0 ratings 0% found this document useful (0 votes) 28 views 19 pages 3 Unit 3 Notes
The document discusses the Inverse Laplace Transform and its properties, including linearity and convolution. It provides various examples and methods for finding the inverse transform of given functions. Additionally, it touches on initial conditions and applications in differential equations.
AI-enhanced title and description
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
Save 3 unit 3 notes For Later "105 Jag =
Tnverse LAPLACE TRANSFoR Mm
SE _EARIACE _TRANSror wv
“Le = FCA) then, p(t) the inverne
(i) & Ws dendled by LL rca)
. Linearity Pruspody :
for) + bo] = al[reay]4 be fee]
Opllace Trompos lin %
1 Taventt_Loplloce Thanipotorn S AsOme Aardond. puncson :
g EG)=! DE (Bjgs)= Aina 5 Gale.) = einai
a U(ck)= ot qe (sap) = Ainhab 5 ECL) = sinha
a (ai): ¢ 3 Ge) = Bo (noua
gq e( cosat Ly
il wee) * re Ge “ a
J (Be) = coshat
“rind the inweue (oploceTangorm op, thu péllowing punctitin
)
A
c (2) ou at{ A] sal)=a
J] HATE GAP 10K |
= Hoy [pS ‘
chase See TE w+? + ott y 4°
= 5 7 “RH TRO pte
SEV + Sten g +505 “4
= “ds“| PA-> + HA-1g9], =
a) ok 4 ee aa |
nee : = pels |
wey 1 = ue in aie) Fa
fy
= WE ae] + RET
Wy ARR ~ aa
ATH 3
A+ 8.
p - 5 Ain (5
+18 Ainhat
3
I"
ing
m
I>
&
1
og
4
a
TC
SS
i
Pai)
2
UY xy
= tet + Ainet = Los(syt 4b rin(2}t ~ Latha
1 + 6Ainh3t :
5) ey era
APH16
Sosket + Aintph
+
sodas! ag) tla
= afin
Vv
= LL Anlt
4 | Bate 4+ JA-50
AF TE
ops - evo eS =
(em | clang wy) - w [ae] *: #4 50L of]
% oth(2 jt ee z POCA ~ 9 cothut + 6 Aint
= A wothays - spiminly oe oo ae hSe ee ;
4 lat 7 ae + 38
Baal) basal ao
et - 2c + 3?
S
ee a
2
|, gent Laplace Tondyonmn by COrmyplating the
howe the paupesdy hak ,
Lepow! = F(A)
ELem™ pty] =
“phis impls
woe
F(A-0)
eqs muthod ;
es that ELF CAI] = pet) —-O
ad e'[ra-a)] = & Ht) —@
© fe'fr(s-a] = o& cee
vu
" e'Lrtasaa] =
Find the inverse lop
J Ate
Ry AHN
comidan dinemindlon ;
by complating A aces reathoo,
AHA HIE
EGP -HA EHH IB
= (ARP 49
. rate
G2 +4
Add & Aub 2 In Rumen
3 mY w&-ad+ee4+2 }
G-2E49
ule F(A 7
su pots pce
fay gee tea
(4-29
Hew as2 and 4-274
ate if Ath
= ee
l a |
See oy eo
Ad Az
ee. (ae + Hainst)MH (22h
Sa
~
J Ate
ARATE
AS)
AMG EAHE
a (Pa ene)-14e
= (Caentet
te Age
ek aml
= yf GEeD-1+e
3) !
@-3y
* [as]
How a=3 and £34
t y Bt
I eog 1 oe
fo ed
4
2 eh
i
= ot tH
{ 2h
go A
i GND) ~ Be
4 Find the invoug 4 loplnce
[radi totter sehen
sre ie te tng bs
Gut
Sinai)
az! and At 24
ete i arr
at yf A ac
ore Kai AH
ee. ( cost + Aint)
nv
"
n
“J Atl
AeBK+I
e, At 3
SF | Gee a]
Farr
i case 4
2 [Goo] oy cfGeies
3 Cc @-n?
= oe +2] at
4a we
fee (14et) = ef (14et)
+8 y
AR ka
1 = A(At2)(A4S) + B(ALDAva IW EC Aa nave) eS
pub A=-1
t= ACa42)(-43)+0+0 => [an Yopub 5°35 te (arn Gave)
es Vp
lamas - eT] ef) +a bs)
2 Ain
F bet net, ye
P mano - ger Laat
p= ACRE (BAI) KH)
Wa ge la
y ont =
Gers) 5 G+) Rel ice
sft je 4h! 4) af eT 4]
2 (actin * 2 [a] 2 [Ail + 3 Axl
= pets +4 art
2 2 23 FA Ae 2
eee ee -
(4-2) (A439 A-2 At3 (2)
(4-2)
qA= Acaes)™
pa A583 a(pys Ales a
= Ws |
pat 82-35 apg) 2c (872)
exxply 8h 475
1 Sol -# e| 4] 3 : [a te }+8 os F Gy
ap [ee 2s
Lr essa
:
ei oh oe e+ Bete 4)
25 es 5S Az
e met ett petty
25 25 is
> Trvene Thariponm op Lagat om and inode
renders cee
Giver F(A), we nied +8 pind c ‘[pat] = 1® fe? yell:
have. tht ae ey on “F)
we pronedg tL. pe Faye | Cmjog (aa a
yen FOAY 109(4 )
fy. eval = tiple)
(a sbog (4~ -a)- ~ Log (4 b)
7 asp) pnt 4 § mutiny pith G1) on b-S
. . \ fe!
