Maths Pyq
Maths Pyq
2 I2 be
2 2I
2
1 2
2
Downloaded by Raghav Maheshwari (raghav190205@gmail.com)
AJ-18MAB201T
LE-a)+F,(+a)] 4ofPage2
Lre-a)+F,(D) (s+aj] (C)
(B)
f()sin
isax transform
of (A)
2 4 1 sineFourier 16.
S
(D)
) (C)
a
1(B)
F[f(ar)]is valof
ue Th(Ae ) 1S.
2 4 2
e(D) e (C)
-/2 (B) (A)
=e*2is f(x) transform
of Fourier The
2 4 2
14.
F()
(D) (F() n (C)
F(O) (
1fFUo)=F(9,t (B)
hen (A) 13-
Constant (D) Uniform (C)
lower Hito
gher (B) higher Lower
tenperature. to (A)
from flows Heat 12.
parabolic nd
aelliptic Both (D) Hyperbolic (C)
Parabolic
-fyytuy-uy (B) Elliptic (A)
2 3 2 1 1s
=0 fxy PDE classification
+ 2f the of The 1.
K/c (D)
TIm (B) KlpC (C)
1 3 i 1 r
fostands Kp (A)
equationa dimensional
heat one In 10.
a(D) ay (C)
ot
(B)
Ou (A)
equationis dimensional
wave one The 9.
0(D)
R(B) 2r (C)
(-,off(x)=x
isT) in expansion /2 (A)
series fourier the ue
inaovalof The 8.
lOMoARcPSD|49036396
Downloaded by Raghav Maheshwari (raghav190205@gmail.com)
28NA3-18MAB201T of4 Page3
in
rod. thefunction
distribution temperature state steady the FiprevaiS,
nd condition state steady
10°C Aa ends its has long cm20is rod A27.
3 3 4 unti S0°C and tenmperature
1
pq-4. Solve 26.
2 1 3
4
= of
n. f(n)Z-Aransform Find 25.
3
F[f(r-a)]=eF(). thatFS()]=F(s),
prove then If24.
2 4 3 4
dimensional of
one solutions possible the down Write 23.
1 3 3 4 equation. wave
conditions. Dirchilet's State 22.
2 43
2
arbitrary eliminating
the byPDE the Form 21.
from COnstants ANY Answer
2 1 3 4
Questions FIVE
PART-B(SX4-20
Marks)
PO CO BLMarks
(7D)
3(C)
2(B) 1(A)
(-2)
F(:)= If
at the
is=2 pole order
of the then 20.
2 5 2 n²(C)
(n+1 (D)
(0+1) (B) n(A)
of
zvalue The
19.
Z
Z-2
z+2 2 (C)
2 (D) 2-1
z+1 z(A)
B) =(-2)" f(n)Z-transfomof 18.
2 is
z-10 Z-1
10z (D) 10z (C)
2-10 z-1
Z(A)
5
(B) z-transform 17.
10 of
is
lOMoARcPSD|49036396
PO 12 3
2 I
24 2 2
43I 1 342
CO 2 5
3 2 28NA3-18MAB
BL. 3 4
3 4
4
Marks 3
12
12 12 12 12 12
12
12
12 12
Z
a TheX from respectively
reduced using
(9,7) x=lapart.
data. u,t). evaluate y(1)=0
in =100sin is
x(7-x) following B find