Li 2021
Li 2021
Clinical Medicine
Review
Effects of Hyperglycemia and Diabetes Mellitus on Coagulation
and Hemostasis
Xiaoling Li 1 , Nina C. Weber 1 , Danny M. Cohn 2 , Markus W. Hollmann 1 , J. Hans DeVries 3 ,
Jeroen Hermanides 1 and Benedikt Preckel 1, *
Abstract: In patients with diabetes, metabolic disorders disturb the physiological balance of coagu-
lation and fibrinolysis, leading to a prothrombotic state characterized by platelet hypersensitivity,
coagulation disorders and hypofibrinolysis. Hyperglycemia and insulin resistance cause changes in
platelet number and activation, as well as qualitative and/or quantitative modifications of coagula-
tory and fibrinolytic factors, resulting in the formation of fibrinolysis-resistant clots in patients with
diabetes. Other coexisting factors like hypoglycemia, obesity and dyslipidemia also contribute to
coagulation disorders in patients with diabetes. Management of the prothrombotic state includes
antiplatelet and anticoagulation therapies for diabetes patients with either a history of cardiovascular
Citation: Li, X.; Weber, N.C.; Cohn,
disease or prone to a higher risk of thrombus generation, but current guidelines lack recommen-
D.M.; Hollmann, M.W.; DeVries, J.H.; dations on the optimal antithrombotic treatment for these patients. Metabolic optimizations like
Hermanides, J.; Preckel, B. Effects of glucose control, lipid-lowering, and weight loss also improve coagulation disorders of diabetes
Hyperglycemia and Diabetes Mellitus patients. Intriguing, glucose-lowering drugs, especially cardiovascular beneficial agents, such as
on Coagulation and Hemostasis. J. glucagon-like peptide-1 receptor agonists and sodium glucose co-transporter inhibitors, have been
Clin. Med. 2021, 10, 2419. https:// shown to exert direct anticoagulation effects in patients with diabetes. This review focuses on the
doi.org/10.3390/jcm10112419 most recent progress in the development and management of diabetes related prothrombotic state.
Academic Editor: Tomoaki Morioka Keywords: metabolic disorder; platelets; coagulation factors; hypercoagulation; hypofibrinolysis
J. Clin. Med. 2021, 10, 2419 still unclear [8]. This review focuses on coagulation dysfunction and prothrombotic states
2 of 14
in patients with DM.
Figure 1. Modifications of coagulation and fibrinolysis system in DM. Diabetes disturbs the physiological balance between
coagulation
coagulation and
and fibrinolysis,
fibrinolysis, leading
leading to
to aa prothrombotic
prothrombotic state hallmarked with
state hallmarked platelet hypersensitivity,
with platelet hypersensitivity, coagulation
coagulation factor
factor
disorders and hypofibrinolysis. Hyperglycemia and insulin resistance enhance number and aggregation of
disorders and hypofibrinolysis. Hyperglycemia and insulin resistance enhance number and aggregation of platelets throughplatelets through
increasing von Willebrand factor (vWF) level and inhibiting anti-aggregatory efficiency of nitric oxide and prostaglandin I2.
increasing von Willebrand factor (vWF) level and inhibiting anti-aggregatory efficiency of nitric oxide and prostaglandin I2 .
Hyperglycemia and insulin resistance upregulate level of pro-coagulation mediators like tissue factor (TF), coagulation fac-
Hyperglycemia and insulin resistance upregulate level of pro-coagulation mediators like tissue factor (TF), coagulation
tors (FVII, FXII, FXI and FIX) and thrombin. Diabetes also harasses fibrinolysis by decreasing tissue plasminogen activator
factorsas(FVII,
(tPA) well FXII, FXI and FIX)
as increasing and thrombin.
plasminogen Diabetes
activator also harasses
inhibitor-1 (PAI-1)fibrinolysis by decreasing
and thrombin tissue plasminogen
activator fibrinolysis inhibitoractivator
(TAFI).
(tPA) as well as increasing plasminogen activator inhibitor-1 (PAI-1) and thrombin activator fibrinolysis
Next to hyperglycemia and insulin resistance, co-existing metabolic disorders like hypoglycemia, obesity, dyslipidemia, inhibitor (TAFI).
and
Next to hyperglycemia
non-alcoholic fatty liverand insulin
disease resistance,
(NAFLD) alsoco-existing metabolic
contribute to disorders like
the pro-thrombotic hypoglycemia,
state obesity,
of patients with DM.dyslipidemia, and
non-alcoholic fatty liver disease (NAFLD) also contribute to the pro-thrombotic state of patients with DM.
2.1. Platelet Hypersensitivity
2.1. Platelet Hypersensitivity
In physiological conditions, platelets circulate in the blood for five to seven days and
constantly undergo a lifecycle
In physiological fromplatelets
conditions, megakaryocyte
circulateseparation to phagocytosis
in the blood by macro-
for five to seven days
phages, to maintain
and constantly a normal
undergo platelet
a lifecycle fromcount of 150.000–450.000
megakaryocyte per microliter.
separation After vas-
to phagocytosis by
macrophages,
cular to maintain
injury, platelets a normaltoplatelet
are activated count
aggregate, of 150.000–450.000
forming an occlusiveper microliter.
thrombus andAfter
stop
vascular [10].
bleeding injury, platelets
Both are activated
increased to aggregate,
platelet number formingaggregation
and enhanced an occlusive thrombus
capacity, theand
lat-
stop bleeding [10]. Both increased platelet number and enhanced aggregation capacity,
ter referred to as platelet hypersensitivity, will contribute to a pro-thrombotic state [11]. the
latter
In referred
patients withtoDM,
as platelet hypersensitivity,
over-activation will(mainly
of platelets contribute to a pro-thrombotic
attributed state [11].
to hyperglycemia and
In patients
insulin with DM,
resistance) over-activation
plays a crucial roleofforplatelets (mainly attributed
pro-thrombotic events [12].to hyperglycemia and
insulin resistance) plays a crucial role for pro-thrombotic events [12].
2.1.1. Hyperglycemia
Among patients with type 2 diabetes mellitus (T2DM), mean platelet counts are up to
10% higher in patients with chronic hyperglycemia (glycated hemoglobin, HbA1c > 8%) as
J. Clin. Med. 2021, 10, 2419 3 of 14
compared to euglycemia. Besides, increased mean platelet volume (MPV) is observed in pa-
tients with higher HbA1c and fasting blood glucose (FBG), suggesting that hyperglycemia
also enhances platelet activity [13]. Similarly, positive correlations between higher blood
glucose and increased platelet counts are also found in patients with type 1 diabetes mellitus
(T1DM) [14,15]. Even in patients in a pre-diabetic state, MPV is slightly increased compared
to patients with normal glucose metabolism (10.49 ± 0.96 fL vs. 10.04 ± 1.01 fL) [16]. A
potential underlying mechanism for platelet hyperactivity in hyperglycemia could be an
upregulated expression of pro-aggregatory factors like P-selectin, thromboxane A2 and von
Willebrand factor (vWF) antigen, amplifying the aggregation and adhesion of platelets [17].
