 0 1 y 1 12 r , find the values of y when x = 0 . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊßü¶Ă×
© UCLES 2025 Ĭ½þü×īēĔÏíĉ±ĢÌÄÛĩĂ
ĥµĥĕõõåÕµÅõąÅõÅĕÅÕ
9709/33/M/J/25 [Turn over
* 0000800000016 *

DO NOT WRITE IN THIS MARGIN


16
, ,

11
y
M

O a 1 x
2r

DO NOT WRITE IN THIS MARGIN


The diagram shows the curve y = x sin 2x for 0 G x G 12 r . The curve has a maximum point at M,
where x = a .

(a) Show that tan 2a =-4a [4]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

(b) Show by calculation that 0.9 1 a 1 0.95. [2]

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊÝú¶Ą×
© UCLES 2025 Ĭ½þù×ġġĕìóĂºÄĨĢËđĂ
ĥąµĕµõåõÕĥąąąõĥĕÕÕ
9709/33/M/J/25
* 0000800000017 *
DO NOT WRITE IN THIS MARGIN

17
, ,

(c) Show that if a sequence of values given by the iterative formula

xn + 1 = 12 br - tan -1 `4xnjl

converges, then it converges to a. [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

(d) Use the iterative formula in part (c) to calculate a correct to 4 decimal places. Give the result of
each iteration to 6 decimal places. [3]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×Ċ®Ġ´íÈõÏĪÅĊÝü¶Ą×
© UCLES 2025 Ĭ½ýúÏħĝĥÍąïïĘжËġĂ
ĥąÅÕõĕÅĕÅĕÕąąĕąÕÅÕ
9709/33/M/J/25
* 0000800000018 *

DO NOT WRITE IN THIS MARGIN


18
,  ,

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly
shown.

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................
ĬÕĊ®Ġ´íÈõÏĪÅĊàú¸Ă×
© UCLES 2025 Ĭ½ÿùÎģĩăæüĉĔàĦĆóĩĂ
ĥÕÕÕµõąõõÕąÅąÕĥĕĥÕ
9709/33/M/J/25
DO NOT WRITE IN THIS MARGIN DO NOT WRITE IN THIS MARGIN DO NOT WRITE IN THIS MARGIN DO NOT WRITE IN THIS MARGIN DO NOT WRITE IN THIS MARGIN

© UCLES 2025
,
* 0000800000019 *

ĥÕåĕõĕĥĕĥåÕÅąµąÕõÕ
Ĭ½ĀúÖĥĥóÓþøÕüĎÒóęĂ
Ĭ×Ċ®Ġ´íÈõÏĪÅĊàü¸Ă×

,
19

9709/33/M/J/25
BLANK PAGE
* 0000800000020 *

DO NOT WRITE IN THIS MARGIN


20
, ,

BLANK PAGE

DO NOT WRITE IN THIS MARGIN


DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
ĬÕĊ®Ġ´íÈõÏĪÅĊÞú¸Ą×
© UCLES 2025 Ĭ½ĀûÖğėöèĄïÎÚ²ôģġĂ
ĥĥõĕµĕĥµąąåÅŵåÕĥÕ
9709/33/M/J/25
www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*0746866051*

MATHEMATICS 9709/31
Paper 3 Pure Mathematics 3 October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 16 pages.

JC21 11_9709_31/RP
© UCLES 2021 [Turn over
www.dynamicpapers.com
2

1 Solve the equation 45x − 1 = 5x , giving your answers correct to 3 decimal places. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/31/O/N/21


www.dynamicpapers.com
3

2 (a) Express 5 sin x − 3 cos x in the form R sin x − !, where R > 0 and 0 < ! < 12 π. Give the exact
value of R and give ! correct to 2 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence state the greatest and least possible values of 5 sin x − 3 cos x2 . [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21 [Turn over


www.dynamicpapers.com
4

3 The curve with equation y = x e1−2x has one stationary point.

(a) Find the coordinates of this point. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Determine whether the stationary point is a maximum or a minimum. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21


