0% found this document useful (0 votes)
6 views13 pages

Fom 1

Uploaded by

killerkrish1310
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
6 views13 pages

Fom 1

Uploaded by

killerkrish1310
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

ATHEMATICS

FUNDAMENTAL OF
ATHEMATICS
SSIGNMENT
by

BBandana Gupta
B.Tech, IIT Kharagpur

www.BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
PART - I : SUBJECTIVE QUESTIONS
Section (A) : Graphs of polynomials
A-1. Draw the graphs of following :
(i) y = 2x3 + 9x2 – 24x + 15 (ii) y = – 3x4 + 4x3 + 12x2 – 2
x 3 – 4x
(iii) y= (iv) y = x 4 – 2x 2 + 5
4
A-2_. Find the values of  for which equation 3x4 – 8x3 – 6x2 + 24x =  has
(i) 1 solution (ii) 2 solution (iii) 3 solution (iv) 4 solution.

Section (B) : Rational Inequalities and Modulus Function


B-1. Solve the following inequalities :
(i) x 2 – 7x + 10 > 0 (ii) x2 – 4x + 3 < 0
2x 1 x2 2x  3
(iii) 
2
2x  5x  2 x 1. (iv)
x2
>
4x  1
.

B-2. Find all real values of x which satisfy x2 – 3x + 2 > 0 and x2 – 3x – 4  0.

B-3. Solve the following inequalities :


x 4 ( x  1)2 ( x  2)
(i) (x – 1) (x + 1) (x – 4)  0
2 3
(ii) 0
( x  3 )3 ( x  4 )

( x  2) ( x 2  2x  1)
(iii) 0
 4  3x  x 2

B-4. Solve the following linear equations


(i) |x|2 – |x| + 4 = 2 x2  3x + 1 (ii) | |x – 1| – 2|= |x – 3|

B-5. Solve the simultaneous equations |x + 2| + y = 5, x – |y| = 1

B-6. Solve the following equations-


(i) |x – 3| = 2x –1 (ii) x |x| = 9
(iii) |x – 3| = x 1 (iv) |x + 1| + |x – 4|2 + x2 =0

B-7. Solve the following inequalities :


3x | x  3 | x
(i) 2 1 (ii) >1
x 4 x2
(iii) |x 2 + 3x| + x2 – 2  0 (iv) |x + 3| > |2x – 1|

Section (C) : Graphical Transformations


C-1. Draw the graph of the followings :

| sin x |
(i) y= (ii) y = | x  1|  2
sin x
   
(iii) y = tan  2x   (iv) y = sin  | x |  
 3  3
C-2. If f(x) = sin(x), then draw the graph of the followings :
(i) y = f(|x|) (ii) y = f(–|x|) (iii) |y| = f(x)

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 2
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
C-3. Draw the graph of followings
(i) y = – |x + 2| (ii) y = | | x – 1 | – 2|
(iii) y = |x + 2| + |x – 3| (iv) |y| + x = – 1

C-4. Draw the graphs of the following curves :


1 y
(i) y= – (ii) | x | 1 = – 1
| 2x  1 |
| x 2 – 1|
(iii) |y – 3| = |x – 1| (iv) y= nx
( x 2 – 1)

C-5. Draw the graph of y = log1/2 (1 – x).

Section (D) : Irrational inequality, Logarithmic equation and logarithmic inequality


D-1. Solve the following inequalities :
(i) x– 1 | x | < 0 (ii) x2  x  1  x

D-2. Solve the following equations

(i) log10 (x²  12 x + 36) = 2 (ii) log4 log3 log2 x = 0


 1 
(iii) log3  log 9 x   9 x  = 2x. (iv) 2log4 (4 – x) = 4 – log2 (– 2 – x).
 2 

(v) log 102 x + log10x 2 = log 102 2  1 (vi) log4 (log2x) + log2 (log4x) = 2
log x  5
(vii) x 3 = 105 + log x (viii)_ log 1 ( x  1)  log 1 ( x  1)  log (7  x )  1
1
2 2 2

D-3. Solve the following inequalities :

x 1
(i) log0.5 (x + 5)2 > log1/2 (3x – 1) 2. (ii) log1/2 log3 0
x 1

1
(iii) log(3x2  1) 2 < (iv) logx² (2 + x) < 1
2

Section (E) : Greatest Integer, Fractional Part and Signum Function

E-1_. Find the value(s) of x, if {x}, [x] & x are in A.P. (where [ . ] and { . } denotes greatest integer and
fractional part function respectively) :