AA oa ae
es) co te _
-F A) ay Tare
i oo
wa(erta = ML da a]
pee) = ee
ptt) = @ -&
a
ftuy= t"(%)
Rapp nb Ag xW by Gi)
Rove oe
way oO.
4
on bs,
A) = fa
FMA) = oe k
FAY =
an 4A>
ard 2
FMA) aw a
ofr] = cf fo.
ty) = pinot
pin = inate
*E7 eS SES 2 RR —
Ayo?
ay (485)
shan?
F(A = toy (448 )
2
HAY = bag (A740?) ~ Lag( 4b?)
App wort 4
“p= PAL PA
FMA ts aR
EAS Bs
Fay ae = yo?
=f 8 Bs
[-Fva] = ey Hy - £2]
wp) = Ratbt = 2usab
ao
> twee Joplace Thaniporm a aed Bb Lote l= F(A)
zp ULptey] = Fla) then L[ Spade] x 2
PLEO] = (y0.at
eT EO] = Si cf ecy] a
=, FA)
A> Trarapoum ep th
ee
!
I Zl
af 724
oo
ie at
“| 2] = f ae
ott
“(aia]= fel ae!
= fee a
clark 4
+f % fin3t ok |
aes
2 aa),
ae ia, fe
(ete ot) - 0+
ae
H
_ aa a
5
et betoverg pends
a 4 [ese]?
zo
= cl [us 3t - cso)
q
= aa -1]
=, Lawoist
q3) t
A(AMH) + oof 1.) ok
Tae) ae
ce J
- s wept ot
+
= -caret |
= pe =
= 1 fot ia
i
Th :
Us F(4)
Unit dtep Function in Invest ;
xp eters FO) then EL (a) ult-ad ds, & L
= efetra] iz pitrou lea)
snd ha Dot eplos Worgorn ah the polewing. parton:
4 ele em (Aa fer]
borer gray] = 5)
vf 4 |= trae = po) !
Rae
h
wehoue, fe ear] = plt-a)ult-a)
fe"s(Ara)} = p(t )uce-rr)
= o9s[3-w)] ule-m)
= osf- (arr-3t)] ut)
= w0h(3rr-3t) (4-11)
= -M3btult-m) |!ENCrUv]= 5)
+2 os ce!
Hy (Aa, soe [Aa] + [Fae] = COLRE + Ainat = f tL)
whey iofcok pray Te p(t-a)ult-a)
clea ye p(t-aT)u(t-er)
Aerh
h
(corece-am) + ina (t-21)} ult-en)
[-cos(urr-at) —Ain(urr-ay)) ult-2r)
[cot(urr-2t) —Ain(urrat)] ult)
[unet +Ainet] ult-eir)
"
3 [Se] Feeley 9 FL] 10
How a=! and At 74
~ bel 7 “ls a]
2 € £ = ple)
efe* = Ree". - wlt-3)
2 }
= [Fe] way"
X
> Convolution : 8 tuition, ¥ s
Th HA ond aft) ave woo partion’ d eh kash i _ 4
and g(t) u Brora 'y page on
para gt) = fy m wg tt aude
wo
> Cenvetudion Theorem +
ay e'[roo] = pee) ond E
c'fren-6(4)) = SL pngeen
fearl=g then,
oe rBllurns 2
oxprosed a yO sas ae
= Wenki
J The given pundtion i
(4) and GCA)
weidepme ELECANI= Ct) and EMfo 1=g%)
al we only the easton Taser era of the form
L'fr(a)- 64 = Ly (w) gta) de
3 Evoluode the conveldtion integral +o olstrin the spat
{Ne -
oad Heng “the orutbibion, Thastene 7
ange % mee pobloing i he
4 '
AAP +08)
td FU)e L ord GlA=
a Ae
c'[Ftay] = ely] c'foray] = ct vee|
= r= p(t) = Anak = 9 tt)r clos [5 ft) get-w) di
(a0?)
