Fom 1
Fom 1
FUNDAMENTAL OF
ATHEMATICS
SSIGNMENT
by
BBandana Gupta
B.Tech, IIT Kharagpur
www.BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
PART - I : SUBJECTIVE QUESTIONS
Section (A) : Graphs of polynomials
A-1. Draw the graphs of following :
(i) y = 2x3 + 9x2 – 24x + 15 (ii) y = – 3x4 + 4x3 + 12x2 – 2
x 3 – 4x
(iii) y= (iv) y = x 4 – 2x 2 + 5
4
A-2_. Find the values of for which equation 3x4 – 8x3 – 6x2 + 24x = has
(i) 1 solution (ii) 2 solution (iii) 3 solution (iv) 4 solution.
( x 2) ( x 2 2x 1)
(iii) 0
4 3x x 2
| sin x |
(i) y= (ii) y = | x 1| 2
sin x
(iii) y = tan 2x (iv) y = sin | x |
3 3
C-2. If f(x) = sin(x), then draw the graph of the followings :
(i) y = f(|x|) (ii) y = f(–|x|) (iii) |y| = f(x)
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 2
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
C-3. Draw the graph of followings
(i) y = – |x + 2| (ii) y = | | x – 1 | – 2|
(iii) y = |x + 2| + |x – 3| (iv) |y| + x = – 1
(v) log 102 x + log10x 2 = log 102 2 1 (vi) log4 (log2x) + log2 (log4x) = 2
log x 5
(vii) x 3 = 105 + log x (viii)_ log 1 ( x 1) log 1 ( x 1) log (7 x ) 1
1
2 2 2
x 1
(i) log0.5 (x + 5)2 > log1/2 (3x – 1) 2. (ii) log1/2 log3 0
x 1
1
(iii) log(3x2 1) 2 < (iv) logx² (2 + x) < 1
2
E-1_. Find the value(s) of x, if {x}, [x] & x are in A.P. (where [ . ] and { . } denotes greatest integer and
fractional part function respectively) :
E-2. Solve the following equations (where [ . ] and { . } denotes greatest integer and fractional part function
respectively) :
(i) 4[x] = x + {x} (ii) | 2x – 1 | = 3 [x] + 2{x}
E-3. Solve the equation 2x + 3 [x] – 4 {–x} = 4 for x (where [x] and {x} denote integral and fractional part of x)
E-4. Draw the graph of y = [x 2 – 2x] , 0 x 2 (where [ . ] denotes greatest integer function).
E-5_. Find the number of integers for which sgn(x2 – 2x – 8) = –1
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 3
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
Section (F) : Trigonometric equations & inequations
x 4 3 x 3 2x 2
B-2. The complete solution set of the inequality 0 is:
x 2 x 30
(A) ( , 5) (1, 2) (6, ) {0} (B) ( , 5) [1, 2] (6, ) {0}
(C) ( , 5] [1, 2] [6, ) {0} (D) none of these
( x 4)2013 . ( x 8)2014 ( x 1)
0 is
x 2016 ( x 2)3 . ( x 3)5 . ( x 6) ( x 9)2012
3x 2 10 x 3
B-9. Number of real solution(s) of the equation x 3 = 1 is :
(A) exactly four (B) exactly three
(C) exactly two (D) exactly one
B-10. If |x2 – 2x – 8| + |x2 + x – 2| = 3 | x + 2|, then the set of all real values of x is
(A) [1, 4] {–2} (B) [1, 4] (C) [–2, 1] [4,) (D) (–, –2] [1, 4]
B-11. The complete set of real ' x ' satisfying ||x – 1| – 1| 1 is:
(A) [0, 2] (B) [ 1, 3] (C) [ 1, 1] (D) [1, 3]
(A) (B)
(C) (D)
3
C-2. The number of roots of the equation cot x = + x in , is ,
2 2
(A) 3 (B) 2 (C) 1 (D) infinite
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 5
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
(A) (B)
(C) (D)
1
then graph of y = is best represented by
f ( x)
(A) (B)
(C) (D)
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 6
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
3
C-5. Number of solutions of equation 4 tan x + 2x = belonging to interval , are
2 2
(1) 1 (2) 2 (3) 3 (4) 4
log( x – 3 ) ( x 2 – 4 x 3 )
D-4. Number of integral solutions of inequality 1 1 are
10
(A) 0 (B) 1 (C) 2 (D) 3
(C) ( 5 , 3 5 ) (D)
1 1
(A) (10, ) (B) 0, (10, ) (C) 0, (D) None of these
10 10
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 7
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
