0% found this document useful (0 votes)
32 views11 pages

Alliance

One shot for IOQM Geometry

Uploaded by

devimahato28
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
32 views11 pages

Alliance

One shot for IOQM Geometry

Uploaded by

devimahato28
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

Algebra — The Complete Master Pack for

IOQM–RMO
Comprehensive Algebra Reference (Identities, Theorems, Summations, Recurrences,
Inequalities, Number-Theoretic Tools, Strategies, Worked Examples)
Revised Edition: August 31, 2025
Prepared for IOQM–RMO learners

How this revision helps you. We keep the original structure and topics and add many more
theorems, formulas, and friendly explanations with small-step examples. Nothing is removed;
only expanded and simplified.

Contents
1 Preface and how to use this pack 2

2 Core algebraic identities and factorizations 3


2.1 Elementary identities (must-know) . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Special classic identities (extended list) . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Cyclotomic and roots-of-unity identities . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Handy rearrangements (algebra cleanups) . . . . . . . . . . . . . . . . . . . . . . 3

3 Polynomials: machinery and root properties 4


3.1 Factor & remainder theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Vieta’s formulas (general) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Newton’s identities (power sums) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Rational roots & bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.5 Discriminant, multiplicity, derivatives . . . . . . . . . . . . . . . . . . . . . . . . 4
3.6 Irreducibility tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.7 Resultant (elimination idea) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.8 Lagrange interpolation (construction) . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Symmetric polynomials and reduction 5


4.1 Elementary symmetric basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Power sums and reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Cyclic vs symmetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Summation techniques and discrete calculus 5


5.1 Elementary closed forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.2 Telescoping & partial fractions (templates) . . . . . . . . . . . . . . . . . . . . . 5
5.3 Abel summation (summation by parts) . . . . . . . . . . . . . . . . . . . . . . . . 5
5.4 Reordering double sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.5 Finite differences (detect degree) . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Generating functions and combinatorial algebra 6


6.1 Ordinary generating functions (OGF) . . . . . . . . . . . . . . . . . . . . . . . . 6
6.2 Standard OGFs to remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.3 Exponential generating functions (EGF) . . . . . . . . . . . . . . . . . . . . . . . 6
6.4 Binomial identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.5 Binomial inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1
7 Inequalities and algebraic optimization 6
7.1 Mean chain and weighted AM–GM . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7.2 Cauchy–Schwarz & Engel (Titu) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.3 Rearrangement & Chebyshev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.4 Schur, Muirhead, classic olympiad ones . . . . . . . . . . . . . . . . . . . . . . . . 7

8 Number-theoretic algebraic tools 7


8.1 LTE (Lifting The Exponent) — practical forms . . . . . . . . . . . . . . . . . . . 7
8.2 CRT, orders, and Fermat–Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8.3 Roots-of-unity filter (residue selector) . . . . . . . . . . . . . . . . . . . . . . . . 7
8.4 Gaussian integers, sums of two squares . . . . . . . . . . . . . . . . . . . . . . . . 7

9 Algebraic transforms, substitutions and manipulations 8


9.1 Homogenize & normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9.2 Substitution patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9.3 Symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

10 Recurrence relations: methods and detailed recipes 8


10.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
10.2 Characteristic polynomial method (go-to tool) . . . . . . . . . . . . . . . . . . . . 8
10.3 Generating functions for recurrences . . . . . . . . . . . . . . . . . . . . . . . . . 8
10.4 Undetermined coefficients (non-homogeneous) . . . . . . . . . . . . . . . . . . . . 8
10.5 Annihilator method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
10.6 Matrix (companion) method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
10.7 Variable-coefficient and combinatorial recurrences . . . . . . . . . . . . . . . . . . 9
10.8 Asymptotics (dominant root) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
10.9 Worked mini-examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

11 Advanced identities, factorials and summations 9


11.1 More binomial sums (handy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
11.2 Stirling numbers and falling factorials . . . . . . . . . . . . . . . . . . . . . . . . 9
11.3 Legendre & Kummer (valuation tools) . . . . . . . . . . . . . . . . . . . . . . . . 9
11.4 Bernoulli numbers (Faulhaber) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