[stn] * £ 1. nate) dae
ssn ass
| et
web F(AY= and GCA) =
wa Arta?
eletal= E'fotgge] = “ath = 6)
witocnd = © yee] * senor = gft)
any Larwdlution thesar,
i OL
EL ey] «J Spe Meee ae
we
Ainh fon = L[ us8(A-8) -wilarsy]
a nf fort os) — | cos (at) | du
uso
a
“Ut
: ko ty
Dok | Aan (Qos ~ ok) cat |
RO °
so a Ainok jutat? — (a -9)|
Ro? Ro
sta ant |
2a
Ainak —
cia3) _4
Maayan)
het F(AY = and 6(4) = a
A743? rf
e*Crra)] = [tel s oat =)
i int = g (4)
etecat= eft ]s «“t g
4
“ [eacesn = { coygu. #in(eu) du
Med
esta. 4inB = 1 [Ain(Ae) ~rin(-8) }
Butlt-uy
Sutt—u
ps
= }f [in (aust) ~ vin(uu-t) } ebu Cok
2) sea
i :
2 Zz = 1 mae
: Zone
= 4 [ ~oisty osat _ [ott + cout 2
2 2 He z | sa a
‘ 2 — Eon
e +f eRh + = a
= A] ust — iat
LL att cosse) |
ue Thanporms of the Desavativer .
we dosive on oniphention we Kyi] and hence eluece Hh
oxphenion poh Hyer] Aas fy],
purthan , we wie the prerciple Mathumnatical Trduction+-
ettobtigh "the povult por Hye.
ct De,=
cools rlyeel = ie rat y(t) Sues ufeffuda |
oe kt ah ~ Fytey. ot ¢- :
sgorky wo]. fs ota) dt
2 fo-tyeo)] vafe ot yte) th
-ylo) FALL wl
[yt] = i{tyiaal'4
eS ALL ye) ] - yo)
fA ALlyay] + yloyh yo)
Ga: ately ly] ~Ayle).- y'0)|—-®
7 ily") = Axlyle)] ~ Ayo) - 49 (0) -y"Co) ~®@
Tn gensral, ! a
Lyn] = AP LLy lt] - 4" aes Ayila)--~ 9“ No)
> Aplition 84 LOE wang Loplace Thanijonm m_[ Initial
ving Rue:
dep: The iver dijpourtial cyan i onpvusscd in the ntdlien
yi» yt) yh) jor the dasivaives.
Sipe: We take fapilace Thana{onm On both Jide of the given
Alps: We ue the exphenion for ily] , yo] and 49 6%
Ake + dubatiteb the given initial conditiom & imply +0
Obtain Lye] fe
pundion %p A" Zep S + we Wind the invowe 16 plitain y Ct -
Rrdblema +
dato yrs yy'a ay = 0 unde the conditions gl)=% Yo) <,
: by ey) tahoe THON Om given OF us eepeuned. in
yh Ge) ey) + By(t)=0 : :
TTaktng Lapdace Tranyyoten on bs
HLyney] + wily co] 4 aily)] = ilo)
ArLy(t)] - AYylo -yilo)+ wf arlyct] ~ycoly +3LLylt)] =o
| Aubytitule y@) rs) tondation $e above egiun
A aking the initial Landakions, ist obtain :
ALlylty] LK) —) ¥ yaely ced ~ (0) + 3LLyl] = 0
yer { At thé 434 =P
= Ef
1? * lead
By completing Aquose method ,
ALEK E BLS (tbs Hole +3
= Gr2F-5
m8 aa |
TE is in the fotm * 2 leave] = lea]
1 yl) = ee ey a" sromfege Y= See UNa the cOndlitions
J fe ung foplace THangyovm
w(t) 4 ayltt) ay) = 6te*
yeh aulyay] + yc) = elltet]
gly] — Ayo) ~yleo) 4 pfArlyce ~yoy+ Hyco]
ylol=o=y'loy -
= 6hlet.t]
' “Les inthe porn
Lem cay |= er
cbt -
pry) + 2aUyco] + a = Gels)
RNS
ztyter {Aaeaery =
ar eile t]
5 (=+ 3 Ly 7ebey
| oi | ll rab = by
. GHY (A24244 1) -ipaui) = i: (5 ]
Be ont mot : Att
= [ seerten | ee
(44)?
7 “| =|
La
HOw a=) AN PS
= 6e* ef) é
ae r
= 6%. 43
3)
= etyif
2 a
ae 7 way + hy =
with, yo) =Os i
ys wy) wy Ct) = ot
My] ay KLy Cel] A atl ww) = Ke) Ue
4 fy] q wf aL laced] ~ylod} th ily) = ‘ie J
~ Ayle) -y!Co)
kegel. ALi) + ysely ced) +ulyor= Cle)
by se ay o¥®
Liye ys ey
¢ a tee
yh) = a !
Genin cen
Pearl le
Gry? (AH) -L GH) (at2)?-4
\ ;
Sr = A a 2B c
Galant ~ 2 ae “Gene
P= AlAt2)? 4 BC AW (442) ¢ clan)
Raeta c2ey see
cwoepy 4?
I aC ;
@=1te!. |
ors hose]7 = _« EF _
: ae ~ itt
3 | gamer o elas! _ | ft] S fate]
o:e* a ott _ ite
et -8* [144]