In addition, high blood glucose deteriorates the physiologic reaction of platelets on
anti-aggregatory effects of nitric oxide (NO), prostaglandin I2 (PGI2 ) and insulin by inter-
fering with downstream signalling pathways [18]. Both acute and chronic hyperglycemia
upregulate the expression of adhesion molecules on platelet surface (e.g., CD31, CD49b
and CD63), an effect that is reversible after optimizing glucose control [19]. Chronic hy-
perglycemia increases expression of protease-activated receptor 4 in patients with DM,
in turn promoting the release of activated platelet-derived microparticles (PMPs) via
the Ca2+ -calpain pathway. Released PMPs then trigger the secretion of interleukin-6, a
pro-thrombotic and pro-inflammatory mediator in diabetes [20]. Through glycation of
membrane proteins, hyperglycemia also decreases the membrane fluidity of platelets and
results in increased intracellular calcium influx, directly promoting platelet activation and
aggregation [21]. Hyperglycemia also impairs endothelial function by inducing inflamma-
tion and oxidative stress, thereby inhibiting synthesis and release of PGI2 and NO, finally
further promoting platelet aggregation [22].
2.3. Hypofibrinolysis
The hypofibrinolytic state in DM is partly attributed to the formation of fibrinolysis-
resistant clots; however, alterations of the fibrinolytic system have also been observed
among individuals with diabetes [56].
Plasminogen is the precursor of plasmin. During coagulation, generated fibrin binds
with tissue plasminogen activator (tPA), the key catalysator of plasmin generation, which
then initiates fibrinolysis and restrains excessive thrombus formation [57]. In diabetic
patients with DM, tPA is negatively correlated with HbA1c (lower levels of tPA with higher
levels of HbA1c); increased glucose levels inhibit tPA’s pro-fibrinolytic activity, leading to
reduced levels of plasmin in blood with high glucose values [56]. Hyperglycemia enhances
the glycation of plasminogen and thereby inhibits the generation of plasmin, an effect that
is reversible after tight glucose control [58]. The impact of plasminogen on coagulation
disorders in DM is further aggravated as plasminogen is also a pro-inflammatory factor,
thereby promoting insulin resistance and exacerbating a pro-thrombotic state [59].
Plasminogen activator inhibitor-1 (PAI-1) and thrombin-activator fibrinolysis inhibitor
(TAFI) are two crucial inhibitory factors of the fibrinolytic system. PAI-1 forms complexes
with tPA to harass its catalytic capacity, while TAFI prevents plasminogen from binding
to fibrin and terminates the conversion of plasminogen to plasmin [57]. Hyperglycemia
and insulin resistance lead to elevation of these two anti-fibrinolytic factors, resulting in
reduced fibrinolytic factors [60]. The alterations of PAI-1 and TAFI could be reversed by
euglycemia, emphasizing the importance of glucose control in alleviating the fibrinolytic
dysfunction in DM [56]
3.1. Hypoglycemia
Hypoglycemia is a crucial acute complication of DM treatment and it significantly
increases cardiovascular risk and mortality [61]. Hypoglycemia is also associated with in-
creased thrombus formation based on platelet activation, quantitative and qualitative
alterations of coagulants, as well as impaired fibrinolysis [62,63]. In T2DM patients,
platelet function increased with decreasing blood glucose and increasing epinephrine,
suggesting that hypoglycemia induces platelet activation by sympathetic stimulation [64].
Hypoglycemia also promotes coagulant and fibrinolytic dysfunction by inducing pro-
inflammatory reactions and impairing endothelial function in patients with DM [65]. In-
creased thrombogenicity after hypoglycemia lasted for up to seven days [66], indicating that
hypoglycemia might exert short- to medium-term harmful effects on coagulation function.
3.2. Obesity
Overweight and obesity, according to World Health Organization guidelines defined
as BMI ≥ 25 kg/m2 and 30 kg/m2 , respectively, are common comorbidities of two-thirds of
patients with DM [67]. Obesity is considered a noticeable pro-thrombotic factor: increased
thrombogenicity with higher BMI, and a hazard ratio for thrombosis of 3.4 (95% CI: 2.6–4.6)
was observed in severe obese subjects compared with those of normal-weight [68]. Underly-
ing mechanisms could be the increased number and size of adipocytes in obese individuals,
accompanied by enhanced secretion of TF and PAI-1, finally leading to hyper-coagulation
and hypo-fibrinolysis [69,70]. Additionally, increased body weight causes physical in-
activity and slows down blood flow with stasis, resembling a pro-thrombotic factor by
itself [68].
J. Clin. Med. 2021, 10, 2419 6 of 14
3.3. Dyslipidemia
Dyslipidemia is common among patients with T2DM and is associated with hyper-
coagulation [71]. Individuals with high triglyceride and total cholesterol levels showed
higher fibrinogen levels and shortened APTT, suggesting an enhanced endogenous po-
tential for thrombin generation [72]. Coagulation dysfunction of patients with DM was
partially alleviated by lipid-lowering agents [53]. A potential underlying mechanism could
be increased blood lipids, which directly impair function of hepatic cells (e.g., the origins
of multiple coagulation factors) and in turn disturb coagulation [73]. Oxidized low density
cholesterol also activates scavenger receptors on monocytes, resulting in inflammatory
pathway activation and overproduction of oxidants and coagulation factors [74].
function [110]. Intriguingly, two clinical trials (NCT04342819 and NCT04400760) are
now performed, recruiting patients with DM to figure out the influence of empagliflozin
and dapagliflozin on platelet functions; these studies will present more insight into the
anticoagulation potential of SGLT-2i’s. The direct anticoagulation effects of mentioned
glucose-lowering agents have been summarized in Table 1.
5. Conclusions
In summary, patients with T1DM and T2DM are prone to thrombotic events based on a
series of disorders, including platelet hypersensitivity, coagulation factor modifications and
hypofibrinolysis. Studies on the altered coagulation in DM suggest that hyperglycemia, in-
sulin resistance and other comorbidities contribute to the hypercoagulable state (Figure 1).