12 Problem-solving strategies: a detailed checklist (50+) 10

13 Worked problems and illustrative examples 10

14 Common pitfalls and final checks 11

1 Preface and how to use this pack


This Master Pack is a do-it-fast, understand-deep reference for IOQM/RMO algebra. Each tool
has:
• What it says (short statement),
• Why it’s useful (contest intuition),
• How to use (steps/checklist),
• Example (a quick demo).
P P
Notation. νp (n) is the exponent of prime p in n; sym and cyc denote symmetric and cyclic
sums; a polynomial is monic if leading coefficient is 1.

2
2 Core algebraic identities and factorizations
2.1 Elementary identities (must-know)
• Squares/cubes. a2 − b2 = (a − b)(a + b); a3 − b3 = (a − b)(a2 + ab + b2 ); a3 + b3 =
(a + b)(a2 − ab + b2 ).
• Difference of powers. For integer n ≥ 1,
n−1
X
n n
a − b = (a − b) an−1−k bk .
k=0

• Sum of even powers. If n is odd, an + bn = (a + b) n−1 k n−1−k bk .


P
k=0 (−1) a
1 − xn
• Geometric series. For x ̸= 1, 1 + x + · · · + xn−1 = .
1−x
• Algebraic expansions. (x + y + z)2 = x2 + y 2 + z 2 + 2(xy + yz + zx) and
X
(x + y + z)3 = x3 + y 3 + z 3 + 3 x2 y + 6xyz.
sym

Why useful? Quickly factor, telescope sums, or check divisibility.

Example 2.1 (Fast factor). Factor x4 − 1. Solution: (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1).

2.2 Special classic identities (extended list)


Theorem 2.2 (Sophie Germain). a4 + 4b4 = (a2 − 2ab + 2b2 )(a2 + 2ab + 2b2 ).

Theorem 2.3 (Brahmagupta–Fibonacci (product of sums of two squares)). (a2 + b2 )(c2 + d2 ) =


(ac ∓ bd)2 + (ad ± bc)2 .

Theorem 2.4 (Aurifeuillean-type idea (template)). For certain n, x2n ±1 can factor nontrivially
over Z[x] beyond cyclotomic pieces. In contests, first try cyclotomic (xn ± 1) then check special
n (like powers of 2) for extra patterns.

2.3 Cyclotomic and roots-of-unity identities


Definition 2.5. Φn (x) is the monic polynomial whose roots are primitive n-th roots of unity.
Then Y
xn − 1 = Φd (x), deg Φn (x) = φ(n).
d|n

Useful facts.
Pn−1 km

P
ζ n =1 ζ = 0 for n > 1. More generally, k=0 ζ = 0 unless n | m, in which case it equals
n.
• For odd n, xn + 1 = d|2n, d∤n Φd (x).
Q

2.4 Handy rearrangements (algebra cleanups)


b2
• Completing square: x2 + bx = (x + 2b )2 − 4.
• Symmetric 2-variable: With s = x + y, p = xy, one has x2 + y 2 = s2 − 2p.
• Three variables: p = x + y + z, q = xy + yz + zx, r = xyz reduce many expressions.

3
3 Polynomials: machinery and root properties
3.1 Factor & remainder theorems
Proposition 3.1. P (c) = 0 ⇐⇒ (x − c) | P (x). The remainder on division by (x − c) equals
P (c).

3.2 Vieta’s formulas (general)


For monic xn + an−1 xn−1 + · · · + a0 with roots r1 , . . . , rn ,
X X Y
ri = −an−1 , ri rj = an−2 , . . . , ri = (−1)n a0 .
i<j

3.3 Newton’s identities (power sums)


k
P
Let Sk = i ri . Then

S1 + an−1 = 0, S2 + an−1 S1 + 2an−2 = 0, S3 + an−1 S2 + an−2 S1 + 3an−3 = 0, . . .

Use: Convert between power sums and coefficients.

3.4 Rational roots & bounds


p
Lemma 3.2 (Rational Root Test). If P ∈ Z[x] has root q in lowest terms, then p | a0 and
q | an .

