Exact Equations
Exact Equations
EXACT EQUATIONS
Graham S McDonald
● Table of contents
● Begin Tutorial
c 2004 g.s.mcdonald@salford.ac.uk
Table of contents
1. Theory
2. Exercises
3. Answers
4. Standard integrals
5. Tips on using solutions
Full worked solutions
Section 1: Theory 3
1. Theory
We consider here the following standard form of ordinary di↵erential
equation (o.d.e.):
@u @u
du = dx + dy
@x @y
= P dx + Q dy = 0 .
One solves @u
@x = P and @u
@y = Q to find u(x, y).
Toc JJ II J I Back
Section 2: Exercises 4
2. Exercises
Click on Exercise links for full worked solutions (there are 11
exercises in total)
Show that each of the following di↵erential equations is exact and
use that property to find the general solution:
Exercise 1.
1 y
dy dx = 0
x x2
Exercise 2.
dy
2xy + y 2 2x = 0
dx
Exercise 3.
2(y + 1)ex dx + 2(ex 2y)dy = 0
Exercise 4.
(2xy + 6x)dx + (x2 + 4y 3 )dy = 0
Exercise 5.
dy
(8y x y)
2
+x xy 2 = 0
dx
Exercise 6.
(e4x + 2xy 2 )dx + (cos y + 2x2 y)dy = 0
Exercise 7.
(3x2 + y cos x)dx + (sin x 4y 3 )dy = 0
Exercise 8.
x2
x tan 1
y · dx + · dy = 0
2(1 + y )
2
Exercise 9.
(2x + x2 y 3 )dx + (x3 y 2 + 4y 3 )dy = 0
Exercise 10.
dy
(2x3
3x y + y )
2
= 2x3
3
6x2 y + 3xy 2
dx
Exercise 11.
(y 2 cos x sin x)dx + (2y sin x + 2)dy = 0
3. Answers
1. y = Ax ,
2. y 2 x x2 = A ,
3. (y + 1)ex y2 = A ,
4. x2 y + 3x2 + y 4 = A ,
5. 2 x (1
1 2
y 2 ) + 4y 2 = A ,
6. 1 4x
4e + x2 y 2 + sin y = A ,
7. x3 + y sin x y4 = A ,
x2
8. 2 tan 1
y =A,
x3 y 3
9. x +2
3 + y4 = A ,
Toc JJ II J I Back
Section 3: Answers 8
x4 y4
10. 2 2x y +
3 3
2
2 2
x y 4 =A,
Toc JJ II J I Back
Section 4: Standard integrals 9
4. Standard integrals
R R
f (x) f (x)dx f (x) f (x)dx
xn+1 n [g(x)]n+1
xn
n+1 (n 6= 1) [g (x)] g (x) 0
n+1 (n 6= 1)
g 0 (x)
1
x ln |x| g(x) ln |g (x)|
ax
ex
ex a x
ln a (a > 0)
sin x cos x sinh x cosh x
cos x sin x cosh x sinh x
tan x ln |cos x| tanh x ln cosh x
cosec x ln tan x2 cosech x ln tanh x2
sec x ln |sec x + tan x| sech x 2 tan 1 ex
sec2 x tan x sech2 x tanh x
cot x ln |sin x| coth x ln |sinh x|
sin2 x x
2
sin 2x
4 sinh2 x sinh 2x
4
x
2
cos2 x x
2 + sin 2x
4 cosh2 x sinh 2x
4 + x
2
Toc JJ II J I Back
Section 4: Standard integrals 10
R R
f (x) f (x) dx f (x) f (x) dx
1
a2 +x2
1
a tan 1 x
a a2
1
x2
1
2a ln a+x
a x (0 < |x| < a)
(a > 0) x2
1
a2
1
2a ln x a
x+a (|x| > a > 0)
p
x+ a2 +x2
p 1
a2 x2
sin 1 x
a
p 1
a2 +x2
ln a (a > 0)
p
x+ x2 a2
( a < x < a) p 1
x2 a2
ln a (x > a > 0)
p 2 ⇥ p 2
h p i
2 2
a2 x2 a
2 sin 1 x
a a2 +x2 a
2 sinh 1 xa + x aa2+x
p i p 2
h p i
2 2 2 2
+ x aa2 x x2 a2 a
2 cosh 1 xa + x xa2 a
Toc JJ II J I Back
Section 5: Tips on using solutions 11
● Use the solutions intelligently. For example, they can help you get
started on an exercise, or they can allow you to check whether your
intermediate results are correct.