www.dynamicpapers.com
5

Using the substitution u = x, find the exact value of



4

Ô
1
x + 1 x
 dx. [6]
3

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/31/O/N/21 [Turn over


www.dynamicpapers.com
6

5 (a) Show that the equation


cot 21 + cot 1 = 2
can be expressed as a quadratic equation in tan 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence solve the equation cot 21 + cot 1 = 2, for 0 < 1 < π, giving your answers correct to 3 decimal
places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21


www.dynamicpapers.com
7

When a + bx 1 + 4x, where a and b are constants, is expanded in ascending powers of x, the

6
coefficients of x and x2 are 3 and −6 respectively.

Find the values of a and b. [6]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/31/O/N/21 [Turn over


www.dynamicpapers.com
8

7 (a) Given that y = ln ln x, show that

=
dy 1
. [1]
dx x ln x

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

The variables x and t satisfy the differential equation

x ln x + t = 0.
dx
dt
It is given that x = e when t = 2.

(b) Solve the differential equation obtaining an expression for x in terms of t, simplifying your
answer. [7]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21


www.dynamicpapers.com
9

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Hence state what happens to the value of x as t tends to infinity. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21 [Turn over


www.dynamicpapers.com
10
a
The constant a is such that Ô  dx = 6.
ln x
8
x
1
A @
(a) Show that a = exp  + 2 .
1
[5]
a

[exp x is an alternative notation for ex .]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21


www.dynamicpapers.com
11

(b) Verify by calculation that a lies between 9 and 11. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21 [Turn over


www.dynamicpapers.com
12

9 Two lines l and m have equations r = 3i + 2j + 5k + s 4i − j + 3k and r = i − j − 2k + t −i + 2j + 2k


respectively.

(a) Show that l and m are perpendicular. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Show that l and m intersect and state the position vector of the point of intersection. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21


www.dynamicpapers.com
13

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


(c) Show that the length of the perpendicular from the origin to the line m is 13 5. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21 [Turn over


www.dynamicpapers.com
14

10 The complex number 1 + 2i is denoted by u. The polynomial 2x3 + ax2 + 4x + b, where a and b are
real constants, is denoted by p x. It is given that u is a root of the equation p x = 0.

(a) Find the values of a and b. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) State a second complex root of this equation. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/31/O/N/21


www.dynamicpapers.com
15

(c) Find the real factors of p x. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(d) (i) On a sketch of an Argand diagram, shade the  region whose points represent complex
numbers z satisfying the inequalities  z − u  ≤ 5 and arg z ≤ 4 π.
1 [4]

(ii) Find the least value of Im z for points in the shaded region. Give your answer in an exact
form. [1]

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

© UCLES 2021 9709/31/O/N/21


www.dynamicpapers.com
16

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/31/O/N/21


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*4325784148*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC21 11_9709_32/RP
© UCLES 2021 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
3

ln a
1 Find the value of x for which 3 21−x  = 7x . Give your answer in the form , where a and b are
ln b
integers. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/O/N/21 [Turn over


www.dynamicpapers.com
4

2 Solve the inequality 3x − a  > 2 x + 2a , where a is a positive constant. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
5

3 (a) Given the complex numbers u = a + ib and w = c + id , where a, b, c and d are real, prove that
u + w* = u* + w*. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Solve the equation z + 2 + i* + 2 + iz = 0, giving your answer in the form x + iy where x and
y are real. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21 [Turn over


www.dynamicpapers.com
6

4x2 − 13x + 13
4 Express in partial fractions. [5]
2x − 1 x − 3

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
7

5 (a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities  z − 3 − 2i ≤ 1 and Im z ≥ 2. [4]

(b) Find the greatest value of arg z for points in the shaded region, giving your answer in degrees.
[3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21 [Turn over


www.dynamicpapers.com
8

6 (a) Using the expansions of sin 3x + 2x and sin 3x − 2x, show that
1
2
sin 5x + sin x  sin 3x cos 2x. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
9


(b) Hence show that Ó sin 3x cos 2x dx = 15 3 − 2.
4
[3]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21 [Turn over


www.dynamicpapers.com
10

7 The variables x and y satisfy the differential equation


dy
e2x = 4xy2 ,
dx
and it is given that y = 1 when x = 0.