Proposition 3.3 (Cauchy bound). For monic xn + cn−1 xn−1 + · · · + c0 , every root r satisfies
|r| ≤ 1 + max{|c0 |, . . . , |cn−1 |}.

Proposition 3.4 (Descartes’ rule of signs). #(positive real roots, counting multiplicity) ≤
#(sign changes of coefficients). Similarly for negative roots via P (−x).

3.5 Discriminant, multiplicity, derivatives


• Quadratic: ∆ = b2 − 4ac. ∆ = 0 indicates a repeated root.
• In general: r is a repeated root ⇐⇒ gcd(P, P ′ ) has positive degree.

3.6 Irreducibility tests


Theorem 3.5 (Eisenstein). If a prime p divides a0 , . . . , an−1 , does not divide an , and p2 ∤ a0 ,
then P is irreducible over Q.

Proposition 3.6 (Gauss). A primitive polynomial in Z[x] factors over Q[x] iff it factors over
Z[x].

Tip 3.7. After a shift x 7→ x + 1 (or x 7→ x + k), Eisenstein often becomes applicable.

3.7 Resultant (elimination idea)


The resultant Res(P, Q) is 0 iff P, Q share a root in C. For contest use, know that eliminating a
variable by resultants or by clever substitution can show finiteness or force constraints.

4
3.8 Lagrange interpolation (construction)
Given distinct xi and values yi , there is a unique polynomial P of degree < n with P (xi ) = yi :
n
X Y x − xj
P (x) = yi .
xi − xj
i=1 j̸=i

Trick. Degree-counting: if two polynomials of degree ≤ d agree at d + 1 points, they are equal.

4 Symmetric polynomials and reduction


4.1 Elementary symmetric basis
For x, y, z, set p = x + y + z, q = xy + yz + zx, r = xyz. Any symmetric polynomial in x, y, z
can be expressed in p, q, r.

4.2 Power sums and reductions


If x, y, z are roots of t3 − pt2 + qt − r = 0, then Sk = xk + y k + z k satisfies the recurrence induced
by the characteristic equation:

Sk = pSk−1 − qSk−2 + rSk−3 (k ≥ 3),

with S0 = 3, S1 = p, S2 = p2 − 2q.

4.3 Cyclic vs symmetric


Cyclic symmetry is weaker than full symmetry; reductions to p, q, r may fail for purely cyclic
problems. Treat carefully.

5 Summation techniques and discrete calculus


5.1 Elementary closed forms
n n n  2
X n(n + 1) X
2 n(n + 1)(2n + 1) X
3 n(n + 1)
k= , k = , k = .
2 6 2
k=1 k=1 k=1

5.2 Telescoping & partial fractions (templates)


 
1 1 1 1 1 1 1
= − , = − .
k(k + m) m k k+m k(k + 1) k k+1
Use: Write ak = bk − bk+1 so partial sums collapse.

5.3 Abel summation (summation by parts)


P
Let A(n) = k≤n ak . Then for sequences (ak ), (bk ),

n
X n−1
X
ak bk = A(n)bn − A(m − 1)bm−1 − A(k)(bk+1 − bk ).
k=m k=m

Use: When A(k) is simple/bounded and bk has monotone differences.

5
5.4 Reordering double sums
n X
X i n X
X n
f (i, j) = f (i, j).
i=1 j=1 j=1 i=j

Tip. Draw the i–j lattice to see the region.

5.5 Finite differences (detect degree)


∆f (k) = f (k + 1) − f (k). If ∆d+1 f ≡ 0, then f is a polynomial of degree ≤ d. This proves
Faulhaber-type formulas and helps guess closed forms.

6 Generating functions and combinatorial algebra


6.1 Ordinary generating functions (OGF)
n.
P
For (an ), A(x) = n≥0 an x Convolution in n becomes multiplication of OGFs.

6.2 Standard OGFs to remember


1 X 1 X n + m − 1 x
= xn , = xn , = Fibonacci OGF.
1−x (1 − x)m m−1 1 − x − x2
n≥0 n≥0

6.3 Exponential generating functions (EGF)


P an n
E(x) = n≥0 n! x (useful when labels matter).