Thus, management of the enhanced thrombogenicity in DM requires comprehensive treat-
ments of existing prothrombotic factors along with antithrombotic therapy, but current
guidelines lack recommendations on the optimal antithrombotic medications in patients
with DM. Results from clinical studies strongly support the beneficial effects of glucose
J. Clin. Med. 2021, 10, 2419 9 of 14
Author Contributions: Conceptualisation: X.L., B.P., J.H., N.C.W., J.H.D., M.W.H.; writing–original
draft preparation: X.L., B.P., N.C.W.; writing–review and editing: X.L., N.C.W., D.M.C., M.W.H.,
J.H.D., J.H., B.P.; supervision: B.P., N.C.W., J.H.D. All authors have read and agreed to the published
version of the manuscript.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Acknowledgments: X.L. is supported by a Chinese Scholarship Council (CSC) fellowship program.
Conflicts of Interest: The authors declare no conflict of interest.
References
1. Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas:
Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [CrossRef]
2. Hulst, A.H.; Visscher, M.J.; Cherpanath, T.G.V.; van de Wouw, L.; Godfried, M.B.; Thiel, B.; Gerritse, B.M.; Scohy, T.V.; Bouwman,
R.A.; Willemsen, M.G.; et al. Effects of Liraglutide on Myocardial Function After Cardiac Surgery: A Secondary Analysis of the
Randomised Controlled GLOBE Trial. J. Clin. Med. 2020, 9, 0673. [CrossRef] [PubMed]
3. Szekely, A.; Levin, J.; Miao, Y.; Tudor, I.C.; Vuylsteke, A.; Ofner, P.; Mangano, D.T. Investigators of the Multicenter Study of
Perioperative Ischemia Research Group. Impact of hyperglycemia on perioperative mortality after coronary artery bypass graft
surgery. J. Thorac. Cardiovasc. Surg. 2011, 142, 430–437e1. [CrossRef] [PubMed]
4. Versteeg, H.H.; Heemskerk, J.W.; Levi, M.; Reitsma, P.H. New fundamentals in hemostasis. Physiol. Rev. 2013, 93, 327–
358. [CrossRef]
5. Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [CrossRef] [PubMed]
6. Westein, E.; Hoefer, T.; Calkin, A.C. Thrombosis in diabetes: A shear flow effect? Clin. Sci. 2017, 131, 1245–1260. [CrossRef]
7. Patti, G.; Cerchiara, E.; Bressi, E.; Giannetti, B.; Veneri, A.D.; Di Sciascio, G.; Avvisati, G.; De Caterina, R. Endothelial Dysfunction,
Fibrinolytic Activity, and Coagulation Activity in Patients with Atrial Fibrillation According to Type II Diabetes Mellitus Status.
Am. J. Cardiol. 2020, 125, 751–758. [CrossRef] [PubMed]
8. Sharma, A.N.; Deyell, J.S.; Sharma, S.N.; Barseghian, A. Role of and Recent Evidence for Antiplatelet Therapy in Prevention of
Cardiovascular Disease in Diabetes. Curr. Cardiol. Rep. 2019, 21, 78. [CrossRef]
9. Lemkes, B.A.; Hermanides, J.; Devries, J.H.; Holleman, F.; Meijers, J.C.; Hoekstra, J.B. Hyperglycemia: A prothrombotic factor? J.
Thromb. Haemost. 2010, 8, 1663–1669. [CrossRef]
10. Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [CrossRef] [PubMed]
11. Manzo-Silberman, S.; Nicaise-Roland, P.; Neukirch, C.; Tubach, F.; Huisse, M.G.; Chollet-Martin, S.; Abergel, H.; Driss, F.; Alfaiate,
T.; Ajzenberg, N.; et al. Effect of rapid desensitization on platelet inhibition and basophil activation in patients with aspirin
hypersensitivity and coronary disease. Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 77–81. [CrossRef]
12. Santilli, F.; Simeone, P.; Liani, R.; Davi, G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015, 120, 28–
39. [CrossRef]
13. Saluja, M.; Swami, Y.K.; Meena, S.R. Study of Impact of Glycemic Status (HbA1c) on Platelet Activity measured by Mean Platelet
Volume & Vascular Complications in Diabetics. J. Assoc. Physicians India 2019, 67, 26–29. [PubMed]
14. Malachowska, B.; Tomasik, B.; Szadkowska, A.; Baranowska-Jazwiecka, A.; Wegner, O.; Mlynarski, W.; Fendler, W. Altered
platelets’ morphological parameters in children with type 1 diabetes—A case-control study. BMC Endocr. Disord. 2015, 15, 17.
[CrossRef] [PubMed]
15. Venkatesh, V.; Kumar, R.; Varma, D.K.; Bhatia, P.; Yadav, J.; Dayal, D. Changes in platelet morphology indices in relation to
duration of disease and glycemic control in children with type 1 diabetes mellitus. J. Diabetes Complicat. 2018, 32, 833–838.
[CrossRef] [PubMed]
16. Ozder, A.; Eker, H.H. Investigation of mean platelet volume in patients with type 2 diabetes mellitus and in subjects with
impaired fasting glucose: A cost-effective tool in primary health care? Int. J. Clin. Exp. Med. 2014, 7, 2292–2297.
17. Zaccardi, F.; Rocca, B.; Rizzi, A.; Ciminello, A.; Teofili, L.; Ghirlanda, G.; De Stefano, V.; Pitocco, D. Platelet indices and
glucose control in type 1 and type 2 diabetes mellitus: A case-control study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 902–909.
[CrossRef] [PubMed]
18. Kaur, R.; Kaur, M.; Singh, J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and
therapeutic strategies. Cardiovasc. Diabetol. 2018, 17, 121. [CrossRef]
J. Clin. Med. 2021, 10, 2419 10 of 14
19. Ghoshal, K.; Bhattacharyya, M. Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis.
Sci. World J. 2014, 2014, 781857. [CrossRef]
20. Giannella, A.; Ceolotto, G.; Radu, C.M.; Cattelan, A.; Iori, E.; Benetti, A.; Fabris, F.; Simioni, P.; Avogaro, A.; Vigili de Kreutzen-
berg, S. PAR-4/Ca(2+)-calpain pathway activation stimulates platelet-derived microparticles in hyperglycemic type 2 diabetes.
Cardiovasc. Diabetol. 2021, 20, 77. [CrossRef] [PubMed]
21. Rusak, T.; Misztal, T.; Rusak, M.; Branska-Januszewska, J.; Tomasiak, M. Involvement of hyperglycemia in the development of
platelet procoagulant response: The role of aldose reductase and platelet swelling. Blood Coagul. Fibrinolysis 2017, 28, 443–451.
