Wang 2014
Wang 2014
     Abstract: This paper investigates the problem of stability for two-dimensional (2-D) singular systems with state-varying delay in
     Roesser model. By making use of algebraic manipulation, the conditions of acceptability and causality of the 2-D state-varying
     delayed singular systems are given rst. In terms of linear matrix inequality (LMI), a sufcient delay-dependent condition then
     is derived to guarantee the stability of the 2-D state-varying delayed singular systems. Finally, a numerical example is provided
     to illustrate the effectiveness of the proposed method.
     Key Words: 2-D Singular Systems, State-varying Delay, Roesser Model, Linear Matrix Inequality(LMI)
                                                                      6074
They are assumed satisfying                                                 (Σ), and furthermore, develop delay-dependent conditions
                                                                            for its stability via Lyapunov method.
     hm ≤ dh (i) ≤ hM ,                   vm ≤ dv (j) ≤ vM ,                   The following lemma are used in the proof of the main
                                                                            results.
where hm , hM and vm , vM are the lower and upper delay                        Lemma 1:([17]) For any constant matrix G > 0, integers
bounds along horizontal and vertical directions, respectively.              a ≤ b, vector function w : {a, a + 1, · · · , b} → Rn , then
  The boundary conditions are dened by
                                                                                                                  b           T       
                                                                                         
                                                                                         b                                                
                                                                                                                                           b
    xh (i, j) = ϕij ,        ∀ 0 ≤ j < ∞, −hM ≤ i ≤ 0,                      −(b−a+1)           wT (i)Gw(i) ≤ −          w(i)       G             w(i) .
    xv (i, j) = φij ,        ∀ 0 ≤ i < ∞, −vM ≤ j ≤ 0,                                   i=a                      i=a                      i=a
  The purpose of this paper is to discuss the conditions of                 Proof: By Denition 2 in [18], deg(det(zE − A)) = rankE
acceptability and causality of 2-D delayed singular system                  if and only if 1-D singular system Ex(i + 1) = Ax(i) +
                                                                     6075
Ad x(i − d(i)) is causal, this is equivalent to deg(det(zE −                  Proof: For notational simplicity, let
A − z −d(i) Ad )) = rankE by [19], therefore, according to                                                                              
Lemma 6 in [14], it means that the acceptable 2-D state-                                   xh (i, j)                    xh (i − dh (i), j)
                                                                              x(i, j) =                , xd (i, j) =                         ,
varying delay singular system (Σ) is causal.                                               xv (i, j)                    xv (i, j − dv (j))
                                                                                                            
   Remark 2: The result of Proposition 2 is the same as that                               xh (i − hM , j)
                                                                            xM (i, j) =                         ,
of Lemma 6 in [14] when delays in two directions are the                                   xv (i, j − vM )
same constant delay. Furthermore, it is clearly shown from                                                       
                                                                                              i−1
                                                                                                       x h (r, j)
Proposition 1 and 2 that, just as 1-D case, the acceptabili-                 xs (i, j) =   r=i−h
                                                                                               j−1
                                                                                                     M
                                                                                                                     ,
ty and causality of 2-D delayed singular system in Roesser                                     t=j−vm xv (i, t)
model are independent of the delay.                                           θ(i, j) = [xT (i, j) xTd (i, j) xTM (i, j) xTs (i, j)]T ,
   Denition 6: The acceptable 2-D state-varying delay sin-                                                                          
gular system (Σ) is stable, if for every uniformly bounded                                 xh (r, j)                         xv (i, t)
                                                                             ξh (r, j) =                , ξv (i, t) =                     ,
conditions (3), limr→∞ Xr = 0, where Xr is dened as in                                    ψh (r, j)                        ψv (i, t)
                                                                                                     
(8).                                                                                       ψh (i, j)
                                                                              ψ(i, j) =                 ,
   Theorem 1: Given positive integers       hm ,hM  ,vm and                              ψv (i, j)
                                            Ph 0                            ψh (r, j) = Eh xh (r + 1, j) − xh (r, j),
vM , if there exists matrices P =                       ,Q =
                                          0 Pv
                                                                            ψv (i, t) = Ev xv (i, t + 1) − xv (i, t).                              (20)
   Qh 0                                  Mh     0
               ,0 < M =                              , Gk =
    0 Qv                                   0 Mv
                                                                          Dene the following Lyapunov function candidate
   Ghk     0
                  , k = 1, 2, 3, such that
     0   Gvk                                                                          V (x(i, j)) = Vh (xh (i, j)) + Vv (xv (i, j)),               (21)
                                                                            where
                         E P E ≥ 0,
                             T
                                                                (15)                              5
                                                                                                  