6.4 Binomial identities


n   n  
X n n
X n k
=2 , (−1) = 0 (n ≥ 1),
k k
k=0 k=0
n   n     
X n X r s r+s
k = n2n−1 , = (Vandermonde),
k k n−k n
k=0 k=0
n    
X k n+1
= (hockey-stick).
m m+1
k=m

6.5 Binomial inversion


Pn n
 Pn n−k n

If bn = k=0 k ak , then an = k=0 (−1) k bk .

7 Inequalities and algebraic optimization


7.1 Mean chain and weighted AM–GM
For nonnegative xi ,
RMS ≥ AM ≥ GM ≥ HM.
P
Weighted AM–GM: for wi ≥ 0, wi = 1,
Y w X
xi i ≤ wi xi (equality when xi equal where wi > 0).

6
7.2 Cauchy–Schwarz & Engel (Titu)
n
a2 ( ai )2
X X  X 2 X P
x2i yi2 ≥ x i yi , i
≥ P (bi > 0).
bi bi
i=1

7.3 Rearrangement & Chebyshev


P
If a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bn , then
ai bi is maximal when similarly
 ordered and
 minimal

1X 1X 1X
when oppositely ordered. Chebyshev (for similarly sorted): ai bi ≥ ai bi .
n n n

7.4 Schur, Muirhead, classic olympiad ones


For a, b, c ≥ 0, Schur (r = 1):
X
a3 + b3 + c3 + 3abc ≥ a2 b.
sym

Muirhead: if α majorizes β, then the symmetric sum at α is ≥ that at β (for nonnegative


a b c 3
variables). Nesbitt: For a, b, c > 0, + + ≥ .
b+c c+a a+b 2

8 Number-theoretic algebraic tools


8.1 LTE (Lifting The Exponent) — practical forms
Theorem 8.1 (Basic LTE (odd p)). Let p odd prime, p | a − b, p ∤ ab. Then for n ≥ 1,
νp (an − bn ) = νp (a − b) + νp (n) .
Theorem 8.2 (Sum form). If p | a + b, p ∤ ab, and n odd, then
νp (an + bn ) = νp (a + b) + νp (n) .
Remark 8.3 (The case p = 2). Handle separately. For example, if a ≡ b ≡ 1 (mod 2) and n even,
special adjustments are needed. Always check hypotheses!

8.2 CRT, orders, and Fermat–Euler


If gcd(a, m) = 1, then aφ(m) ≡ 1 (mod m). The multiplicative order ordm (a) divides φ(m).
Chinese Remainder Theorem: simultaneous congruences modulo coprime moduli have a unique
solution modulo the product.

8.3 Roots-of-unity filter (residue selector)


If ω is a primitive m-th root of unity, then
m−1
1 X −jr X
ω · f (ω j ) = [xn ] F (x),
m
j=0 n≡r (mod m)

which picks coefficients (or terms) with n ≡ r (mod m). Great for separating arithmetic
progression terms in sums.

8.4 Gaussian integers, sums of two squares


In Z[i], N (a + bi) = a2 + b2 . A prime p ≡ 1 (mod 4) splits in Z[i] and is a sum of two squares.
Useful for Diophantine equations with x2 + y 2 .

7
9 Algebraic transforms, substitutions and manipulations
9.1 Homogenize & normalize
If an inequality is homogeneous, you may set x + y + z = 1 (or xyz = 1, etc.) to simplify. If not
homogeneous, multiply by a positive symmetric expression to homogenize.

9.2 Substitution patterns


• Two variables: s = x + y, p = xy.
• Three variables: p = x + y + z, q = xy + yz + zx, r = xyz.
• Reciprocal: x 7→ 1/x for rational symmetric forms.
• “Equal-case” hint: If you suspect x = y at equality, set x = y to reduce.

9.3 Symmetry breaking


Assume order x ≥ y ≥ z to cut cases, or analyze boundary cases to guess extremals.