E-2. Solve the following equations (where [ . ] and { . } denotes greatest integer and fractional part function
respectively) :
(i) 4[x] = x + {x} (ii) | 2x – 1 | = 3 [x] + 2{x}

E-3. Solve the equation 2x + 3 [x] – 4 {–x} = 4 for x (where [x] and {x} denote integral and fractional part of x)

E-4. Draw the graph of y = [x 2 – 2x] , 0  x  2 (where [ . ] denotes greatest integer function).
E-5_. Find the number of integers for which sgn(x2 – 2x – 8) = –1

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 3
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
Section (F) : Trigonometric equations & inequations

F-1. Find the general solution of trigonometric equations


(i) sin x + cos x =1 (ii) sin9 = sin
(iii) cot – tan = 2. (iv) cosec = cot + 3.

(v) tan + tan2 + 3 tan tan2 = 3.

F-2. Solve the following inequalities :


(i) sin 3x < sin x. (ii) tan2x – (1 + 3 ) tan x + 3 <0

PART - II : ONLY ONE OPTION CORRECT TYPE


Section (A) : Graphs of polynomials
A-1. Number of distinct real roots of the equation – x 3 + 6x 2 – 18x + 4 = 0 is
(A) 0 (B) 1 (C) 2 (D) 3

A-2. Number of distinct real values of x satisfying the equation x 3 – 5x2 + 7x – 3 = 0 is


(A) 1 (B) 2 (C) 3 (D) 4

A-3. The equation x 4 – 2x2 = a has 4 distinct real roots, then


(A) a  (–1, 1) (B) a  [–1, 0] (C) a  (–1, –1/2) (D) a  (–1, 0)

Section (B) : Rational Inequalities and Modulus Function


x2
B-1. The complete set of values of x which satisfy the inequations : 5x + 2 < 3x + 8 and < 4 is
x 1
(A) (– , 1) (B) (2, 3) (C) (– , 3) (D) (– , 1)  (2, 3)

x 4  3 x 3  2x 2
B-2. The complete solution set of the inequality  0 is:
x 2  x  30
(A) ( ,  5)  (1, 2)  (6, )  {0} (B) ( ,  5)  [1, 2]  (6, )  {0}
(C) ( ,  5]  [1, 2]  [6, )  {0} (D) none of these

B-3. The number of the integral solutions of x 2 + 9 < (x + 3) 2 < 8x + 25 is :


(A) 1 (B) 2 (C) 3 (D) none

B-4. Number of positive integral values of x satisfying the inequality

( x  4)2013 . ( x  8)2014 ( x  1)
 0 is
x 2016 ( x  2)3 . ( x  3)5 . ( x  6) ( x  9)2012

(A) 0 (B) 1 (C) 2 (D) 3


2 1 2x  1
B-5. Number of non-negative integral values of x satisfying the inequality    0 is
2
x  x 1 x  1 x3  1
(A) 0 (B) 1 (C) 2 (D) 3

B-6. Solutions of |4x + 3| + |3x – 4| = 12 are


7 3 5 2 11 13 3 7
(A) x = – , (B) x = – , (C) x = – , (D) x = – ,
3 7 2 5 7 7 7 5

B-7. The minimum value of f(x) = |x – 1| + |x – 2| + |x – 3| is equal to


(A) 1 (B) 2 (C) 3 (D) 0

BandanaGupta Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645


Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
4
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
B-8_. Number of solutions of the equations |2x2 + x – 1| = |x2 + 4x + 1|
(A) 1 (B) 2 (C) 3 (D) 4

3x 2 10 x  3
B-9. Number of real solution(s) of the equation x  3 = 1 is :
(A) exactly four (B) exactly three
(C) exactly two (D) exactly one

B-10. If |x2 – 2x – 8| + |x2 + x – 2| = 3 | x + 2|, then the set of all real values of x is
(A) [1, 4]  {–2} (B) [1, 4] (C) [–2, 1]  [4,) (D) (–, –2]  [1, 4]

B-11. The complete set of real ' x ' satisfying ||x – 1| – 1|  1 is:
(A) [0, 2] (B) [ 1, 3] (C) [ 1, 1] (D) [1, 3]

B-12. The set of all real numbers x for which x 2 – |x + 2| + x > 0 is


(A) (– , – 2 )  (2, ) (B) (– , – 2 )  ( 2 , )
(C) (– , – 1)  (1, ) (D) ( 2 , )

B-13_. Solution set of the inequalities |x2 + x – 2|  0 and |x2 – x + 2|  0 is


(A) x  [–2, 1] (B) [–2, –1] (C) {–2, 1} (D) {–2, –1, 1, 2}

Section (C) : Graphical Transformations


C-1. Given the graph of y = f(x), is

which of the following is graph of y = f(1– x) ?