Solve the differential equation, obtaining an expression for y in terms of x. [7]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
11

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/32/O/N/21 [Turn over


www.dynamicpapers.com
12
 2
8 (a) By first expanding cos2 1 + sin2 1 , show that

cos4 1 + sin4 1  1 − 12 sin2 21. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
13

(b) Hence solve the equation


cos4 1 + sin4 1 = 59 ,
for 0Å < 1 < 180Å. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21 [Turn over


www.dynamicpapers.com
14

9 The equation of a curve is ye2x − y2 ex = 2.

dy 2yex − y2
(a) Show that = . [4]
dx 2y − ex

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
15

(b) Find the exact coordinates of the point on the curve where the tangent is parallel to the y-axis.
[4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21 [Turn over


www.dynamicpapers.com
16
` a
−−¿ 1
10 With respect to the origin O, the position vectors of the points A and B are given by OA = 2 and
` a −1
−−¿ 0
OB = 3 .
1

(a) Find a vector equation for the line l through A and B. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

−−¿ −−¿
(b) The point C lies on l and is such that AC = 3AB.

Find the position vector of C. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
17

(c) Find the possible position vectors of the point P on l such that OP = 14. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21 [Turn over


www.dynamicpapers.com
18

11 The equation of a curve is y = tan x, for 0 ≤ x < 12 π.

dy dy
(a) Express in terms of tan x, and verify that = 1 when x = 14 π. [4]
dx dx

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

dy
The value of is also 1 at another point on the curve where x = a, as shown in the diagram.
dx

x
O a 1 1
4π 2π

(b) Show that t3 + t2 + 3t − 1 = 0, where t = tan a. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
19

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use the iterative formula


!
an+1 = tan−1 1
3
1 − tan2 an − tan3 an 

to determine a correct to 2 decimal places, giving the result of each iteration to 4 decimal places.
[3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com
20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/32/O/N/21


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*1472641323*

MATHEMATICS 9709/33
Paper 3 Pure Mathematics 3 October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC21 11_9709_33/RP
© UCLES 2021 [Turn over
www.dynamicpapers.com
2

1 Find the quotient and remainder when 2x4 + 1 is divided by x2 − x + 2. [3]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
3

2 (a) Sketch the graph of y = 2x − 3. [1]

(b) Solve the inequality 2x − 3 < 3x + 2. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21 [Turn over


www.dynamicpapers.com
4

3 Solve the equation 4x−2 = 4x − 42 , giving your answer correct to 3 decimal places. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
5
π
4 Find the exact value of Ó x sin 12 x dx. [5]

3

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/33/O/N/21 [Turn over


www.dynamicpapers.com
6

5 Solve the equation sin 1 = 3 cos 21 + 2, for 0Å ≤ 1 ≤ 360Å. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
7

6 (a) By first expanding cos x − 60Å, show that the expression


2 cos x − 60Å + cos x
can be written in the form R cos x − !, where R > 0 and 0Å < ! < 90Å. Give the exact value of R
and the value of ! correct to 2 decimal places. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence find the value of x in the interval 0Å < x < 360Å for which 2 cos x − 60Å + cos x takes its
least possible value. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21 [Turn over


www.dynamicpapers.com
8

7 The equation of a curve is ln x + y = x − 2y.

dy x+y−1
(a) Show that = . [4]
dx 2 x + y + 1

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
9

(b) Find the coordinates of the point on the curve where the tangent is parallel to the x-axis. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21 [Turn over


www.dynamicpapers.com
10

8
D

k
C
j B

O M
i
A

In the diagram, OABCD is a pyramid with vertex D. The horizontal base OABC is a square of side
4 units. The edge OD is vertical and OD = 4 units. The unit vectors i, j and k are parallel to OA, OC
and OD respectively.