[CrossRef] [PubMed]
22. Kito, K.; Tanabe, K.; Sakata, K.; Fukuoka, N.; Nagase, K.; Iida, M.; Iida, H. Endothelium-dependent vasodilation in the cerebral
arterioles of rats deteriorates during acute hyperglycemia and then is restored by reducing the glucose level. J. Anesth. 2018, 32,
531–538. [CrossRef] [PubMed]
23. American Diabetes, A. Standards of medical care in diabetes-2015 abridged for primary care providers. Clin. Diabetes 2015, 33,
97–111. [CrossRef]
24. Baldane, S.; Ipekci, S.H.; Kebapcilar, A. Relationship Between Insulin Resistance and Mean Platelet Volume in Gestational
Diabetes Mellitus. J. Lab. Physicians 2015, 7, 112–115. [CrossRef]
25. Voigt, M.; Gebert, M.; Haug, U.; Hulko, M.; Storr, M.; Boschetti-de-Fierro, A.; Beck, W.; Krause, B. Retention of beneficial
molecules and coagulation factors during haemodialysis and haemodiafiltration. Sci. Rep. 2019, 9, 6370. [CrossRef]
26. Esteghamat, F.; Broughton, J.S.; Smith, E.; Cardone, R.; Tyagi, T.; Guerra, M.; Szabo, A.; Ugwu, N.; Mani, M.V.; Azari, B.; et al.
CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet
activation. Nat. Genet. 2019, 51, 1233–1243. [CrossRef] [PubMed]
27. Chan, P.C.; Liao, M.T.; Hsieh, P.S. The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance. Int. J. Mol.
Sci. 2019, 20, 3115. [CrossRef]
28. Wu, H.; Tremaroli, V.; Schmidt, C.; Lundqvist, A.; Olsson, L.M.; Kramer, M.; Gummesson, A.; Perkins, R.; Bergstrom, G.;
Backhed, F. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab. 2020, 32,
379–390e3. [CrossRef]
29. Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut Microbiota and Cardiovascular Disease. Circ. Res. 2020, 127, 553–570. [CrossRef]
30. Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial
Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [CrossRef]
31. Nemet, I.; Saha, P.P.; Gupta, N.; Zhu, W.; Romano, K.A.; Skye, S.M.; Cajka, T.; Mohan, M.L.; Li, L.; Wu, Y.; et al. A Cardiovascular
Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020, 180, 862–877e22. [CrossRef] [PubMed]
32. Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Manneras-Holm, L.; Stahlman, M.; Olsson, L.M.; Serino, M.; Planas-Felix,
M.; et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic
effects of the drug. Nat. Med. 2017, 23, 850–858. [CrossRef]
33. Favaloro, E.J.; Lippi, G. Understanding the extent of the diagnostic potential of coagulation factors. Expert Rev. Mol. Diagn 2020,
20, 273–276. [CrossRef] [PubMed]
34. Dayer, M.R.; Mard-Soltani, M.; Dayer, M.S.; Alavi, S.M. Causality relationships between coagulation factors in type 2 diabetes
mellitus: Path analysis approach. Med. J. Islam Repub. Iran 2014, 28, 59. [PubMed]
35. Kasthuri, R.S.; Glover, S.L.; Boles, J.; Mackman, N. Tissue factor and tissue factor pathway inhibitor as key regulators of global
hemostasis: Measurement of their levels in coagulation assays. Semin. Thromb. Hemost. 2010, 36, 764–771. [CrossRef]
36. Boden, G.; Rao, A.K. Effects of hyperglycemia and hyperinsulinemia on the tissue factor pathway of blood coagulation. Curr.
Diab. Rep. 2007, 7, 223–227. [CrossRef]
37. Soma, P.; Swanepoel, A.C.; Bester, J.; Pretorius, E. Tissue factor levels in type 2 diabetes mellitus. Inflamm. Res. 2017, 66,
365–368. [CrossRef]
38. Schwarz, S.; Mrosewski, I.; Silawal, S.; Schulze-Tanzil, G. The interrelation of osteoarthritis and diabetes mellitus: Considering
the potential role of interleukin-10 and in vitro models for further analysis. Inflamm. Res. 2018, 67, 285–300. [CrossRef] [PubMed]
39. Meerarani, P.; Moreno, P.R.; Cimmino, G.; Badimon, J.J. Atherothrombosis: Role of tissue factor; link between diabetes, obesity
and inflammation. Indian J. Exp. Biol. 2007, 45, 103–110. [PubMed]
40. Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The Role of Advanced Glycation End
Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018, 28, 337–352. [CrossRef] [PubMed]
41. Calabro, P.; Cirillo, P.; Limongelli, G.; Maddaloni, V.; Riegler, L.; Palmieri, R.; Pacileo, G.; De Rosa, S.; Pacileo, M.; De Palma, R.;
et al. Tissue factor is induced by resistin in human coronary artery endothelial cells by the NF-kB-dependent pathway. J. Vasc.
Res. 2011, 48, 59–66. [CrossRef] [PubMed]
42. Witkowski, M.; Weithauser, A.; Tabaraie, T.; Steffens, D.; Krankel, N.; Witkowski, M.; Stratmann, B.; Tschoepe, D.; Landmesser, U.;
Rauch-Kroehnert, U. Micro-RNA-126 Reduces the Blood Thrombogenicity in Diabetes Mellitus via Targeting of Tissue Factor.
Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1263–1271. [CrossRef]
43. Witkowski, M.; Tabaraie, T.; Steffens, D.; Friebel, J.; Dorner, A.; Skurk, C.; Witkowski, M.; Stratmann, B.; Tschoepe, D.; Landmesser,
U.; et al. MicroRNA-19a contributes to the epigenetic regulation of tissue factor in diabetes. Cardiovasc. Diabetol. 2018, 17, 34.
[CrossRef] [PubMed]
J. Clin. Med. 2021, 10, 2419 11 of 14
44. Witkowski, M.; Witkowski, M.; Saffarzadeh, M.; Friebel, J.; Tabaraie, T.; Ta Bao, L.; Chakraborty, A.; Dorner, A.; Stratmann, B.;
Tschoepe, D.; et al. Vascular miR-181b controls tissue factor-dependent thrombogenicity and inflammation in type 2 diabetes.