                         E QE ≥ 0,
                             T
                                                                (16)          Vh (xh (i, j)) =        Vhk (xh (i, j)),
                                                                                                  k=1
                                                                             Vh1 (xh (i, j)) =    xTh (i, j)EhT Ph Eh xh (i, j),
                                                                                                     
                                                                                                     i
                                                                             Vh2 (xh (i, j)) =                 xTh (r, j)EhT Qh Eh xh (r, j),
                                                                                              r=i−dh (i)
            Gh1    Gh2                       Gv1    Gv2
 Gh =                        > 0, Gv =                        > 0,                                  
                                                                                                    i−1
            GTh2   Gh3                       GTv2   Gv3
                                                                             Vh3 (xh (i, j)) =             xTh (r, j)Mh xh (r, j),
                                                                                                  r=i−hM
                                                                (17)                               −h
        ⎡                                        ⎤                                                   m    
                                                                                                           i−1
       Γ11         Γ12     G3             −GT2                               Vh4 (xh (i, j)) =                     xTh (r, j)EhT Qh Eh xh (r, j),
     ⎢ ∗           Γ22     0                0    ⎥
   Γ=⎢
     ⎣ ∗
                                                 ⎥ < 0, (18)
                                                 ⎦
                                                                                                  s=−hM    r=i+s
                    ∗    −M − G3           GT2                                                            −1
                                                                                                                 
                                                                                                                  i−1
        ∗           ∗      ∗             G3 − G1                             Vh5 (xh (i, j)) = hM                        ξhT (r, j)Gh ξh (r, j),
                                                                                                      s=−hM      r=i+s
hold, where                                                                                       5
                                                                                                  
                                                                               Vv (xv (i, j)) =       Vvk (xv (i, j)),
                                                                                                  k=1
Γ11 = AT (P + Q + G3 )A − E T P E + M + Dd E T QE                            Vv1 (xv (i, j)) =    xTv (i, j)EvT Pv Ev xv (i, j),
    + Hd2 G1 − G3 + Hd2 G2 (A − In ) + (A − In )T GT2 Hd2                                            
                                                                                                     j
                                                                     6076
                
    Gv1    Gv2                                                                                                
                                                                                                              j+1
                     are positive denite matrices. Dening                        ΔVv2 (xv (i, j)) =                      xTv (i, t)EvT Qv Ev xv (i, t)
    GTv2   Gv3
                                                                                                        t=j+1−dv (j+1)
                              
                              i                                                                     − xTv (i, j − dv (j))Qv xv (i, j − dv (j))
                     +                     xTh (r, j)EhT Qh Eh xh (r, j)                                   m
                                                                                                          j−v
                         r=i+1−dh (i+1)                                                             +                xTv (i, t)Qv xv (i, t),
                             
                             i                                                                          t=j+1−vM
                     −                  xTh (r, j)EhT Qh Eh xh (r, j),             ΔVv3 (xv (i, j)) = xTv (i, j)Mv xv (i, j)
                         r=i+1−dh (i)
                                                                                                    − xTv (i, j − vM )Mv xv (i, j − vM ),
                     ≤ xTh (i + 1, j)EhT Qh Eh xh (i + 1, j)
                                                                                   ΔVv4 (xv (i, j)) = (vM − vm )xTv (i, j)EvT Qv Ev xv (i, j)
                     − xTh (i − dh (i), j)EhT Qh Eh xh (i − dh (i), j)
                                                                                                           m
                                                                                                          j−v
                            
                            i                                                                       −                xTv (i, t)EvT Qv Ev xv (i, t),
                     +                 xTh (r, j)EhT Qh Eh xh (r, j)                                    t=j+1−vM
                         r=i+1−hM                                                                      2 T
                                                                                   ΔVv5 (xv (i, j)) = vM ξv (i, j)Gv ξv (i, j)
                            