The midpoint of AB is M and the point N on CD is such that DN = 3NC.

(a) Find a vector equation for the line through M and N . [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
11

(b) Show that the length of the perpendicular from O to MN is 13 82. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21 [Turn over


www.dynamicpapers.com
12

1
9 Let f x =  .
9 − x x

(a) Find the x-coordinate of the stationary point of the curve with equation y = f x. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
13

 4
(b) Using the substitution u = x, show that Ó f x dx = 13 ln 5. [6]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21 [Turn over


www.dynamicpapers.com
14

10 A large plantation of area 20 km2 is becoming infected with a plant disease. At time t years the area
infected is x km2 and the rate of increase of x is proportional to the ratio of the area infected to the
area not yet infected.

dx
When t = 0, x = 1 and = 1.
dt

(a) Show that x and t satisfy the differential equation


dx 19x
= . [2]
dt 20 − x

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Solve the differential equation and show that when t = 1 the value of x satisfies the equation
x = e0.9+0.05x . [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
15

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use an iterative formula based on the equation in part (b), with an initial value of 2, to determine
x correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(d) Calculate the value of t at which the entire plantation becomes infected. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21 [Turn over


www.dynamicpapers.com
16

11 The complex number − 3 + i is denoted by u.

(a) Express u in the form r ei1 , where r > 0 and −π < 1 ≤ π, giving the exact values of r and 1. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence show that u6 is real and state its value. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
17

(c) (i) On a sketch of an Argand diagram, shade the region whose points represent complex
numbers z satisfying the inequalities 0 ≤ arg z − u ≤ 14 π and Re z ≤ 2. [4]

(ii) Find the greatest value of  z  for points in the shaded region. Give your answer correct to
3 significant figures. [2]

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/33/O/N/21


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*1087265794*

MATHEMATICS 9709/31
Paper 3 Pure Mathematics 3 October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC22 11_9709_31/RP
© UCLES 2022 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
3

1 (a) Sketch the graph of y = 2x + 1. [1]

(b) Solve the inequality 3x + 5 < 2x + 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22 [Turn over


www.dynamicpapers.com
4

2 On a sketch of an Argand diagram shade the region whose points represent complex numbers z
satisfying the inequalities  z  ≤ 3, Re z ≥ −2 and 41 π ≤ arg z ≤ π. [4]

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
5

ln a
3 Solve the equation 23x−1 = 5 3−x . Give your answer in the form , where a and b are integers.
ln b
[4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/31/O/N/22 [Turn over


www.dynamicpapers.com
6

4 Solve the equation tan x + 45Å = 2 cot x for 0Å < x < 180Å. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
7
1 πi 1 πi
5 The complex numbers u and w are defined by u = 2e 4 and w = 3e 3 .

u2
(a) Find , giving your answer in the form r ei1 , where r > 0 and −π < 1 ≤ π. Give the exact values
w
of r and 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) State the least positive integer n such that both Im wn = 0 and Re wn > 0. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22 [Turn over


www.dynamicpapers.com
8

6 (a) Prove the identity cos 41 + 4 cos 21 + 3  8 cos4 1. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
9

(b) Hence solve the equation cos 41 + 4 cos 21 = 4 for 0Å ≤ 1 ≤ 180Å. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22 [Turn over


www.dynamicpapers.com
10
x
7 The equation of a curve is y = 2
, for 0 ≤ x < 12 π. At the point where x = a, the tangent to the
cos x
curve has gradient equal to 12.
`_ a
3 cos a + 2a sin a
(a) Show that a = cos−1 . [3]
12

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
11

(b) Verify by calculation that a lies between 0.9 and 1. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22 [Turn over


www.dynamicpapers.com
12

8 In a certain chemical reaction the amount, x grams, of a substance is increasing. The differential
equation satisfied by x and t, the time in seconds since the reaction began, is
dx
= kxe−0.1t ,
dt
where k is a positive constant. It is given that x = 20 at the start of the reaction.