(A) (B)

(C) (D)

  3 
C-2. The number of roots of the equation cot x = + x in  , is ,
2  2 
(A) 3 (B) 2 (C) 1 (D) infinite

C-3. Let y = f(x) has following graph

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 5
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta

then graph of y = – f(|x|)

(A) (B)

(C) (D)

C-4. Graph of y = f(x) is given below :

1
then graph of y = is best represented by
f ( x)

(A) (B)

(C) (D)

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 6
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
  3 
C-5. Number of solutions of equation 4 tan x + 2x =  belonging to interval   ,  are
 2 2 
(1) 1 (2) 2 (3) 3 (4) 4

C-6. Number of roots of equation 3|x|– |2 – |x|| = 1 is


(A) 0 (B) 2 (C) 4 (D) 7

C-7. Number of solutions of equation x + 1 = x · 2x are


(A) 1 (B) 2 (C) 3 (D) 4

Section (D) : Irrational inequality, Logarithmic equation and logarithmic inequality

D-1. Complete set of values of x satisfying the inequality x – 3 < x 2  4 x  5 is


(A) (– , – 5] U [1, ) (B) (– 5, 3] (C) [3, 5) (D) (– 5, 3)
1
D-2. Set of all real values of x satisfying the inequation 4  x2  is
x

(A) [–2, 0)  [ 2  3 , 2  3 ] (B) (–, –2]  ( 2  3 , )

(C) (0, 2  3 ]  [ 2  3 , ) (D) (–, 2  3 ]  [ 2  3 , )

D-3. Number of real solutions of the equation log10 x  = log10 x 2 is :


(A) zero (B) exactly 1 (C) exactly 2 (D) 4

log( x – 3 ) ( x 2 – 4 x  3 )
D-4. Number of integral solutions of inequality  1   1 are
 10 
(A) 0 (B) 1 (C) 2 (D) 3

D-5. Solution set of the inequality, 2  log2 (x 2 + 3x)  0 is :


(A) [ 4, 1] (B) [4, 3)  (0, 1] (C) ( 3)  (1, ) (D) ( 4)  [1, )
D-6. If log0.5 log5 (x 2 – 4) > log0.51, then ‘x’ lies in the interval
(A) (– 3, – 5 )  ( 5 , 3) (B) (– 3, – 5)( 5,3 5)

(C) ( 5 , 3 5 ) (D) 

D-7. If the solution set of the inequality log


0. 9
log5 ( x 2  5  x ) > 0 contains ‘n’ integral values, then n equals to
(A) 7 (B) 8 (C) 6 (D) 10
D-8. Exhaustive set of values of x satisfying log|x| (x2 + x + 1)  0 is
(A) (–1, 0) (B) (–, –1)  (1, ) (C) (–) – {–1, 0, 1} (D) (–, –1)  (–1, 0)  (1, )

D-9. Complete solution set of the inequality 2


log10 x  1 > log10x – 1 is

 1  1
(A) (10, ) (B)  0,   (10,  ) (C)  0,  (D) None of these
 10   10 

Section (E) : Greatest Integer , Fractional Part and Signum Function


1 n  151
E-1. Let f(n) =    , where [.] denotes the greatest integer function, then the value of
 2 100   f (n) is
n 1
(A) 101 (B) 102 (C) 104 (D) 103

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 7
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
E-2. The number of solutions of the equation 2{x} 2 – 5 {x} + 2 = 0 is (where {.} denotes the fractional part
function)
(A) no solution (B) 1 (C) 2 (D) infinite

E-3. Number of solutions of the equation [2x] – 3 {2x} = 1 (where [ . ] and { . } denotes greatest integer and
fractional part function respectively)
(A) 1 (B) 2 (C) 3 (D) 0