E-2. The number of solutions of the equation 2{x} 2 – 5 {x} + 2 = 0 is (where {.} denotes the fractional part
function)
(A) no solution (B) 1 (C) 2 (D) infinite
E-3. Number of solutions of the equation [2x] – 3 {2x} = 1 (where [ . ] and { . } denotes greatest integer and
fractional part function respectively)
(A) 1 (B) 2 (C) 3 (D) 0
E-4. Graph of y = {x} + {– x} in the interval [–1, 2] is (where {.} denotes fractional part function)
(A) (B)
(C) (D)
E-5. Number of integers satisfying the equation [x] + [2x] + [3x] = {x} + {2x} + 2x 2 (where [.] and {.} denotes
greatest integer function and fractional part function respectively) are
(A) 0 (B) 1 (C) 2 (D) 3
E-6. The number of solutions of equation [ x] 2x 4, is (where [.] represents greater integer function)
(A) 2 (B) 4 (C) 5 (D) none of these
x 2 5x 4
E-7. The complete solution set of the equation sgn { x} = – 1, where {·} is fractional part function, is
(A) (1, 4) (B) [1, 4] (C) (– , 1) (4, ) (D) (1, 2) (2, 3) (3, 4)
(A) (B) (C) (D)
3 8 12 6
F-2. If a + b = 3 – cos 4 and a – b = 4 sin 2, then ab is always less than or equal to
1 2 3
(A) (B) 1 (C) (D)
2 3 4
F-3. If x 0 , then the number of solutions of the equation sin 7x + sin 4x + sin x = 0 is:
2
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 8
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
F-4. All solutions of the equation 2 sin + tan = 0 are obtained by taking all integral values of m and n are:
2 2
(A) 2n + , n (B) n & 2m ± , n, m
3 3
(C) n & m ± , n, m (D) n & 2m ± , n, m
3 3
2
F-6. The general solution of the equation tan x + tan x + tan x = 3 is
3 3
n n n
(A) n (B) n (C) n (D) none
4 12 3 6 3 12
2 2
(C) x 2n, 2n (D) x 2n – , 2n
3 3
F-8. The solution of inequality 4tanx – 3.2tanx + 2 0 is
(A) x n, n ; n (B) x n, n – ; n
4 4
(C) x n, n ; n (D) x n, n – ; n
6 6
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 9
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
2. Let f(x) = x3 – 3x + 2, then match the graphs in Column-II with corresponding expressions in column-I
Column-I Column-II
1 n
(A) sin 2 = (p) ;n
2 2 8
n
(B) sin 2 + cos 2 = 0 (q) ;n
2 12
1 n
(C) cos 4 = (r) ;n
2 2 6
n
(D) 3 cot 2 2 = 1 (s) ( 1)n ;n
2 12
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 10
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
ANSWERS A-2_. (i) {– 19} (ii) (– 19, 8) (13, )
(iii) {8, 13} (iv) (8, 13)
PART - I
Section (B) :
Section (A) : B-1. (i) x (– , 2) (5, ) (ii) x (1, 3)
A-1. (iii) x (2, 1) ( 2/3, 1/2)
1
(iv) x (– , – 2) , 1 (4, )
4
B-5. x = 2, y = 1
4
B-6. (i) (ii) 3 (iii) 2, 5 (iv)
3
(ii) 2
(iv) x , 4
3
Section (C) :
C-1. (i)
(iii)
(ii)
(iv)
(iii)
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 11
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
(iv)
(iii)
C-2.
(iv)
(i)
C-4. (i)
(ii)
(iii)
(ii)
C-3. (i)
(iii)
(ii)
(iv)
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 12
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
PART - II
Section (A) :
C-5. A-1. (B) A-2. (B) A-3. (D)
Section (B) :
B-1. (D) B-2. (B) B-3. (D)
Section (F) :
F-1. (i) x = n + (–1)n – ; n
4 4
F-1. (D) F-2. (B) F-3. (B)
m ( 2m 1)
(ii) , m or , m F-4. (B) F-5. (B) F-6. (C)
4 10
F-7. (B) F-8. (A)
1 2
(iii) n , n (iv) 2n + , n
4 2 3 PART - III
1. (A) (r) ; (B) (p) ; (C) (q) ; (D) (s)
1
(v) n , n
3 3
2. (A) (s) ; (B) (q) ; (C) (p) ; (D) (r)
F-2. (i) ( (8n –1)/4, 2n) ((8n + 1)/4,
(8n + 3)/4)(+2n,(8n+5)/4),(n Z) 3. (A) (q) ; (B) (s) ; (C) (p) ; (D) (r)
(ii) ((4n + 1)/4, (3n + 1)/3), (n Z)
4. (A) (s) ; (B) (p) ; (C) (q) ; (D) (r)
BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 13
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com