(a) Solve the differential equation, obtaining a relation between x, t and k. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
13

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Given that x = 40 when t = 10, find the value of k and find the value approached by x as t becomes
large. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22 [Turn over


www.dynamicpapers.com
14

9
y

x
O
M

− 13 x
The diagram shows part of the curve y = 3 − xe for x ≥ 0, and its minimum point M .

(a) Find the exact coordinates of M . [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
15

(b) Find the area of the shaded region bounded by the curve and the axes, giving your answer in
terms of e. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22 [Turn over


www.dynamicpapers.com
16

2x2 + 7x + 8
10 Let f x = .
1 + x 2 + x 2

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
17

(b) Hence obtain the expansion of f x in ascending powers of x, up to and including the term in x2 .
[5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22 [Turn over


www.dynamicpapers.com
18

11
D
C

i O
j
B

M
A

In the diagram, OABCD is a solid figure in which OA = OB = 4 units and OD = 3 units. The edge OD
is vertical, DC is parallel to OB and DC = 1 unit. The base, OAB, is horizontal and angle AOB = 90Å.
Unit vectors i, j and k are parallel to OA, OB and OD respectively. The midpoint of AB is M and the
point N on BC is such that CN = 2NB.
−−−¿ −−¿
(a) Express vectors MD and ON in terms of i, j and k. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
19
−−−¿ −−¿
(b) Calculate the angle in degrees between the directions of MD and ON . [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

?
(c) Show that the length of the perpendicular from M to ON is 22 . [4]
5

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com
20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 9709/31/O/N/22


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*6217921484*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC22 11_9709_32/RP
© UCLES 2022 [Turn over
www.dynamicpapers.com
2

ln a
1 Solve the equation 23x−1 = 5 31−x . Give your answer in the form where a and b are integers.
ln b
[4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
3

2 The polynomial 2x3 − x2 + a, where a is a constant, is denoted by p x. It is given that 2x + 3 is a


factor of p x.

(a) Find the value of a. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) When a has this value, solve the inequality p x < 0. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22 [Turn over


www.dynamicpapers.com
4

3 The equation of a curve is y = sin x sin 2x. The curve has a stationary point in the interval 0 < x < 12 π.

Find the x-coordinate of this point, giving your answer correct to 3 significant figures. [6]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
5

4 (a) Express 4 cos x − sin x in the form R cos x + !, where R > 0 and 0Å < ! < 90Å. State the exact
value of R and give ! correct to 2 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence solve the equation 4 cos 2x − sin 2x = 3 for 0Å < x < 180Å. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22 [Turn over


www.dynamicpapers.com
6

5 (a) Solve the equation z2 − 6iz − 12 = 0, giving the answers in the form x + iy, where x and y are real
and exact. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) On a sketch of an Argand diagram with origin O, show points A and B representing the roots of
the equation in part (a). [1]

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
7

(c) Find the exact modulus and argument of each root. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(d) Hence show that the triangle OAB is equilateral. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22 [Turn over


www.dynamicpapers.com
8

6 Relative to the origin O, the points A, B and C have position vectors given by
` a ` a ` a
−−¿ 1 −−¿ 3 −−¿ 5
OA = 3 , OB = 1 and OC = 3 .
1 2 −2

(a) Using a scalar product, find the cosine of angle BAC. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
9

(b) Hence find the area of triangle ABC. Give your answer in a simplified exact form. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22 [Turn over


www.dynamicpapers.com
10

7 The variables x and 1 satisfy the differential equation


dx
x sin2 1 = tan2 1 − 2 cot 1,
d1
for 0 < 1 < 12 π and x > 0. It is given that x = 2 when 1 = 14 π.

d 2 cot 1
(a) Show that cot2 1 = − .
d1 sin2 1

(You may assume without proof that the derivative of cot 1 with respect to 1 is − cosec2 1.) [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Solve the differential equation and find the value of x when 1 = 16 π. [7]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
11

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22 [Turn over


www.dynamicpapers.com
12

8
y

x
O a


The diagram shows part of the curve y = sin x. This part of the curve intersects the x-axis at the point
where x = a.