E-4. Graph of y = {x} + {– x} in the interval [–1, 2] is (where {.} denotes fractional part function)

(A) (B)

(C) (D)

E-5. Number of integers satisfying the equation [x] + [2x] + [3x] = {x} + {2x} + 2x 2 (where [.] and {.} denotes
greatest integer function and fractional part function respectively) are
(A) 0 (B) 1 (C) 2 (D) 3

E-6. The number of solutions of equation [ x]  2x  4, is (where [.] represents greater integer function)
(A) 2 (B) 4 (C) 5 (D) none of these

 x 2  5x  4 
 
E-7. The complete solution set of the equation sgn  { x}  = – 1, where {·} is fractional part function, is
 
(A) (1, 4) (B) [1, 4] (C) (– , 1)  (4, ) (D) (1, 2)  (2, 3)  (3, 4)

E-8. Number of integral solutions of the equation sgn(sinx) = 1 in [0, 10] is


(A) infinite (B) 6 (C) 7 (D) 8

Section (F) : Trigonometry equation & Inequality


sin 2 2x  4 sin 4 x – 4 sin 2 x cos 2 x 1
F-1. The least positive value of x satisfying 2 2
= is
4 – sin 2x – 4 sin x 9

   
(A) (B) (C) (D)
3 8 12 6
F-2. If a + b = 3 – cos 4 and a – b = 4 sin 2, then ab is always less than or equal to
1 2 3
(A) (B) 1 (C) (D)
2 3 4

 
F-3. If x  0 ,  then the number of solutions of the equation sin 7x + sin 4x + sin x = 0 is:
 2

(A) 3 (B) 5 (C) 6 (D) None

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 8
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
F-4. All solutions of the equation 2 sin + tan = 0 are obtained by taking all integral values of m and n are:
2 2
(A) 2n + , n  (B) n & 2m  ± , n, m 
3 3
 
(C) n & m  ± , n, m  (D) n & 2m  ± , n, m 
3 3

F-5. The general solution of the equation 2cos2x = 3.2cos2x  4 is


(A) x = 2nn  (B) x = nn  (C) x = nn  (D) x = n/2n 

   2
F-6. The general solution of the equation tan x + tan  x   + tan  x   = 3 is
 3 3

n  n  n 
(A)  n (B)  n (C)  n (D) none
4 12 3 6 3 12

F-7. The solution of inequality cos 2x  cos x is


    2 2 
(A) x  2n – , 2n  (B) x  2n – , 2n 
 3 3   3 3 

 2   2 
(C) x  2n, 2n   (D) x  2n – , 2n
 3   3 
F-8. The solution of inequality 4tanx – 3.2tanx + 2  0 is
   
(A) x  n, n   ; n  (B) x  n, n –  ; n 
 4  4

   
(C) x  n, n   ; n  (D) x  n, n –  ; n 
 6  6

PART - III : MATCH THE COLUMN


1. If y = f(x) has following graph, then match the column.

(A) y = |f(x)| (p)

(B) y = f(|x|) (q)

(C) y = f(– |x|) (r)

(D) y  | f ( |x| ) | (s)

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 9
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
2. Let f(x) = x3 – 3x + 2, then match the graphs in Column-II with corresponding expressions in column-I
Column-I Column-II

(A) y = f(|x|) (p)

(B) y = f(–|x|) (q)

(C) |y| = f(x) (r)

(D) |y| = f(|x – 2|) (s)

3. For all real value of 


Column I Column II
1 
(A) A = sin2  + cos4  (p) A   , 1
4 
1 3 
(B) A= (q) A   ,1
3 sin x  4 cos x  2 4 
(C) A = cos6 x + sin6 x (r) A  [2 2 , )
 1 1
(D) A = tan2  + 2 cot2  (s) A  R –  , 
 7 3

4. Match the general solution of following trigonometric equations


Column-I Column-II

1 n 
(A) sin 2 = (p)  ;n
2 2 8
n 
(B) sin 2 + cos 2 = 0 (q)  ;n
2 12
1 n 
(C) cos 4 = (r)  ;n
2 2 6
n 
(D) 3 cot 2 2 = 1 (s)  ( 1)n ;n
2 12