Cardiovasc. Diabetol. 2020, 19, 20. [CrossRef]
45. Fu, G.; Yan, Y.; Chen, L.; Zhang, M.; Ming, L. Shortened Activated Partial Thromboplastin Time and Increased Superoxide
Dismutase Levels Are Associated with Type 2 Diabetes Mellitus. Ann. Clin. Lab. Sci 2018, 48, 469–477. [PubMed]
46. van der Toorn, F.A.; de Mutsert, R.; Lijfering, W.M.; Rosendaal, F.R.; van Hylckama Vlieg, A. Glucose metabolism affects
coagulation factors: The NEO study. J. Thromb. Haemost. 2019. [CrossRef]
47. Lallukka, S.; Luukkonen, P.K.; Zhou, Y.; Isokuortti, E.; Leivonen, M.; Juuti, A.; Hakkarainen, A.; Orho-Melander, M.; Lundbom,
N.; Olkkonen, V.M.; et al. Obesity/insulin resistance rather than liver fat increases coagulation factor activities and expression in
humans. Thromb. Haemost. 2017, 117, 286–294. [CrossRef] [PubMed]
48. Neergaard-Petersen, S.; Hvas, A.M.; Kristensen, S.D.; Grove, E.L.; Larsen, S.B.; Phoenix, F.; Kurdee, Z.; Grant, P.J.; Ajjan, R.A.
The influence of type 2 diabetes on fibrin clot properties in patients with coronary artery disease. Thromb. Haemost. 2014, 112,
1142–1150. [CrossRef] [PubMed]
49. Abdul Razak, M.K.; Sultan, A.A. The importance of measurement of plasma fibrinogen level among patients with type- 2 diabetes
mellitus. Diabetes Metab. Syndr. 2019, 13, 1151–1158. [CrossRef]
50. Yamaguchi, T.; Kimura, H.; Yokota, S.; Yamamoto, Y.; Hashimoto, T.; Nakagawa, M.; Ito, M.; Ogura, T. Effect of IL-6 elevation in
malignant pleural effusion on hyperfibrinogenemia in lung cancer patients. Jpn. J. Clin. Oncol. 2000, 30, 53–58. [CrossRef]
51. Pieters, M.; van Zyl, D.G.; Rheeder, P.; Jerling, J.C.; Loots du, T.; van der Westhuizen, F.H.; Gottsche, L.T.; Weisel, J.W. Glycation of
fibrinogen in uncontrolled diabetic patients and the effects of glycaemic control on fibrinogen glycation. Thromb. Res. 2007, 120,
439–446. [CrossRef]
52. White, N.J.; Wang, Y.; Fu, X.; Cardenas, J.C.; Martin, E.J.; Brophy, D.F.; Wade, C.E.; Wang, X.; St John, A.E.; Lim, E.B.; et al.
Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury. Free Radic. Biol.
Med. 2016, 96, 181–189. [CrossRef]
53. Park, H.S.; Gu, J.Y.; Yoo, H.J.; Han, S.E.; Park, C.H.; Kim, Y.I.; Nam-Goong, I.S.; Kim, E.S.; Kim, H.K. Thrombin Generation Assay
Detects Moderate-Intensity Statin-Induced Reduction of Hypercoagulability in Diabetes. Clin. Appl. Thromb. Hemost. 2018, 24,
1095–1101. [CrossRef] [PubMed]
54. Chitongo, P.B.; Roberts, L.N.; Yang, L.; Patel, R.K.; Lyall, R.; Luxton, R.; Aylwin, S.J.B.; Arya, R. Visceral Adiposity Is an
Independent Determinant of Hypercoagulability as Measured by Thrombin Generation in Morbid Obesity. TH Open 2017, 1,
e146–e154. [CrossRef]
55. Salvagno, G.L.; Favaloro, E.J.; Demonte, D.; Gelati, M.; Poli, G.; Targher, G.; Lippi, G. Influence of hypertriglyceridemia,
hyperbilirubinemia and hemolysis on thrombin generation in human plasma. Clin. Chem. Lab. Med. 2019. [CrossRef] [PubMed]
56. Kearney, K.; Tomlinson, D.; Smith, K.; Ajjan, R. Hypofibrinolysis in diabetes: A therapeutic target for the reduction of cardiovas-
cular risk. Cardiovasc. Diabetol. 2017, 16, 34. [CrossRef] [PubMed]
57. Draxler, D.F.; Medcalf, R.L. The fibrinolytic system-more than fibrinolysis? Transfus. Med. Rev. 2015, 29, 102–109. [CrossRef] [PubMed]
58. Ajjan, R.A.; Gamlen, T.; Standeven, K.F.; Mughal, S.; Hess, K.; Smith, K.A.; Dunn, E.J.; Anwar, M.M.; Rabbani, N.; Thornalley, P.J.;
et al. Diabetes is associated with posttranslational modifications in plasminogen resulting in reduced plasmin generation and
enzyme-specific activity. Blood 2013, 122, 134–142. [CrossRef]
59. Canecki-Varzic, S.; Prpic-Krizevac, I.; Bilic-Curcic, I. Plasminogen activator inhibitor-1 concentrations and bone mineral density
in postmenopausal women with type 2 diabetes mellitus. BMC Endocr. Disord. 2016, 16, 14. [CrossRef]
60. Bryk, A.H.; Prior, S.M.; Plens, K.; Konieczynska, M.; Hohendorff, J.; Malecki, M.T.; Butenas, S.; Undas, A. Predictors of neutrophil
extracellular traps markers in type 2 diabetes mellitus: Associations with a prothrombotic state and hypofibrinolysis. Cardiovasc.
Diabetol. 2019, 18, 49. [CrossRef]
61. Freeland, B. Hypoglycemia in Diabetes Mellitus. Home Healthc. Now 2017, 35, 414–419. [CrossRef] [PubMed]
62. Arora, S.; Damle, N.A.; Passah, A.; Sharma, R.; Goyal, H.; Arunraj, S.T.; Gupta, P.; Jana, M. Tracer Accumulation in Relation to
Venous Thrombus on (18)F-DOPA PET/CT in a Case of Persistent Hyperinsulinemic Hypoglycemia of Infancy. Nucl. Med. Mol.
Imaging 2019, 53, 148–151. [CrossRef]
63. King, R.; Ajjan, R. Hypoglycaemia, thrombosis and vascular events in diabetes. Expert Rev. Cardiovasc. Ther. 2016, 14, 1099–1101.