                            i
                     −                xTh (r, j)EhT Qh Eh xh (r, j),                                          
                                                                                                              j−1
                         r=i+1−hm
                                                                                                    − vM               ξvT (i, t)Gv ξv (i, t)         (24)
                                                                                                            t=j−vM
                     = xTh (i + 1, j)EhT Qh Eh xh (i + 1, j)
                     − xTh (i − dh (i), j)EhT Qh Eh xh (i − dh (i), j)             According to Lemma 1, we have
                            m
                           i−h
                     +                 xTh (r, j)EhT Qh Eh xh (r, j),
                                                                                   ΔVh5 (xh (i, j)) ≤ h2M ξhT (i, j)Gh ξh (i, j)
                         r=i+1−hM
                                                                                                       i−1                      i−1                    
ΔVh3 (xh (i, j)) = xTh (i, j)Mh xh (i, j)                                                                                         
                                                                                                    −              T
                                                                                                                  ξh (r, j) Gh                   ξh (r, j)
                     − xTh (i − hM , j)Mh xh (i − hM , j),                                              r=i−hM                        r=i−hM
ΔVh4 (xh (i, j)) = (hM − hm )xTh (i, j)EhT Qh Eh xh (i, j)                                         = h2M xTh (i, j)Gh1 xh (i, j)
                            m
                           i−h                                                                     + 2h2M xTh (i, j)Gh2 ψh (i, j)
                     −                 xTh (r, j)EhT Qh Eh xh (r, j),
                                                                                                   + h2M ψhT (i, j)Gh3 ψh (i, j)
                         r=i+1−hM
                                                                                                      i−1                       i−1                        
ΔVh5 (xh (i, j)) = h2M ξhT (i, j)Gh ξh (i, j)                                                                                     
                                                                                                   −             xTh (r, j) Gh1                    xh (r, j)
                               
                               i−1
                                                                                                        r=i−hM                         r=i−hM
                     − hM               ξhT (r, j)Gh ξh (r, j)
                                                                                                   − 2[xh (i, j) − xh (i − hM , j)]T
                             r=i−hM
                                                                                                           i−1              
ΔVv1 (xv (i, j)) = xTv (i, j + 1)EvT Pv Ev xv (i, j + 1)                                                       
                                                                                                   × GTh2           xh (r, j)
                     − xTv (i, j)EvT Pv Ev xv (i, j),                                                        r=i−hM
                                                                            6077
               − [xh (i, j) − xh (i − hM , j)]T                             where the equality sign holds only when
               × Gh3 [xh (i, j) − xh (i − hM , j)]              (25)                            
                                                                                                       V (x(i, j)) = 0.              (31)
                                                                                               (i,j)∈D(r)
and
                    2 T
                                                                            This implies that the whole energies stored at the points
ΔVv5 (xv (i, j)) ≤ vM ξv (i, j)Gv ξv (i, j)                                 {(i, j) : i + j = r + 1} is strictly less than those at the
                   ⎡                   ⎤    ⎡              ⎤
                      
                      j−1                     
                                              j−1                           points {(i, j) : i + j = r} unless all x(i, j) = 0. Therefore,
                 −⎣          ξvT (i, t)⎦ Gv ⎣     ξv (i, t)⎦                we obtain
                     t=j−vM                    t=j−vM                                               
                                                                                              lim          V (x(i, j) = 0.            (32)
                    2 T                                                                       r→∞
                 = vM  xv (i, j)Gv1 xv (i, j)                                                       (i,j)∈D(r)
                      2 T
                 + 2vM xv (i, j)Gv2 ψv (i, j)                               It follows that
                    2
                 + vM  ψvT (i, j)Gv3 ψv (i, j)
                    ⎡                   ⎤      ⎡                     ⎤                              lim V (x(i, j) = 0,
                                                                                                i+j→∞
                                                                                                                                     (33)
                        
                        j−1                          
                                                     j−1
                 −⎣             xTv (i, t)⎦ Gv1 ⎣            xv (i, t)⎦                             lim    x(i, j) = 0.            (34)
                                                                                                i+j→∞
                     t=j−vM                         t=j−vM
                                                                            Thus, by Denition 1, the 2-D singular system (Σ) is stable.
                 − 2[xv (i, j) − xv (i, j − vM )]T
                        ⎡                  ⎤                                This completes the proof.
                             