● Try to make less use of the full solutions as you work your way
through the Tutorial.
Toc JJ II J I Back
Solutions to exercises 12
y
i.e. P (x, y) = x2 and Q(x, y) = 1
x
@Q
Equation is exact if @P
@y = @x
Check: @P
@y = 1
x2 = @Q
@x ) o.d.e. is exact.
@u @u
du = dx + dy
@x @y
= P dx + Q dy = 0
and equation has solution u = C, C = constant.
Toc JJ II J I Back
Solutions to exercises 13
y
@u
@x =P gives i) @u
@x = x2
@u
@y =Q gives ii) @u
@y = 1
x
y
u = + (y),
x
Toc JJ II J I Back
Solutions to exercises 14
du = 0 implies u = C, C = constant
) y
x =A , A=C C0
= constant.
Return to Exercise 1
Toc JJ II J I Back
Solutions to exercises 15
Exercise 2.
@Q
Exact if @P
@y = @x , where P (x, y) = y 2 2x
Q(x, y) = 2xy
@Q
@P
@y = 2y = @x i.e. o.d.e. is exact.
) u(x, y) exists such that du = @u
@x dx + @u
@y dy
= P dx + Q dy = 0,
giving i) @u
@x = y2 2x , ii) @u
@y = 2xy.
) d
dy =0 and = C0 (constant)
) u = xy 2 x2 + C 0
du = 0 implies u = C, ) xy 2 x2 = A , where A = C C 0.
Return to Exercise 2
Toc JJ II J I Back
Solutions to exercises 17
Exercise 3.
@P
@y = 2ex = @Q
@x , ) o.d.e. is exact.
d
Di↵erentiate: @u
@y = 2ex + dy = 2(ex 2y) , using ii)
Toc JJ II J I Back
Solutions to exercises 18
d
R R
i.e. dy = 4y i.e. d = 4 y dy i.e. = 2y 2 + C 0
) u = 2(y + 1)ex 2y 2 + C 0
du = 0 gives u = C,
) (y + 1)ex y2 = A , where A = (C C 0 )/2 .
Return to Exercise 3
Toc JJ II J I Back
Solutions to exercises 19
Exercise 4.
@P
@y = 2x = @Q
@x , ) o.d.e. is exact.
d
Di↵erentiate: @u
@y = x2 + dy = x2 + 4y 3 , using ii)
d
R R
i.e. dy = 4y 3
i.e. d =4 y 3 dy i.e. = y4 + C 0
Toc JJ II J I Back
Solutions to exercises 20
) u = x2 y + 3x2 + y 4 + C 0
du = 0 gives u = C,
) x2 y + 3x2 + y 4 = A , where A = C C0 .
Return to Exercise 4
Toc JJ II J I Back
Solutions to exercises 21
Exercise 5.
(x xy 2 )dx + (8y x2 y)dy = 0
P (x, y) = x xy 2
Q(x, y) = 8y x2 y . @P
@y = 2xy = @Q
@x , ) o.d.e. is exact.
= P dx + Q dy = 0
Giving i) @u
@x =x xy 2 ; ii) @u
@y = 8y x2 y.
d
Di↵erentiate: @u
@y = 1 2
2x · 2y + dy = 8y x2 y , using ii)
Toc JJ II J I Back
Solutions to exercises 22
R R
) d
dy = 8y i.e. d =8 ydy
du = 0 gives u = C, ) 2 x (1
1 2
y 2 ) + 4y 2 = A , A = C C0 .
Return to Exercise 5
Toc JJ II J I Back
Solutions to exercises 23
Exercise 6.