[CrossRef] [PubMed]
64. Yamamoto, K.; Ito, T.; Nagasato, T.; Shinnakasu, A.; Kurano, M.; Arimura, A.; Arimura, H.; Hashiguchi, H.; Deguchi, T.;
Maruyama, I.; et al. Effects of glycemic control and hypoglycemia on Thrombus formation assessed using automated microchip
flow chamber system: An exploratory observational study. Thromb. J. 2019, 17, 17. [CrossRef] [PubMed]
65. Joy, N.G.; Mikeladze, M.; Younk, L.M.; Tate, D.B.; Davis, S.N. Effects of equivalent sympathetic activation during hypoglycemia
on endothelial function and pro-atherothrombotic balance in healthy individuals and obese standard treated type 2 diabetes.
Metabolism 2016, 65, 1695–1705. [CrossRef]
66. Chow, E.; Iqbal, A.; Walkinshaw, E.; Phoenix, F.; Macdonald, I.A.; Storey, R.F.; Ajjan, R.; Heller, S.R. Prolonged Prothrombotic
Effects of Antecedent Hypoglycemia in Individuals with Type 2 Diabetes. Diabetes Care 2018, 41, 2625–2633. [CrossRef] [PubMed]
67. Iglay, K.; Hannachi, H.; Joseph Howie, P.; Xu, J.; Li, X.; Engel, S.S.; Moore, L.M.; Rajpathak, S. Prevalence and co-prevalence of
comorbidities among patients with type 2 diabetes mellitus. Curr. Med. Res. Opin. 2016, 32, 1243–1252. [CrossRef]
J. Clin. Med. 2021, 10, 2419 12 of 14
68. Klovaite, J.; Benn, M.; Nordestgaard, B.G. Obesity as a causal risk factor for deep venous thrombosis: A Mendelian randomization
study. J. Intern. Med. 2015, 277, 573–584. [CrossRef]
69. Christiansen, S.C.; Lijfering, W.M.; Naess, I.A.; Hammerstrom, J.; van Hylckama Vlieg, A.; Rosendaal, F.R.; Cannegieter, S.C. The
relationship between body mass index, activated protein C resistance and risk of venous thrombosis. J. Thromb. Haemost. 2012, 10,
1761–1767. [CrossRef] [PubMed]
70. Kopp, C.W.; Kopp, H.P.; Steiner, S.; Kriwanek, S.; Krzyzanowska, K.; Bartok, A.; Roka, R.; Minar, E.; Schernthaner, G. Weight loss
reduces tissue factor in morbidly obese patients. Obes. Res. 2003, 11, 950–956. [CrossRef] [PubMed]
71. Perego, F.; Davi, G. Beyond hyperglycemia in diabetes: Role of statin treatment on thrombogenesis triggered by inflammation:
Editorial to: “Impact of statins on the coagulation status of type 2 diabetes patients evaluated by a novel thrombin-generations
assay” by Ferroni, P. Cardiovasc. Drugs Ther. 2012, 26, 281–284. [CrossRef] [PubMed]
72. Kim, J.A.; Kim, J.E.; Song, S.H.; Kim, H.K. Influence of blood lipids on global coagulation test results. Ann. Lab. Med. 2015, 35,
15–21. [CrossRef] [PubMed]
73. Krysiak, R.; Handzlik, G.; Okopien, B. Hemostatic effects of fenofibrate in patients with mixed dyslipidemia and impaired fasting
glucose. Pharmacol. Rep. 2010, 62, 1099–1107. [CrossRef]
74. Verbree-Willemsen, L.; Zhang, Y.N.; Gijsberts, C.M.; Schoneveld, A.H.; Wang, J.W.; Lam, C.S.P.; Vernooij, F.; Bots, M.L.; Peelen,
L.M.; Grobbee, D.E.; et al. LDL extracellular vesicle coagulation protein levels change after initiation of statin therapy. Findings
from the METEOR trial. Int. J. Cardiol. 2018, 271, 247–253. [CrossRef] [PubMed]
75. Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global
epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71,
793–801. [CrossRef]
76. Kotronen, A.; Joutsi-Korhonen, L.; Sevastianova, K.; Bergholm, R.; Hakkarainen, A.; Pietilainen, K.H.; Lundbom, N.; Rissanen, A.;
Lassila, R.; Yki-Jarvinen, H. Increased coagulation factor VIII, IX, XI and XII activities in non-alcoholic fatty liver disease. Liver Int.
2011, 31, 176–183. [CrossRef] [PubMed]
77. Verrijken, A.; Francque, S.; Mertens, I.; Prawitt, J.; Caron, S.; Hubens, G.; Van Marck, E.; Staels, B.; Michielsen, P.; Van Gaal, L.
Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 2014,
59, 121–129. [CrossRef]
78. Mauri, L.; Kereiakes, D.J.; Yeh, R.W.; Driscoll-Shempp, P.; Cutlip, D.E.; Steg, P.G.; Normand, S.L.; Braunwald, E.; Wiviott,
S.D.; Cohen, D.J.; et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N. Engl. J. Med. 2014, 371,
2155–2166. [CrossRef]
79. ASCEND Study Collaborative Group; Bowman, L.; Mafham, M.; Wallendszus, K.; Stevens, W.; Buck, G.; Barton, J.; Murphy, K.;
Aung, T.; Haynes, R.; et al. Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus. N. Engl. J. Med. 2018, 379,
1529–1539. [CrossRef]
80. Alzahrani, S.H.; Ajjan, R.A. Coagulation and fibrinolysis in diabetes. Diab. Vasc. Dis. Res. 2010, 7, 260–273. [CrossRef]
81. Ma, N.; Yang, Y.; Liu, X.; Li, S.; Qin, Z.; Li, J. Plasma metabonomics and proteomics studies on the anti-thrombosis mechanism of
aspirin eugenol ester in rat tail thrombosis model. J. Proteom. 2020, 215, 103631. [CrossRef] [PubMed]
82. American Diabetes, A. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2019. Diabetes
Care 2019, 42 (Suppl. S1), S103–S123. [CrossRef] [PubMed]
83. Antithrombotic Trialists, C.; Baigent, C.; Blackwell, L.; Collins, R.; Emberson, J.; Godwin, J.; Peto, R.; Buring, J.; Hennekens, C.;
Kearney, P.; et al. Aspirin in the primary and secondary prevention of vascular disease: Collaborative meta-analysis of individual
participant data from randomised trials. Lancet 2009, 373, 1849–1860. [CrossRef]
84. Capodanno, A.D. Antithrombotic therapy for atherosclerotic cardiovascular disease risk mitigation in patients with coronary
artery disease and diabetes mellitus. Circulation 2020, 142, 17. [CrossRef]
85. Morel, O.; El Ghannudi, S.; Hess, S.; Reydel, A.; Crimizade, U.; Jesel, L.; Radulescu, B.; Wiesel, M.L.; Gachet, C.; Ohlmann, P. The
extent of P2Y12 inhibition by clopidogrel in diabetes mellitus patients with acute coronary syndrome is not related to glycaemic
control: Roles of white blood cell count and body weight. Thromb. Haemost. 2012, 108, 338–348. [CrossRef]
86. Lee, S.W.; Park, S.W.; Yun, S.C.; Kim, Y.H.; Park, D.W.; Kim, W.J.; Lee, J.Y.; Lee, C.W.; Hong, M.K.; Kim, J.J.; et al. Triple antiplatelet
therapy reduces ischemic events after drug-eluting stent implantation: Drug-Eluting stenting followed by Cilostazol treatment
REduces Adverse Serious cardiac Events (DECREASE registry). Am. Heart J. 2010, 159, 284–291e1. [CrossRef]
87. Gresele, P.; Migliacci, R. Picotamide versus aspirin in diabetic patients with peripheral arterial disease: Has David defeated
Goliath? Eur. Heart J. 2004, 25, 1769–1771. [CrossRef] [PubMed]
88. Hiatt, W.R.; Money, S.R.; Brass, E.P. Long-term safety of cilostazol in patients with peripheral artery disease: The CASTLE study
(Cilostazol: A Study in Long-term Effects). J. Vasc. Surg. 2008, 47, 330–336. [CrossRef] [PubMed]
89. Rishavy, M.A.; Hallgren, K.W.; Wilson, L.; Singh, S.; Runge, K.W.; Berkner, K.L. Warfarin alters vitamin K metabolism: A
surprising mechanism of VKORC1 uncoupling necessitates an additional reductase. Blood 2018, 131, 2826–2835. [CrossRef]
90. Makani, A.; Saba, S.; Jain, S.K.; Bhonsale, A.; Sharbaugh, M.S.; Thoma, F.; Wang, Y.; Marroquin, O.C.; Lee, J.S.; Estes, N.A.M.; et al.