(a) State the exact value of a. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


(b) Using the substitution u = x, find the exact area of the shaded region in the first quadrant
bounded by this part of the curve and the x-axis. [7]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
13

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22 [Turn over


www.dynamicpapers.com
14

9
C

1 rad
A O B

The diagram shows a semicircle with diameter AB, centre O and radius r. The shaded region is the
minor segment on the chord AC and its area is one third of the area of the semicircle. The angle CAB
is 1 radians.

(a) Show that 1 = 13 π − 1.5 sin 21. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
15

(b) Verify by calculation that 0.5 < 1 < 0.7. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use an iterative formula based on the equation in part (a) to determine 1 correct to 3 decimal
places. Give the result of each iteration to 5 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22 [Turn over


www.dynamicpapers.com
16

4 − x + x2
10 Let f x = .
1 + x 2 + x2 

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
17
4
(b) Find the exact value of Ó f x dx. Give your answer as a single logarithm. [5]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 9709/32/O/N/22


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*9938938839*

MATHEMATICS 9709/33
Paper 3 Pure Mathematics 3 October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC22 11_9709_33/RP
© UCLES 2022 [Turn over
www.dynamicpapers.com
2

1 Solve the equation ln 2x − 1 = 2 ln x + 1 − ln x. Give your answer correct to 3 decimal places. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
3
_
1 + 2x
2 Expand in ascending powers of x, up to and including the term in x2 , simplifying the
1 − 2x
coefficients. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/33/O/N/22 [Turn over


www.dynamicpapers.com
4

Find the exact value of Ó


4
3 x sec2 x dx. [5]
0

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
5

4 The parametric equations of a curve are


x = 2t − tan t, y = ln sin 2t,
for 0 < t < 12 π.

dy
Show that = cot t. [5]
dx

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/33/O/N/22 [Turn over


www.dynamicpapers.com
6

5 (a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities  z + 2 ≤ 2 and Im z ≥ 1. [4]

(b) Find the greatest value of arg z for points in the shaded region. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
7

6 Solve the quadratic equation 1 − 3iz2 − 2 + iz + i = 0, giving your answers in the form x + iy, where
x and y are real. [6]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2022 9709/33/O/N/22 [Turn over


www.dynamicpapers.com
8
 
7 (a) Show that the equation 5 sec x + tan x = 4 can be expressed as R cos x + ! = 5, where R > 0
and 0Å < ! < 90Å. Give the exact value of R and the value of ! correct to 2 decimal places. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
9

(b) Hence solve the equation 5 sec 2x + tan 2x = 4, for 0Å < x < 180Å. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22 [Turn over


www.dynamicpapers.com
10

x3
8 The curve with equation y = has a stationary point at x = p, where p > 0.
ex − 1

(a) Show that p = 3 1 − e−p . [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
11

(b) Verify by calculation that p lies between 2.5 and 3. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Use an iterative formula based on the equation in part (a) to determine p correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22 [Turn over


www.dynamicpapers.com
12

9 With respect to the origin O, the position vectors of the points A, B and C are given by
` a ` a ` a
−−¿ 0 −−¿ 1 −−¿ 4
OA = 5 , OB = 0 and OC = −3 .
2 1 −2
The midpoint of AC is M and the point N lies on BC, between B and C, and is such that BN = 2NC.