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 10
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
ANSWERS A-2_. (i)   {– 19} (ii)  (– 19, 8)  (13, )
(iii)  {8, 13} (iv)  (8, 13)
PART - I
Section (B) :
Section (A) : B-1. (i) x  (– , 2)  (5, ) (ii) x  (1, 3)
A-1. (iii) x  (2, 1)  ( 2/3,  1/2)
1 
(iv) x (– , – 2)   , 1  (4, )
4 

B-2. x  [–1, 1)  (2, 4]

B-3. (i) x  (–, –1]  {1}  [4, )


(ii) x  (–4, –1)  (–1, 0)  (0, 2)  (3, )
(i) (iii) x  (–, –2]  {1}

B-4. (i) x = – 3, 3 (ii) x  [1, )

B-5. x = 2, y = 1

4
B-6. (i) (ii) 3 (iii) 2, 5 (iv) 
3

B-7. (i) x  (–, –4]  [–1, 1]  [4, )


(ii) x  (–5, –2)  (–1, )
 2 1 
(iii) x    ,     ,  
 3  2 

(ii)  2 
(iv) x    , 4 
 3 
Section (C) :

C-1. (i)

(iii)

(ii)

(iv)
(iii)

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 11
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
(iv)

(iii)

C-2.

(iv)

(i)

C-4. (i)
(ii)

(iii)
(ii)

C-3. (i)

(iii)

(ii)
(iv)

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 12
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com
Fundamental of Mathematics by Bandana Gupta
PART - II
Section (A) :
C-5. A-1. (B) A-2. (B) A-3. (D)

Section (B) :
B-1. (D) B-2. (B) B-3. (D)

Section (D) : B-4. (D) B-5. (D) B-6. (C)

B-7. (B) B-8_. (D) B-9. (B)


D-1. (i) [– 1, ( 5 – 1)/2) (ii) (–)
B-10. (A) B-11. (B) B-12. (B)
D-2. (i) x = 16 or x =  4 (ii) 8
B-13_. (C)
1 1
(iii) {1/3} (iv) {– 4} (v) ,
20 5 Section (C) :
(vi) x = 16 (vii) {10 5 ,103} (viii)_ x = 3 C-1. (B) C-2. (A) C-3. (D)
D-3. (i) (–, –5)(–5, –1)  (3, ) C-4. (A) C-5. (B) C-6. (B)
(ii) [2, ) (iii) ( ,  1)  (1, )

C-7. (B)
(iv) x  (– 2, –1)  (– 1, 0)  (0, 1)  (2, )
Section (D) :
Section (E) :
D-1. (A) D-2. (A) D-3. (C)
1
E-1_. x = 0, 3/2 E-2. (i) { 0 } (ii)   D-4. (A) D-5. (B) D-6. (A)
4
D-7. (B) D-8. (D) D-9. (B)
3  Section (E) :
E-3.   E-4.
2
E-1. (C) E-2. (D) E-3. (C)
E-5_. 5
E-4. (D) E-5. (C) E-6. (B)
Section (F) :
E-7.(D) E-8. (B)

  Section (F) :
F-1. (i) x = n + (–1)n – ; n 
4 4
F-1. (D) F-2. (B) F-3. (B)
m ( 2m  1)
(ii) , m  or , m  F-4. (B) F-5. (B) F-6. (C)
4 10
F-7. (B) F-8. (A)
 1  2
(iii)  n   , n  (iv) 2n + , n 
 4 2 3 PART - III
1. (A)  (r) ; (B)  (p) ; (C)  (q) ; (D)  (s)
 1 
(v)  n   , n 
 3  3
2. (A)  (s) ; (B)  (q) ; (C)  (p) ; (D)  (r)
F-2. (i) ( (8n –1)/4, 2n)  ((8n + 1)/4,
(8n + 3)/4)(+2n,(8n+5)/4),(n  Z) 3. (A)  (q) ; (B)  (s) ; (C)  (p) ; (D)  (r)
(ii) ((4n + 1)/4,  (3n + 1)/3), (n  Z)
4. (A)  (s) ; (B)  (p) ; (C)  (q) ; (D)  (r)

BandanaGupta Corp.Office: 601, Sapphire - II, Sector - 104, Hazipur, Noida (UP) 201 304
Phone : +91-9-9518-2-9518 | CIN U80903UP2018PTC110645 13
Classes Private Limited Website : www.BandanaGupta.com | E-mail : contact@BandanaGupta.com

You might also like