Safety and Efficacy of Direct Oral Anticoagulants Versus Warfarin in Patients with Chronic Kidney Disease and Atrial Fibrillation.
Am. J. Cardiol. 2020, 125, 210–214. [CrossRef]
91. Bansilal, S.; Bloomgarden, Z.; Halperin, J.L.; Hellkamp, A.S.; Lokhnygina, Y.; Patel, M.R.; Becker, R.C.; Breithardt, G.; Hacke,
W.; Hankey, G.J.; et al. Efficacy and safety of rivaroxaban in patients with diabetes and nonvalvular atrial fibrillation: The
J. Clin. Med. 2021, 10, 2419 13 of 14
Rivaroxaban Once-daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and
Embolism Trial in Atrial Fibrillation (ROCKET AF Trial). Am. Heart J. 2015, 170, 675–682e8. [CrossRef]
92. Baker, W.L.; Beyer-Westendorf, J.; Bunz, T.J.; Eriksson, D.; Meinecke, A.K.; Sood, N.A.; Coleman, C.I. Effectiveness and safety of
rivaroxaban and warfarin for prevention of major adverse cardiovascular or limb events in patients with non-valvular atrial
fibrillation and type 2 diabetes. Diabetes Obes. Metab. 2019, 21, 2107–2114. [CrossRef] [PubMed]
93. Rocha, B.M.L.; da Cunha, G.J.L.; Aguiar, C.M.T. A narrative review of low-dose rivaroxaban in patients with atherothrombotic car-
diovascular disease: Vascular protection beyond anticoagulation. Cardiovasc. Diagn. Ther. 2021, 11, 130–141. [CrossRef] [PubMed]
94. Hylek, E.M.; Held, C.; Alexander, J.H.; Lopes, R.D.; De Caterina, R.; Wojdyla, D.M.; Huber, K.; Jansky, P.; Steg, P.G.; Hanna, M.;
et al. Major bleeding in patients with atrial fibrillation receiving apixaban or warfarin: The ARISTOTLE Trial (Apixaban for
Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation): Predictors, Characteristics, and Clinical Outcomes.
J. Am. Coll. Cardiol. 2014, 63, 2141–2147. [CrossRef]
95. Brambatti, M.; Darius, H.; Oldgren, J.; Clemens, A.; Noack, H.H.; Brueckmann, M.; Yusuf, S.; Wallentin, L.; Ezekowitz, M.D.;
Connolly, S.J.; et al. Comparison of dabigatran versus warfarin in diabetic patients with atrial fibrillation: Results from the RE-LY
trial. Int. J. Cardiol. 2015, 196, 127–131. [CrossRef] [PubMed]
96. Markowicz-Piasecka, M.; Huttunen, K.M.; Broncel, M.; Sikora, J. Sulfenamide and Sulfonamide Derivatives of Metformin—A
New Option to Improve Endothelial Function and Plasma Haemostasis. Sci. Rep. 2019, 9, 6573. [CrossRef]
97. Witkowski, M.; Friebel, J.; Tabaraie, T.; Grabitz, S.; Dorner, A.; Taghipour, L.; Jakobs, K.; Stratmann, B.; Tschoepe, D.; Landmesser,
U.; et al. Metformin Is Associated with Reduced Tissue Factor Procoagulant Activity in Patients with Poorly Controlled Diabetes.
Cardiovasc. Drugs Ther. 2020. [CrossRef] [PubMed]
98. Khanolkar, M.P.; Morris, R.H.; Thomas, A.W.; Bolusani, H.; Roberts, A.W.; Geen, J.; Jackson, S.K.; Evans, L.M. Rosiglitazone
produces a greater reduction in circulating platelet activity compared with gliclazide in patients with type 2 diabetes mellitus—An
effect probably mediated by direct platelet PPARgamma activation. Atherosclerosis 2008, 197, 718–724. [CrossRef] [PubMed]
99. Goldberg, R.B.; Temprosa, M.G.; Mather, K.J.; Orchard, T.J.; Kitabchi, A.E.; Watson, K.E.; Diabetes Prevention Program Research
Group. Lifestyle and metformin interventions have a durable effect to lower CRP and tPA levels in the diabetes prevention
program except in those who develop diabetes. Diabetes Care 2014, 37, 2253–2260. [CrossRef]
100. Verdoia, M.; Pergolini, P.; Rolla, R.; Ceccon, C.; Caputo, M.; Aimaretti, G.; Suryapranata, H.; De Luca, G. Use of Metformin
and Platelet Reactivity in Diabetic Patients Treated with Dual Antiplatelet Therapy. Exp. Clin. Endocrinol. Diabetes 2018.