(a) Find the position vectors of M and N . [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Find a vector equation for the line through M and N . [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
13

(c) Find the position vector of the point Q where the line through M and N intersects the line through
A and B. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22 [Turn over


www.dynamicpapers.com
14

10 A gardener is filling an ornamental pool with water, using a hose that delivers 30 litres of water
per minute. Initially the pool is empty. At time t minutes after filling begins the volume of water in
the pool is V litres. The pool has a small leak and loses water at a rate of 0.01V litres per minute.

dV
The differential equation satisfied by V and t is of the form = a − bV .
dt

(a) Write down the values of the constants a and b. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Solve the differential equation and find the value of t when V = 1000. [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
15

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) Obtain an expression for V in terms of t and hence state what happens to V as t becomes large.
[2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22 [Turn over


www.dynamicpapers.com
16

5 − x + 6x2
11 Let f x = .
3 − x 1 + 3x2 

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
17
1
(b) Find the exact value of Ó f x dx, simplifying your answer. [5]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 9709/33/O/N/22


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*5051231203*

MATHEMATICS 9709/31
Paper 3 Pure Mathematics 3 October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC23 11_9709_31/2R
© UCLES 2023 [Turn over
www.dynamicpapers.com
2

x2
1 Find the exact coordinates of the points on the curve y = at which the gradient of the tangent
1 − 3x
is equal to 8. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
3

2 On an Argand diagram, shade the region whose points represent complex numbers z satisfying the
inequalities  z − 2i ≤  z + 2 − i and 0 ≤ arg z + 1 ≤ 14 π. [4]

© UCLES 2023 9709/31/O/N/23 [Turn over


www.dynamicpapers.com
4

3
ln y

x
0 1 2 3

The variables x and y are related by the equation y = abx , where a and b are constants. The diagram
shows the result of plotting ln y against x for two pairs of values of x and y. The coordinates of these
points are 1, 3.7 and 2.2, 6.46.

Use this information to find the values of a and b. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
5

3 + 2i
4 The complex number u is defined by u = , where a is real.
a − 5i
(a) Express u in the Cartesian form x + iy, where x and y are in terms of a. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Given that arg u = 14 π, find the value of a. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23 [Turn over


www.dynamicpapers.com
6

5 (a) Given that


       
sin x + 16 π − sin x − 16 π = cos x + 13 π − cos x − 13 π ,
find the exact value of tan x. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
7

(b) Hence find the exact roots of the equation


       
sin x + 16 π − sin x − 16 π = cos x + 13 π − cos x − 13 π

for 0 ≤ x ≤ 2π. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23 [Turn over


www.dynamicpapers.com
8

6 The parametric equations of a curve are



x = t + 3, y = ln t,
for t > 0.

dy
(a) Obtain a simplified expression for in terms of t. [3]
dx

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) Hence find the exact coordinates of the point on the curve at which the gradient of the normal
is −2. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
9

7 The variables x and 1 satisfy the differential equation


x dx
= x2 + 3.
tan 1 d1
It is given that x = 1 when 1 = 0.

Solve the differential equation, obtaining an expression for x2 in terms of 1. [7]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/31/O/N/23 [Turn over


www.dynamicpapers.com
10

8 (a) By sketching a suitable pair of graphs, show that the equation



x = ex − 3
has only one root. [2]

(b) Show by calculation that this root lies between 1 and 2. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
11

(c) Show that, if a sequence of values given by the iterative formula


/ !
xn+1 = ln 3 + xn
converges, then it converges to the root of the equation in (a). [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(d) Use the iterative formula to calculate the root correct to 2 decimal places. Give the result of each
iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23 [Turn over


www.dynamicpapers.com
12

9
y
M

x
O 3

− 14 x2
The diagram shows the curve y = xe , for x ≥ 0, and its maximum point M .

(a) Find the exact coordinates of M . [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
13

(b) Using the substitution x = u, or otherwise, find by integration the exact area of the shaded region
bounded by the curve, the x-axis and the line x = 3. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23 [Turn over


www.dynamicpapers.com
14

24x + 13
10 Let f x = .
1 − 2x 2 + x2

(a) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
15

(b) Hence obtain the expansion of f x in ascending powers of x, up to and including the term in x2 .
[5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(c) State the set of values of x for which the expansion in (b) is valid. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23 [Turn over


www.dynamicpapers.com
16

11
G F

C M
B

k D
E

O
i A

In the diagram, OABCDEFG is a cuboid in which OA = 3 units, OC = 2 units and OD = 2 units.


