0% found this document useful (0 votes)
28 views19 pages

3 Unit 3 Notes

The document discusses the Inverse Laplace Transform and its properties, including linearity and convolution. It provides various examples and methods for finding the inverse transform of given functions. Additionally, it touches on initial conditions and applications in differential equations.

Uploaded by

Mohammed Sadiq
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
28 views19 pages

3 Unit 3 Notes

The document discusses the Inverse Laplace Transform and its properties, including linearity and convolution. It provides various examples and methods for finding the inverse transform of given functions. Additionally, it touches on initial conditions and applications in differential equations.

Uploaded by

Mohammed Sadiq
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 19
"105 Jag = Tnverse LAPLACE TRANSFoR Mm SE _EARIACE _TRANSror wv “Le = FCA) then, p(t) the inverne (i) & Ws dendled by LL rca) . Linearity Pruspody : for) + bo] = al[reay]4 be fee] Opllace Trompos lin % 1 Taventt_Loplloce Thanipotorn S AsOme Aardond. puncson : g EG)=! DE (Bjgs)= Aina 5 Gale.) = einai a U(ck)= ot qe (sap) = Ainhab 5 ECL) = sinha a (ai): ¢ 3 Ge) = Bo (noua gq e( cosat Ly il wee) * re Ge “ a J (Be) = coshat “rind the inweue (oploceTangorm op, thu péllowing punctitin ) A c (2) ou at{ A] sal)=a J] HATE GAP 10K | = Hoy [pS ‘ chase See TE w+? + ott y 4° = 5 7 “RH TRO pte SEV + Sten g +505 “4 = “ds “| PA-> + HA-1g9], = a) ok 4 ee aa | nee : = pels | wey 1 = ue in aie) Fa fy = WE ae] + RET Wy ARR ~ aa ATH 3 A+ 8. p - 5 Ain (5 +18 Ainhat 3 I" ing m I> & 1 og 4 a TC SS i Pai) 2 UY xy = tet + Ainet = Los(syt 4b rin(2}t ~ Latha 1 + 6Ainh3t : 5) ey era APH16 Sosket + Aintph + sodas! ag) tla = afin Vv = LL Anlt 4 | Bate 4+ JA-50 AF TE ops - evo eS = (em | clang wy) - w [ae] *: #4 50L of] % oth(2 jt ee z POCA ~ 9 cothut + 6 Aint = A wothays - spiminly oe oo ae h Se ee ; 4 lat 7 ae + 38 Baal) basal ao et - 2c + 3? S ee a 2 |, gent Laplace Tondyonmn by COrmyplating the howe the paupesdy hak , Lepow! = F(A) ELem™ pty] = “phis impls woe F(A-0) eqs muthod ; es that ELF CAI] = pet) —-O ad e'[ra-a)] = & Ht) —@ © fe'fr(s-a] = o& cee vu " e'Lrtasaa] = Find the inverse lop J Ate Ry AHN comidan dinemindlon ; by complating A aces reathoo, AHA HIE EGP -HA EHH IB = (ARP 49 . rate G2 +4 Add & Aub 2 In Rumen 3 mY w&-ad+ee4+2 } G-2E49 ule F(A 7 su pots pce fay gee tea (4-29 Hew as2 and 4-274 ate if Ath = ee l a | See oy eo Ad Az ee. (ae + Hainst) MH (22h Sa ~ J Ate ARATE AS) AMG EAHE a (Pa ene)-14e = (Caentet te Age ek aml = yf GEeD-1+e 3) ! @-3y * [as] How a=3 and £34 t y Bt I eog 1 oe fo ed 4 2 eh i = ot tH { 2h go A i GND) ~ Be 4 Find the invoug 4 loplnce [radi totter sehen sre ie te tng bs Gut Sinai) az! and At 24 ete i arr at yf A ac ore Kai AH ee. ( cost + Aint) nv " n “J Atl AeBK+I e, At 3 SF | Gee a] Farr i case 4 2 [Goo] oy cfGeies 3 Cc @-n? = oe +2] at 4a we fee (14et) = ef (14et) +8 y AR ka 1 = A(At2)(A4S) + B(ALDAva IW EC Aa nave) eS pub A=-1 t= ACa42)(-43)+0+0 => [an Yo pub 5°35 te (arn Gave) es Vp lamas - eT] ef) +a bs) 2 Ain F bet net, ye P mano - ger Laat p= ACRE (BAI) KH) Wa ge la y ont = Gers) 5 G+) Rel ice sft je 4h! 4) af eT 4] 2 (actin * 2 [a] 2 [Ail + 3 Axl = pets +4 art 2 2 2 3 FA Ae 2 eee ee - (4-2) (A439 A-2 At3 (2) (4-2) qA= Acaes)™ pa A583 a(pys Ales a = Ws | pat 82-35 apg) 2c (872) exxply 8h 475 1 Sol -# e| 4] 3 : [a te }+8 os F Gy ap [ee 2s Lr essa : ei oh oe e+ Bete 4) 25 es 5S Az e met ett petty 25 25 is > Trvene Thariponm op Lagat om and inode renders cee Giver F(A), we nied +8 pind c ‘[pat] = 1® fe? yell: have. tht ae ey on “F) we pronedg tL. pe Faye | Cm jog (aa a yen FOAY 109(4 ) fy. eval = tiple) (a sbog (4~ -a)- ~ Log (4 b) 7 asp) pnt 4 § mutiny pith G1) on b-S . . \ fe! AA oa ae es) co te _ -F A) ay Tare i oo wa(erta = ML da a] pee) = ee ptt) = @ -& a ftuy= t"(%) Rapp nb Ag xW by Gi) Rove oe way oO. 4 on bs, A) = fa FMA) = oe k FAY = an 4A> ard 2 FMA) aw a ofr] = cf fo. ty) = pinot pin = inate *E 7 eS SES 2 RR — Ayo? ay (485) shan? F(A = toy (448 ) 2 HAY = bag (A740?) ~ Lag( 4b?) App wort 4 “p= PAL PA FMA ts aR EAS Bs Fay ae = yo? =f 8 Bs [-Fva] = ey Hy - £2] wp) = Ratbt = 2usab ao > twee Joplace Thaniporm a aed Bb Lote l= F(A) zp ULptey] = Fla) then L[ Spade] x 2 PLEO] = (y0.at eT EO] = Si cf ecy] a =, FA) A > Trarapoum ep th ee ! I Zl af 724 oo ie at “| 2] = f ae ott “(aia]= fel ae! = fee a clark 4 +f % fin3t ok | aes 2 aa), ae ia, fe (ete ot) - 0+ ae H _ aa a 5 et betoverg pends a 4 [ese]? zo = cl [us 3t - cso) q = aa -1] =, Lawoist q 3) t A(AMH) + oof 1.) ok Tae) ae ce J - s wept ot + = -caret | = pe = = 1 fot ia i Th : Us F(4) Unit dtep Function in Invest ; xp eters FO) then EL (a) ult-ad ds, & L = efetra] iz pitrou lea) snd ha Dot eplos Worgorn ah the polewing. parton: 4 ele em (Aa fer] borer gray] = 5) vf 4 |= trae = po) ! Rae h wehoue, fe ear] = plt-a)ult-a) fe"s(Ara)} = p(t )uce-rr) = o9s[3-w)] ule-m) = osf- (arr-3t)] ut) = w0h(3rr-3t) (4-11) = -M3btult-m) |! ENCrUv]= 5) +2 os ce! Hy (Aa, soe [Aa] + [Fae] = COLRE + Ainat = f tL) whey iofcok pray Te p(t-a)ult-a) clea ye p(t-aT)u(t-er) Aerh h (corece-am) + ina (t-21)} ult-en) [-cos(urr-at) —Ain(urr-ay)) ult-2r) [cot(urr-2t) —Ain(urrat)] ult) [unet +Ainet] ult-eir) " 3 [Se] Feeley 9 FL] 10 How a=! and At 74 ~ bel 7 “ls a] 2 € £ = ple) efe* = Ree". - wlt-3) 2 } = [Fe] way " X > Convolution : 8 tuition, ¥ s Th HA ond aft) ave woo partion’ d eh kash i _ 4 and g(t) u Brora 'y page on para gt) = fy m wg tt aude wo > Cenvetudion Theorem + ay e'[roo] = pee) ond E c'fren-6(4)) = SL pngeen fearl=g then, oe rBllurns 2 oxprosed a yO sas ae = Wenki J The given pundtion i (4) and GCA) weidepme ELECANI= Ct) and EMfo 1=g%) al we only the easton Taser era of the form L'fr(a)- 64 = Ly (w) gta) de 3 Evoluode the conveldtion integral +o olstrin the spat {Ne - oad Heng “the orutbibion, Thastene 7 ange % mee pobloing i he 4 ' AAP +08) td FU)e L ord GlA= a Ae c'[Ftay] = ely] c'foray] = ct vee| = r= p(t) = Anak = 9 tt) r clos [5 ft) get-w) di (a0?) [stn] * £ 1. nate) dae ssn ass | et web F(AY= and GCA) = wa Arta? eletal= E'fotgge] = “ath = 6) witocnd = © yee] * senor = gft) any Larwdlution thesar, i OL EL ey] «J Spe Meee ae we Ainh fon = L[ us8(A-8) -wilarsy] a nf fort os) — | cos (at) | du uso a “Ut : ko ty Dok | Aan (Qos ~ ok) cat | RO ° so a Ainok jutat? — (a -9)| Ro? Ro sta ant | 2a Ainak — cia 3) _4 Maayan) het F(AY = and 6(4) = a A743? rf e*Crra)] = [tel s oat =) i int = g (4) etecat= eft ]s «“t g 4 “ [eacesn = { coygu. #in(eu) du Med esta. 4inB = 1 [Ain(Ae) ~rin(-8) } Butlt-uy Sutt—u ps = }f [in (aust) ~ vin(uu-t) } ebu Cok 2) sea i : 2 Zz = 1 mae : Zone = 4 [ ~oisty osat _ [ott + cout 2 2 2 He z | sa a ‘ 2 — Eon e +f eRh + = a = A] ust — iat LL att cosse) | ue Thanporms of the Desavativer . we dosive on oniphention we Kyi] and hence eluece Hh oxphenion poh Hyer] Aas fy], purthan , we wie the prerciple Mathumnatical Trduction+- ettobtigh "the povult por Hye. ct De, = cools rlyeel = ie rat y(t) Sues ufeffuda | oe kt ah ~ Fytey. ot ¢- : sgorky wo]. fs ota) dt 2 fo-tyeo)] vafe ot yte) th -ylo) FALL wl [yt] = i{tyiaal'4 eS ALL ye) ] - yo) fA ALlyay] + yloyh yo) Ga: ately ly] ~Ayle).- y'0)|—-® 7 ily") = Axlyle)] ~ Ayo) - 49 (0) -y"Co) ~®@ Tn gensral, ! a Lyn] = AP LLy lt] - 4" aes Ayila)--~ 9“ No) > Aplition 84 LOE wang Loplace Thanijonm m_[ Initial ving Rue: dep: The iver dijpourtial cyan i onpvusscd in the ntdlien yi» yt) yh) jor the dasivaives. Sipe: We take fapilace Thana{onm On both Jide of the given Alps: We ue the exphenion for ily] , yo] and 49 6% Ake + dubatiteb the given initial conditiom & imply +0 Obtain Lye] fe pundion %p A" Z ep S + we Wind the invowe 16 plitain y Ct - Rrdblema + dato yrs yy'a ay = 0 unde the conditions gl)=% Yo) <, : by ey) tahoe THON Om given OF us eepeuned. in yh Ge) ey) + By(t)=0 : : TTaktng Lapdace Tranyyoten on bs HLyney] + wily co] 4 aily)] = ilo) ArLy(t)] - AYylo -yilo)+ wf arlyct] ~ycoly +3LLylt)] =o | Aubytitule y@) rs) tondation $e above egiun A aking the initial Landakions, ist obtain : ALlylty] LK) —) ¥ yaely ced ~ (0) + 3LLyl] = 0 yer { At thé 434 =P = Ef 1? * lead By completing Aquose method , ALEK E BLS (tbs Hole +3 = Gr2F-5 m8 aa | TE is in the fotm * 2 leave] = lea] 1 yl) = ee ey a" sro mfege Y= See UNa the cOndlitions J fe ung foplace THangyovm w(t) 4 ayltt) ay) = 6te* yeh aulyay] + yc) = elltet] gly] — Ayo) ~yleo) 4 pfArlyce ~yoy+ Hyco] ylol=o=y'loy - = 6hlet.t] ' “Les inthe porn Lem cay |= er cbt - pry) + 2aUyco] + a = Gels) RNS ztyter {Aaeaery = ar eile t] 5 (=+ 3 Ly 7ebey | oi | ll rab = by . GHY (A24244 1) -ipaui) = i: (5 ] Be ont mot : Att = [ seerten | ee (44)? 7 “| =| La HOw a=) AN PS = 6e* ef) é ae r = 6%. 43 3) = ety if 2 a ae 7 way + hy = with, yo) =Os i ys wy) wy Ct) = ot My] ay KLy Cel] A atl ww) = Ke) Ue 4 fy] q wf aL laced] ~ylod} th ily) = ‘ie J ~ Ayle) -y!Co) kegel. ALi) + ysely ced) +ulyor= Cle) by se ay o¥® Liye ys ey ¢ a tee yh) = a ! Genin cen Pearl le Gry? (AH) -L GH) (at2)?-4 \ ; Sr = A a 2B c Galant ~ 2 ae “Gene P= AlAt2)? 4 BC AW (442) ¢ clan) Raeta c2ey see cwoepy 4? I aC ; @=1te!. | ors hose] 7 = _« EF _ : ae ~ itt 3 | gamer o elas! _ | ft] S fate] o:e* a ott _ ite et -8* [144]

You might also like