0% found this document useful (0 votes)
10 views6 pages

Modul 1 Biostatistika

The document contains a series of Minitab commands and outputs related to data analysis. It includes sorting, erasing, copying data, and calculating descriptive statistics for two subsets of data. The results show various statistical measures such as mean, standard deviation, and counts for the variables analyzed.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
10 views6 pages

Modul 1 Biostatistika

The document contains a series of Minitab commands and outputs related to data analysis. It includes sorting, erasing, copying data, and calculating descriptive statistics for two subsets of data. The results show various statistical measures such as mean, standard deviation, and counts for the variables analyzed.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 6

Nama : Devia Angelina Sopian

NIM : B1A022155
Kelas : C

MODUL 1
————— 11/25/2022 3:36:12 PM ————————————————————

Welcome to Minitab, press F1 for help.

MTB > SORT C1 C2


MTB > ERASE C1
MTB > COPY C2 C1
MTB > PRINT C1

Data Display

C1
-2.21269 -2.04566 -1.86190 -1.73237 -1.57320 -1.57180 -1.51251
-1.44673 -1.44123 -1.43938 -1.40119 -1.39675 -1.39363 -1.24334
-1.22024 -1.20866 -1.18962 -1.17930 -1.16134 -1.15766 -1.15518
-1.15038 -1.12423 -1.08718 -1.07870 -1.06563 -0.95148 -0.93625
-0.93219 -0.93056 -0.89830 -0.87978 -0.86882 -0.86417 -0.84250
-0.81612 -0.78504 -0.75500 -0.75360 -0.74641 -0.74369 -0.72204
-0.71411 -0.71330 -0.70735 -0.68062 -0.67446 -0.67241 -0.67039
-0.66019 -0.63586 -0.59054 -0.57323 -0.55849 -0.53691 -0.52662
-0.50226 -0.47465 -0.41169 -0.40357 -0.40002 -0.39057 -0.38841
-0.38603 -0.37446 -0.37372 -0.37022 -0.34407 -0.34141 -0.34111
-0.33589 -0.33324 -0.31834 -0.30347 -0.29837 -0.27546 -0.26930
-0.23364 -0.22425 -0.17846 -0.17371 -0.17059 -0.15161 -0.15122
-0.14918 -0.14888 -0.14296 -0.13871 -0.13336 -0.13096 -0.12200
-0.11928 -0.11577 -0.08514 -0.08182 -0.08052 -0.07696 -0.07606
-0.06711 -0.02880 -0.00823 0.02088 0.02786 0.03659 0.03979
0.05230 0.06129 0.07942 0.08857 0.09153 0.09703 0.09797
0.12639 0.13410 0.13682 0.15595 0.15745 0.16414 0.16564
0.17285 0.18540 0.18550 0.19149 0.19457 0.23148 0.23194
0.23962 0.25372 0.26067 0.26580 0.29923 0.30527 0.32216
0.32871 0.36643 0.37810 0.41044 0.41172 0.41733 0.44039
0.46685 0.48532 0.49929 0.53092 0.56794 0.56926 0.57768
0.58961 0.60645 0.61250 0.61306 0.61700 0.62291 0.63273
0.63805 0.65518 0.66279 0.66978 0.67889 0.68303 0.68596
0.69800 0.71540 0.73494 0.74379 0.80010 0.82048 0.82698
0.83333 0.84856 0.89609 0.90977 0.98395 1.00790 1.01946
1.02719 1.03088 1.10531 1.12933 1.24129 1.35770 1.38248
1.43499 1.44514 1.46542 1.50400 1.57734 1.64741 1.68768
1.72529 1.75526 1.77867 1.85429 1.85744 2.10627 2.11795
2.15491 2.30687 2.64690 2.85937

MTB > Let C3 = SSQ(C1)


MTB > PRINT C3

Data Display

C3
169.359

MTB > Let C3 = RANGE(C1)


MTB > PRINT C3

Data Display
C3
5.07206

MTB > COPY C1 C4;


SUBC> USE 1:50.
MTB > COPY C1 C5;
SUBC> USE 26:75.
MTB > Describe C4.

Descriptive Statistics: C4

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3


C4 50 0 -1.0994 0.0534 0.3773 -2.2127 -1.3944 -1.0722 -0.7546

Variable Maximum
C4 -0.6602

MTB > Describe C5.

Descriptive Statistics: C5

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3


C5 50 0 -0.6100 0.0308 0.2178 -1.0656 -0.7625 -0.6480 -0.3878

Variable Maximum
C5 -0.2984

MTB > Tally C4;


SUBC> Counts;
SUBC> Percents;
SUBC> CumCounts;
SUBC> CumPercents.