10 Recurrence relations: methods and detailed recipes


10.1 Classification
• Linear homogeneous, constant coefficients: an = c1 an−1 + · · · + ck an−k .
• Linear non-homogeneous: plus a known f (n).
• Variable-coefficient: coefficients depend on n.
• Nonlinear: need invariants/creative tricks.

10.2 Characteristic polynomial method (go-to tool)


Form P (r) = rk − c1 rk−1 − · · · − ck = 0. If roots ri are distinct,
X
an = αi rin .
i

If r has multiplicity s, include nj rn for j = 0, . . . , s − 1.

Example 10.1 (Repeated root). an = 2an−1 − an−2 with a0 = 0, a1 = 1. Here (r − 1)2 = 0, so


an = αn · 1n + β · 1n = αn + β. Fit a0 = 0 ⇒ β = 0, a1 = 1 ⇒ α = 1. Thus an = n.

10.3 Generating functions for recurrences


an xn , convert the recurrence into an equation for A(x), solve rationally, then
P
Define A(x) =
extract coefficients (partial fractions).

10.4 Undetermined coefficients (non-homogeneous)


Solve homogeneous part, then guess particular form similar to f (n):
• If f (n) is polynomial of degree d, try a polynomial of degree d.
• If f (n) = λn , try Cλn (multiply by ns if λ is a root of characteristic polynomial with
multiplicity s).

8
10.5 Annihilator method
Find Q(E) (in the shift operator Ean = an+1 ) that kills f (n); apply to both sides to get a
higher-order homogeneous equation.

10.6 Matrix (companion) method


Write vn+1 = M vn ; then vn = M n v0 . If diagonalizable, use M = P DP −1 ; otherwise use Jordan
form (polynomial factors nj appear).

10.7 Variable-coefficient and combinatorial recurrences


EGFs often help when factorial-like coefficients appear. For combinatorial recurrences, interpret
an as counting objects and derive closed forms (e.g., Catalan, Bell, Stirling numbers).

10.8 Asymptotics (dominant root)


n
For linear constant-coefficient recurrences, the root with largest |r| controls growth: an ∼ Crmax
(times a polynomial if repeated).

10.9 Worked mini-examples


Example 10.2 (Linear non-homogeneous). an = 2an−1 + n, a0 = 0. Homogeneous solution
(p)
C · 2n . Guess an = An + B. Substitute: An + B = 2(A(n − 1) + B) + n. Compare coefficients
⇒ A = −1, B = −2. Then an = C2n − n − 2, and a0 = 0 ⇒ C = 2. So an = 2n+1 − n − 2.

11 Advanced identities, factorials and summations


11.1 More binomial sums (handy)

n  
X n 2
k = n(n + 1)2n−2 ,
k
k=0
n  
k n 1 1
X
(−1) = ,
k k+1 n+1
k=0
n    
X r+k r+n+1
= .
k n
k=0

11.2 Stirling numbers and falling factorials


Falling factorial: xn = x(x − 1) · · · (x − n + 1).
n
X n
X
xn = S(n, k) xk , xn = s(n, k) xk ,
k=0 k=0

where S(n, k) are Stirling numbers of the second kind, s(n, k) the (signed) Stirling numbers of
the first kind.

11.3 Legendre & Kummer (valuation tools)


X n   
m
νp (n!) = , Kummer: νp = # of carries when adding n and m−n in base p.
pj n
j≥1

9
11.4 Bernoulli numbers (Faulhaber)
Sums of powers nk=1 k m are polynomials in n with Bernoulli numbers. Know up to m = 4 by
P
heart (given in Section 5 and standard tables).