[CrossRef] [PubMed]
101. Pal, P.; Kanaujiya, J.K.; Lochab, S.; Tripathi, S.B.; Sanyal, S.; Behre, G.; Trivedi, A.K. Proteomic analysis of rosiglitazone and
guggulsterone treated 3T3-L1 preadipocytes. Mol. Cell Biochem. 2013, 376, 81–93. [CrossRef]
102. Henriksson, C.E.; Hellum, M.; Haug, K.B.; Aass, H.C.; Joo, G.B.; Ovstebo, R.; Troseid, A.M.; Klingenberg, O.; Kierulf, P.
Anticoagulant effects of an antidiabetic drug on monocytes in vitro. Thromb. Res. 2011, 128, e100–e106. [CrossRef] [PubMed]
103. Barazzoni, R.; Kiwanuka, E.; Zanetti, M.; Cristini, M.; Vettore, M.; Tessari, P. Insulin acutely increases fibrinogen production in
individuals with type 2 diabetes but not in individuals without diabetes. Diabetes 2003, 52, 1851–1856. [CrossRef]
104. Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter,
N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322.
[CrossRef] [PubMed]
105. Barale, C.; Buracco, S.; Cavalot, F.; Frascaroli, C.; Guerrasio, A.; Russo, I. Glucagon-like peptide 1-related peptides increase nitric
oxide effects to reduce platelet activation. Thromb. Haemost. 2017, 117, 1115–1128. [CrossRef]
106. Simeone, P.; Liani, R.; Tripaldi, R.; Di Castelnuovo, A.; Guagnano, M.T.; Tartaro, A.; Bonadonna, R.C.; Federico, V.; Cipollone,
F.; Consoli, A.; et al. Thromboxane-Dependent Platelet Activation in Obese Subjects with Prediabetes or Early Type 2 Diabetes:
Effects of Liraglutide- or Lifestyle Changes-Induced Weight Loss. Nutrients 2018, 10, 1872. [CrossRef] [PubMed]
107. Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al.
Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [CrossRef]
108. Tanaka, A.; Shimabukuro, M.; Machii, N.; Teragawa, H.; Okada, Y.; Shima, K.R.; Takamura, T.; Taguchi, I.; Hisauchi, I.;
Toyoda, S.; et al. Effect of Empagliflozin on Endothelial Function in Patients with Type 2 Diabetes and Cardiovascular Disease:
Results from the Multicenter, Randomized, Placebo-Controlled, Double-Blind EMBLEM Trial. Diabetes Care 2019, 42, e159–e161.
[CrossRef] [PubMed]
109. Uthman, L.; Homayr, A.; Juni, R.P.; Spin, E.L.; Kerindongo, R.; Boomsma, M.; Hollmann, M.W.; Preckel, B.; Koolwijk, P.; van
Hinsbergh, V.W.M.; et al. Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor
Necrosis Factor alpha-Stimulated Human Coronary Arterial Endothelial Cells. Cell Physiol. Biochem. 2019, 53, 865–886. [CrossRef]
110. Sakurai, S.; Jojima, T.; Iijima, T.; Tomaru, T.; Usui, I.; Aso, Y. Empagliflozin decreases the plasma concentration of plasminogen
activator inhibitor-1 (PAI-1) in patients with type 2 diabetes: Association with improvement of fibrinolysis. J. Diabetes Complicat.
2020, 34, 107703. [CrossRef]
111. Bray, G.A.; Fruhbeck, G.; Ryan, D.H.; Wilding, J.P. Management of obesity. Lancet 2016, 387, 1947–1956. [CrossRef]
112. Stolberg, C.R.; Mundbjerg, L.H.; Funch-Jensen, P.; Gram, B.; Juhl, C.B.; Bladbjerg, E.M. Effects of gastric bypass followed by a
randomized study of physical training on markers of coagulation activation, fibrin clot properties, and fibrinolysis. Surg. Obes.
Relat. Dis. 2018, 14, 918–926. [CrossRef]
J. Clin. Med. 2021, 10, 2419 14 of 14
113. Gram, A.S.; Petersen, M.B.; Quist, J.S.; Rosenkilde, M.; Stallknecht, B.; Bladbjerg, E.M. Effects of 6 Months of Active Commuting
and Leisure-Time Exercise on Fibrin Turnover in Sedentary Individuals with Overweight and Obesity: A Randomised Controlled
Trial. J. Obes. 2018, 2018, 7140754. [CrossRef]
114. Teng, K.T.; Chang, L.F.; Vethakkan, S.R.; Nesaretnam, K.; Sanders, T.A.B. Effects of exchanging carbohydrate or monounsaturated
fat with saturated fat on inflammatory and thrombogenic responses in subjects with abdominal obesity: A randomized controlled
trial. Clin. Nutr. 2017, 36, 1250–1258. [CrossRef]
115. Horber, S.; Lehmann, R.; Fritsche, L.; Machann, J.; Birkenfeld, A.L.; Haring, H.U.; Stefan, N.; Heni, M.; Fritsche, A.; Peter,
A. Lifestyle intervention improves prothrombotic coagulation profile in individuals at high-risk for type 2 diabetes. J. Clin.
Endocrinol. Metab. 2021. [CrossRef]
116. Toso, A.; De Servi, S.; Leoncini, M.; Angiolillo, D.J.; Calabro, P.; Piscione, F.; Cattaneo, M.; Maffeo, D.; Bartorelli, A.; Palmieri, C.;
et al. Effects of statin therapy on platelet reactivity after percutaneous coronary revascularization in patients with acute coronary
syndrome. J. Thromb. Thrombolysis 2017, 44, 355–361. [CrossRef] [PubMed]
117. Undas, A.; Celiniska-Lowenhoff, M. Antiplatelet effects of micronized fenofibrate in subjects with dyslipidemia. Pol. Arch. Med.
Wewn 2007, 117, 235–240. [CrossRef] [PubMed]
118. Mobarrez, F.; He, S.; Broijersen, A.; Wiklund, B.; Antovic, A.; Antovic, J.; Egberg, N.; Jorneskog, G.; Wallen, H. Atorvastatin
reduces thrombin generation and expression of tissue factor, P-selectin and GPIIIa on platelet-derived microparticles in patients
with peripheral arterial occlusive disease. Thromb. Haemost. 2011, 106, 344–352. [CrossRef] [PubMed]
119. Paciullo, F.; Momi, S.; Gresele, P. PCSK9 in Haemostasis and Thrombosis: Possible Pleiotropic Effects of PCSK9 Inhibitors in
Cardiovascular Prevention. Thromb. Haemost. 2019, 119, 359–367. [CrossRef]