@P
@y = 4xy = @Q
@x , ) o.d.e. is exact.
d
Di↵erentiate: @u
@y = 2x2 y + dy = cos y + 2x2 y , using ii)
d
R R
i.e. dy = cos y i.e. d = cos y dy i.e. = sin y + C 0
Toc JJ II J I Back
Solutions to exercises 24
) u = 41 e4x + x2 y 2 + sin y + C 0
du = 0 gives u = C,
) 1 4x
4e + x2 y 2 + sin y = A , where A = C C0 .
Return to Exercise 6
Toc JJ II J I Back
Solutions to exercises 25
Exercise 7.
@P
@y = cos x = @Q
@x , ) o.d.e. is exact.
= P dx + Q dy = 0
Giving i) @u
@x = 3x2 + y cos x, ii) @u
@y = sin x 4y 3 .
d
Di↵erentiate: @u
@y = sin x + dy = sin x 4y 3 , using ii)
Toc JJ II J I Back
Solutions to exercises 26
R R
) d
dy = 4y 3
i.e. d = 4 y 3 dy
du = 0 gives u = C, ) x3 + y sin x y4 = A , A = C C0 .
Return to Exercise 7
Toc JJ II J I Back
Solutions to exercises 27
Exercise 8.
@P
@y = x
1+y 2 = @Q
@x , ) o.d.e. is exact.
x2
Integrate i): u= 2 tan 1
y + (y)
x2 d x2
Di↵erentiate: @u
@y = 1
2 (1+y 2 ) + dy = 2(1+y 2 ) , using ii)
Toc JJ II J I Back
Solutions to exercises 28
) d
dy =0 i.e. (y) = C 0
x2
and u = 2 tan 1
y + C0
du = 0 implies u = C , C = constant
x2
) 2 tan 1
y = A, A = C C0 .
Return to Exercise 8
Toc JJ II J I Back
Solutions to exercises 29
Exercise 9.
@P
@y = 3x2 y 2 = @Q
@x , ) o.d.e. is exact.
x3 y 3
Integrate i): u=x + 2
3 + (y)
d
Di↵erentiate: @u
@y = x3 y 2 + dy = x3 y 2 + 4y 3 , using ii)
d
R R
i.e. dy = 4y 3
i.e. d =4 y 3 dy i.e. = y4 + C 0
Toc JJ II J I Back
Solutions to exercises 30
x3 y 3
) u=x + 2
3 + y4 + C 0
du = 0 gives u = C,
x3 y 3
) x +
2
3 + y 4 = A , where A = C C0 .
Return to Exercise 9
Toc JJ II J I Back
Solutions to exercises 31
Exercise 10.
@P
@y = 6x2 + 6xy = @Q
@x , ) o.d.e. is exact.
= P dx + Q dy = 0
Giving i) @u
@x = 2x3 6x2 y + 3xy 2 , ii) @u
@y = 2x3 + 3x2 y y3 .
x4
Integrate i): u= 2 2x3 y + 32 x2 y 2 + (y)
Di↵erentiate: @u
@y = 2x3 + 3x2 y + ddy = 2x3 + 3x2 y y 3 , using ii)
Toc JJ II J I Back
Solutions to exercises 32
R R
) d
dy = y 3
i.e. d = y 3 dy
i.e. (y) = 1 4
4y + C0
x4 y4
and u(x, y) = 2 2x y +
3 3 2 2
2x y 4 + C0
du = 0 gives u = C,
x4 y4
) 2 2x y +
3 3 2 2
2x y 4 =A, A=C C0 .
Return to Exercise 10
Toc JJ II J I Back
Solutions to exercises 33
Exercise 11.
@P
@y = 2y cos x = @Q
@x , ) o.d.e. is exact.
d
Di↵erentiate: @u
@y = 2y sin x + dy = 2y sin x + 2 , using ii)
d
R R
i.e. dy =2 i.e. d =2 dy i.e. = 2y + C 0
Toc JJ II J I Back
Solutions to exercises 34
) u = y 2 sin x + cos x + 2y + C 0
du = 0 gives u = C,
Return to Exercise 11
Toc JJ II J I Back