Tally for Discrete Variables: C4

C4 Count Percent CumCnt CumPct


-2.21269 1 2.00 1 2.00
-2.04566 1 2.00 2 4.00
-1.86190 1 2.00 3 6.00
-1.73237 1 2.00 4 8.00
-1.57320 1 2.00 5 10.00
-1.57180 1 2.00 6 12.00
-1.51251 1 2.00 7 14.00
-1.44673 1 2.00 8 16.00
-1.44123 1 2.00 9 18.00
-1.43938 1 2.00 10 20.00
-1.40119 1 2.00 11 22.00
-1.39675 1 2.00 12 24.00
-1.39363 1 2.00 13 26.00
-1.24334 1 2.00 14 28.00
-1.22024 1 2.00 15 30.00
-1.20866 1 2.00 16 32.00
-1.18962 1 2.00 17 34.00
-1.17930 1 2.00 18 36.00
-1.16134 1 2.00 19 38.00
-1.15766 1 2.00 20 40.00
-1.15518 1 2.00 21 42.00
-1.15038 1 2.00 22 44.00
-1.12423 1 2.00 23 46.00
-1.08718 1 2.00 24 48.00
-1.07870 1 2.00 25 50.00
-1.06563 1 2.00 26 52.00
-0.95148 1 2.00 27 54.00
-0.93625 1 2.00 28 56.00
-0.93219 1 2.00 29 58.00
-0.93056 1 2.00 30 60.00
-0.89830 1 2.00 31 62.00
-0.87978 1 2.00 32 64.00
-0.86882 1 2.00 33 66.00
-0.86417 1 2.00 34 68.00
-0.84250 1 2.00 35 70.00
-0.81612 1 2.00 36 72.00
-0.78504 1 2.00 37 74.00
-0.75500 1 2.00 38 76.00
-0.75360 1 2.00 39 78.00
-0.74641 1 2.00 40 80.00
-0.74369 1 2.00 41 82.00
-0.72204 1 2.00 42 84.00
-0.71411 1 2.00 43 86.00
-0.71330 1 2.00 44 88.00
-0.70735 1 2.00 45 90.00
-0.68062 1 2.00 46 92.00
-0.67446 1 2.00 47 94.00
-0.67241 1 2.00 48 96.00
-0.67039 1 2.00 49 98.00
-0.66019 1 2.00 50 100.00
N= 50

MTB > Tally C5;


SUBC> Counts;
SUBC> Percents;
SUBC> CumCounts;
SUBC> CumPercents.

Tally for Discrete Variables: C5

C5 Count Percent CumCnt CumPct


-1.06563 1 2.00 1 2.00
-0.95148 1 2.00 2 4.00
-0.93625 1 2.00 3 6.00
-0.93219 1 2.00 4 8.00
-0.93056 1 2.00 5 10.00
-0.89830 1 2.00 6 12.00
-0.87978 1 2.00 7 14.00
-0.86882 1 2.00 8 16.00
-0.86417 1 2.00 9 18.00
-0.84250 1 2.00 10 20.00
-0.81612 1 2.00 11 22.00
-0.78504 1 2.00 12 24.00
-0.75500 1 2.00 13 26.00
-0.75360 1 2.00 14 28.00
-0.74641 1 2.00 15 30.00
-0.74369 1 2.00 16 32.00
-0.72204 1 2.00 17 34.00
-0.71411 1 2.00 18 36.00
-0.71330 1 2.00 19 38.00
-0.70735 1 2.00 20 40.00
-0.68062 1 2.00 21 42.00
-0.67446 1 2.00 22 44.00
-0.67241 1 2.00 23 46.00
-0.67039 1 2.00 24 48.00
-0.66019 1 2.00 25 50.00
-0.63586 1 2.00 26 52.00
-0.59054 1 2.00 27 54.00
-0.57323 1 2.00 28 56.00
-0.55849 1 2.00 29 58.00
-0.53691 1 2.00 30 60.00
-0.52662 1 2.00 31 62.00
-0.50226 1 2.00 32 64.00
-0.47465 1 2.00 33 66.00
-0.41169 1 2.00 34 68.00
-0.40357 1 2.00 35 70.00
-0.40002 1 2.00 36 72.00
-0.39057 1 2.00 37 74.00
-0.38841 1 2.00 38 76.00
-0.38603 1 2.00 39 78.00
-0.37446 1 2.00 40 80.00
-0.37372 1 2.00 41 82.00
-0.37022 1 2.00 42 84.00
-0.34407 1 2.00 43 86.00
-0.34141 1 2.00 44 88.00
-0.34111 1 2.00 45 90.00
-0.33589 1 2.00 46 92.00
-0.33324 1 2.00 47 94.00
-0.31834 1 2.00 48 96.00
-0.30347 1 2.00 49 98.00
-0.29837 1 2.00 50 100.00
N= 50

MTB > Stem-and-Leaf C4.

Stem-and-Leaf Display: C4

Stem-and-leaf of C4 N = 50
Leaf Unit = 0.010

1 -22 1
1 -21
2 -20 4
2 -19
3 -18 6
4 -17 3
4 -16
7 -15 771
11 -14 4430
13 -13 99
16 -12 420
23 -11 8765552
(3) -10 876
24 -9 5333
20 -8 976641
14 -7 855442110
5 -6 87776

MTB > Stem-and-Leaf C5.

Stem-and-Leaf Display: C5

Stem-and-leaf of C5 N = 50
Leaf Unit = 0.010

1 -10 6
1 -10
2 -9 5
5 -9 333
9 -8 9766
11 -8 41
14 -7 855
20 -7 442110
25 -6 87776
25 -6 3
24 -5 975
21 -5 320
18 -4 7
17 -4 100
14 -3 988777
8 -3 4443310
1 -2 9

MTB > Boxplot C4;


SUBC> IQRBox;
SUBC> Outlier.

Boxplot of C4

MTB > Boxplot C5;


SUBC> IQRBox;
SUBC> Outlier.

Boxplot of C5

MTB > Histogram C4;


SUBC> Bar.

Histogram of C4

MTB > Histogram C5;


SUBC> Bar.
Histogram of C5

MTB > Plot C4*C5;


SUBC> Symbol.

Scatterplot of C4 vs C5

You might also like