Unit vectors i, j and k are parallel to OA, OD and OC respectively. M is the midpoint of EF.

(a) Find the position vector of M . [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

The position vector of P is i + j + 2k.

(b) Calculate angle PAM . [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
17

(c) Find the exact length of the perpendicular from P to the line passing through O and M . [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
18

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
19

BLANK PAGE

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com
20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2023 9709/31/O/N/23


www.dynamicpapers.com

Cambridge International AS & A Level


CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*9146949640*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC23 11_9709_32/2R
© UCLES 2023 [Turn over
www.dynamicpapers.com
2

BLANK PAGE

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
3

1 (a) Sketch the graph of y = 4x − 2. [1]

(b) Solve the inequality 1 + 3x < 4x − 2. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


www.dynamicpapers.com
4

2 The parametric equations of a curve are

x = ln t2 , y = e2−t ,
2

for t > 0.

Find the gradient of the curve at the point where t = e, simplifying your answer. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
5

3 The polynomial 2x3 + ax2 − 11x + b is denoted by p x. It is given that p x is divisible by 2x − 1
and that when p x is divided by x + 1 the remainder is 12.

Find the values of a and b. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


www.dynamicpapers.com
6

4 (a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities  z − 4 − 3i ≤ 2 and Re z ≤ 3. [4]

(b) Find the greatest value of arg z for points in this region. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
7

x x + 1
6
Find the exact value of Ô
x2 + 4
5 dx. [6]
0

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


www.dynamicpapers.com
8

6 (a) By sketching a suitable pair of graphs, show that the equation


cot x = 2 − cos x
has one root in the interval 0 < x ≤ 12 π. [2]

(b) Show by calculation that this root lies between 0.6 and 0.8. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
9
Q P
(c) Use the iterative formula xn+1 = tan −1
1
2 − cos xn
to determine the root correct to 2 decimal

places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


www.dynamicpapers.com
10

7 (a) By expressing 31 as 21 + 1, prove the identity cos 31  4 cos3 1 − 3 cos 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
11

(b) Hence solve the equation

cos 31 + cos 1 cos 21 = cos2 1


for 0Å ≤ 1 ≤ 180Å. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


www.dynamicpapers.com
12

2 + 3ai
= , 2 − i, where a and , are real constants.
a + 2i
8 It is given that

(a) Show that 3a2 + 4a − 4 = 0. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
13

(b) Hence find the possible values of a and the corresponding values of ,. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


www.dynamicpapers.com
14

9
y

M
x
O a π

The diagram shows the curve y = sin x cos 2x, for 0 ≤ x ≤ π, and a maximum point M , where x = a.
The shaded region between the curve and the x-axis is denoted by R.

(a) Find the value of a correct to 2 decimal places. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
15

(b) Find the exact area of the region R, giving your answer in simplified form. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


www.dynamicpapers.com
16

10 The equations of the lines l and m are given by


−2
` a ` a ` a ` a
3 1 6
l: r = −2 + , 1 and m: r = −3 + - 4 ,
1 2 6 c
where c is a positive constant. It is given that the angle between l and m is 60Å.

(a) Find the value of c. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
17

(b) Show that the length of the perpendicular from 6, −3, 6 to l is 11.

[5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


www.dynamicpapers.com
18

11 The variables x and y satisfy the differential equation

+ y2 + y = 0.
dy
x2
dx
It is given that x = 1 when y = 1.

(a) Solve the differential equation to obtain an expression for y in terms of x. [8]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
19

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) State what happens to the value of y when x tends to infinity. Give your answer in an exact form.
[1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


www.dynamicpapers.com
20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2023 9709/32/O/N/23

You might also like