                             j−1
                                                                               Remark 3: Compared with literature [14], in this paper,
                 × GTv2 ⎣         xv (i, t)⎦                                instead of using state augmentation techniques, acceptabili-
                          t=j−vM                                            ty and causality of the 2-D delayed singular system are dis-
                 − [xv (i, j) − xv (i, j − vM )]T                           cussed rst via algebraic method, and then, the stability is
                 × Gv3 [xv (i, j) − xv (i, j − vM )]            (26)        considered separately in order to make use of Lyapunov ap-
                                                                            proaches which are much easier to be extended to general
It follows from (23)-(26) that                                              cases than algebraic ones.
                                                                            4 Illustrative examples
                 ΔV (i, j) ≤ θT (i, j)Γθ(i, j).                 (27)
                                                                              Consider a 2-D state-varying delay singular system in
Therefore, we have ΔV (i, j) < 0 for any θ(i, j) = 0 if                     Roesser model in (Σ) with
conditions (17) and (18) are satised. It follows from (21)-                                                                 
                                                                                   1 0              0.05 0              0 0.05
(23) and ΔV (x(i, j)) ≤ 0 that                                              E=             ,A =                , Ad =               ,
                                                                                   0 0             −0.05 1              0 −0.05
 Vh (xh (i + 1, j)) + Vv (xv (i, j + 1)) ≤ Vh (xh (i, j))                                                                      (35)
                                         + Vv (xv (i, j)). (28)
                                                                                                   πi                       πj
                                                                                dh (i) = 4 + 2 sin(   ), dv (j) = 5 + 2 sin( ), (36)
Let D(r) denotes the set dened by                                                                  2                       2
                                                                            where state dimensions nh = 1 and nv = 1. The boundary
        D(r)  {(i, j) : i + j = r, i ≥ 0, j ≥ 0.}.             (29)        conditions are given by
For any nonnegative integer r, it follows from (28) that                              xh (i, j) = 0.1, ∀0 < j < 41, 0 < i < 8,
                                                                                    xv (i, j) = 0.1, ∀0 < i < 41, 0 < j < 9.       (37)
           V (x(i, j)) =               Vh (xh (i, j))
(i,j)∈D(r+1)                  (i,j)∈D(r+1)                             For this example, if hm = 2, hM = 6, vm = 3, vM = 7,
                                                                      then by using the LMI Control Toolbox to solve Theorem 1,
                         +               Vv (xv (i, j))                we obtain the solution as follows:
                           (i,j)∈D(r+1)                                                                              
                                                                                             33.6956          0
                         = Vh (xh (1, r)) + Vv (xv (0, r + 1))                       P  =                               ,
                                                                                                 0      −97.7035
                         + Vh (xh (2, r − 1)) + Vv (xv (1, r))                                                       
                                                                                             5.9123          0
                         + · · · + Vh (xh (r + 1, 0)) + Vv (xv (r, 1))               Q  =                               ,
                                                                                                0      −144.5667
                         ≤ Vh (xh (0, r)) + Vv (xv (0, r))                                                     
                                                                                             6.5328        0
                         + Vh (xh (1, r − 1)) + Vv (xv (1, r − 1))                  M   =                         ,
                                                                                                0      8.7564
                                                                                                               
                         + · · · + Vh (xh (r, 0)) + Vv (xv (r, 0))                           0.5755        0
                                                                                   G1 =                          ,
                         =             Vh (xh (i, j))                                           0      3.1537
                                                                                                                 