12 Problem-solving strategies: a detailed checklist (50+)


1. Try 0, ±1 quickly; check parity and small mods (2, 3, 4, 5, 7).
2. If symmetric, try x = y = z or reduce to p, q, r.
3. Treat as quadratic in one variable; use discriminant (integer/perfect-square checks).
4. Use Vieta jumping when you see symmetric quadratic Diophantine patterns.
5. For sums, seek telescoping; attempt partial fractions.
6. Reorder double sums; visualize lattice region.
7. Use Abel summation when partial sums are simple.
8. Detect polynomial sequences via finite differences.
9. Use generating functions for recurrences/convolutions.
10. Bound with AM–GM/Cauchy; homogenize if needed; check equality cases to guess structure.
11. Apply Schur/Muirhead for symmetric inequalities.
12. For an ± bn valuations, try LTE (verify hypotheses carefully).
13. For irreducibility, try shift then Eisenstein.
14. Use orders/CRT to constrain exponents in congruences.
15. Consider matrix method for fast an or pattern-finding.
16. Try substitution x 7→ 1/x or s = x + y, p = xy to simplify.
17. Use interpolation/degree-counting to confirm polynomial identities.
18. Combine bounding with modular contradictions.
19. Break symmetry by ordering x ≥ y ≥ z or checking boundary cases.
20. Always re-check for extraneous roots after squaring/dividing.

13 Worked problems and illustrative examples


Example 13.1 (Discriminant finite search). Solve in integers x2 + xy + y 2 = 4. Solution. View
as quadratic in x: x2 + yx + (y 2 − 4) = 0. Discriminant ∆ = y 2 − 4(y 2 − 4) = −3y 2 + 16 must
be a perfect square ≥ 0. So 3y 2 + t2 = 16. Try small y (0, ±1, ±2) to find solutions.
Pn 1 1
Example 13.2 (Telescoping with partial fractions). Sn = k=1 k(k+2) . Since k(k+2) =
 
1 1 1
2 k − k+2 , sums collapse to
 
1 1 1 1
Sn = 1+ − − .
2 2 n+1 n+2
Example 13.3 (Vieta jumping skeleton). x2 − kxy + y 2 = 1. Fix y; the two roots in x satisfy
x + x′ = ky and xx′ = y 2 − 1. Jump from (x, y) to (x′ , y) and use minimality for contradictions
or infinite descent.
Example 13.4 (Undetermined coefficients, repeated root). an −2an−1 +an−2 = n. Homogeneous:
(h)
(r − 1)2 = 0 ⇒ an = αn + β. Try particular An + B: substitute to solve for A, B; fit a0 , a1 to
get full an .

10
X a2 (a + b + c)2
Example 13.5 (Inequality via Engel). For a, b, c > 0, show ≥ . Apply
ab + bc ab + bc + ca
Engel with ai = a, bi = ab + bc cyclically.
3n − 1 . Since 3 | 23 − 1 and 3 ∤ 2, LTE gives

Example 13.6 (LTE quick count). Find ν3 2
ν3 23n − 1 = ν3 23 − 1 + ν3 (n) = 1 + ν3 (n).


14 Common pitfalls and final checks


• Never divide by an expression that might be 0 without splitting cases.
• After squaring, plug back to remove extraneous roots.
• For integer roots, ensure discriminant is a perfect square and parity fits.
• With LTE, confirm exact hypotheses (p | a − b or p | a + b; special p = 2 cases).
• In telescoping, check end terms to avoid off-by-one mistakes.
• For inequalities, state domain (nonnegativity) and check equality conditions.

Appendix A: Extra formula bank (quick lookup)


Algebra/Factorization
√ √
a4 + b4 = (a2 + 2ab + b2 )(a2 − 2ab + b2 ) (over R).
x4 + 4x2 + 1 = (x2 + 2x + 1) + (x2 + 1) = (x2 + 1)2 + 2x.

More binomial/finite sums


n   n  
k n k n
X X
(−1) k = 0, (−1) k 2 = 0 (n ≥ 2),
k k
k=0 k=0
n  2   n     
X n 2n X r+k s+n−k r+s+n+1
= , = .
k n k n−k n
k=0 k=0

Catalan numbers
  √ n
1 2n X
n 1− 1 − 4x X
Cn = , Cn x = , Cn+1 = Ci Cn−i .
n+1 n 2x
n≥0 i=0

Orders and primitive roots If p is prime and a is a primitive root mod p, then every nonzero
residue is some power of a. Useful to solve ax ≡ b (mod p).

End of the Revised Algebra Master Pack for IOQM–RMO.

11

You might also like