                           (i,j)∈D(r)                                                        −0.2069         0
                                                                                   G 2 =
                                                                                                  0       2.5293
                                                                                                                    ,
                         +             Vv (xv (i, j))                                                          
                           (i,j)∈D(r)                                                        0.3278        0
                                                                                   G 3 =                         .           (38)
                                                                                                0      2.1651
                         =             V (x(i, j)),          (30)
                           (i,j)∈D(r)                                    Figure 1 and 2 show the state responses of the system.
                                                                     6078
                                                                                                  Theory and Applications, IEEE Transactions on, 49(5): 698-
                                                                                                  703, 2002.
         0.1
                                                                                              [7] H. Xu, Y. Zou, S. Xu, et al, Bounded real lemma and robust
                                                                                                  H control of 2-D singular Roesser models, Systems & control
        0.08
                                                                                                  letters, 54(4): 339-346, 2005.
        0.06                                                                                  [8] H. Xu, L. Xie, S. Xu, et al, Positive real control for uncertain
        0.04                                                                                      2-D singular Roesser models, International Journal of Control,
        0.02
                                                                                                  Automation, Systems, 3: 1-7, 2005.
                                                                                              [9] Y. Zou, W. Wang, S. Xu, et al, Analysis and control of the
          0
          0                                                                                       jump modes behavior of 2-D singular systemsáPart I: Structural
               10
                                                                                   0
                                                                                                  stability, Systems & control letters, 56(1): 34-39, 2007.
                      20                                                     10               [10] Y. Zou, W. Wang, S. Xu, et al, Analysis and control of the
                                30                                 20
                                          40
                                                         30                                       jump modes behavior of 2-D singular systemsáPart II: Regular
                                               40
                                                                                                  observer and compensator design, Systems & control letters,
                                                                                                  56(1): 40-47, 2007.
                     Fig. 1: State response for xh .                                          [11] H. Xu, M. Sheng, Y. Zou, et al, Robust H∞ control for uncer-
                                                                                                  tain 2-D singular Roesser models, Kongzhi Lilun yu Yingyong/
                                                                                                  Control Theory & Applications, 23(5): 703-705, 2006.
                                                                                              [12] H. Xu, Y. Zou, S. Xu, et al, H∞ model reduction of 2-D
                                                                                                  singular Roesser models, Multidimensional systems and signal
         0.1                                                                                      processing, 16(3): 285-304, 2005.
       0.08
                                                                                              [13] H. Xu, J. Lu and Y. Zou, Observer-based H∞ ltering of 2-D
                                                                                                  singular system described by Roesser models, Acta Automatica
       0.06
                                                                                                  Sinica, 32: 213-218, 2006.
       0.04                                                                                   [14] H. Xu and Y. Zou, H∞ control for 2-D singular delayed sys-
       0.02
                                                                                                  tems, International Journal of Systems Science, 42(4): 609-
                                                                                                  619, 2011.
          0
          0                                                                        0          [15] Y. Zou and H. Xu, Duality of 2-D singular systems of Roesser
                10                                                            10
                           20
                                                                                                  models, Journal of Control Theory and Applications, 5(1): 37-
                                                                        20
                                     30                       30                                  41, 2007.
                                               40   40
                                                                                              [16] T. Kaczorek, Two-dimensional linear systems. Berlin:
                                                                                                  Springer, 1985.
                     Fig. 2: State response for xv .                                          [17] X. Zhu and G. Yang, Jensen inequality approach to stabili-
                                                                                                  ty analysis of discrete-time systems with time-varying delay,
                                                                                                  American Control Conference, 2008. IEEE, 2008: 1644-1649.
                                                                                              [18] S. Ma, Z. Cheng and C. Zhang, Delay-dependent robust sta-
5   Conclusions
                                                                                                  bility and stabilisation for uncertain discrete singular systems
   This paper deals with the delay-dependent stability for 2-                                     with time-varying delays, IET Control Theory & Applications,
D singular systems with state-varying delay in Roesser mod-                                       1(4): 1086-1095, 2007.
el. We give the conditions of acceptability and causality of                                  [19] J. Lam and S. Xu, Robust control and ltering of singular
the systems. By constructing a 2-D Lyapunov function, a                                           systems. Springer-Verlag Berlin/Heidelberg, 2006.
sufcient delay-dependent condition is derived in terms of
linear matrix inequalities to guarantee stability of the 2-D
state-varying delayed singular systems. Numerical example
is provided to demonstrate the effectiveness of the proposed
method.
References
[1] C. Cai, W. Wang and Y. Zou, A Note on the Internal Stability
    for 2-D Singular Discrete Systems, Multidimensional Systems
    and Signal Processing, 15(2): 197-204, 2004.
[2] T. Kaczorek, The singular general model of 2D systems and
    its solution, Automatic Control, IEEE Transactions on, 33(11):
    1060-1061, 1988.
[3] T. Kaczorek, General response formula and minimum energy
    control for the general singular model of 2-D systems, Auto-
    matic Control, IEEE Transactions on, 35(4): 433-436, 1990.
[4] A. Karamancioglu and F. L. Lewis, Geometric theory for the
    singular Roesser model, Automatic Control, IEEE Transaction-
    s on, 37(6): 801-806, 1992.
[5] Y. Zou and S. L. Campbell, The jump behavior and stability
    analysis for 2-D singular systems, Multidimensional Systems
    and Signal Processing, 11(4): 339-358, 2000.
[6] W. Wang and Y. Zou, The detectability and observer design
    of 2-D singular systems, Circuits and Systems I: Fundamental
6079