Ex1: Calculate the ultimate moment capacity for𝑛 the given beam.
𝜙𝑀
fc' = 25 mPa
fy= 400 mPa
Es= 200000 mPa
Strain Stress
D= 600 mm 𝐸𝑠 200000
d= 550 mm 𝑛= = = 9
𝐸𝑐 4700 25
b= 300 mm
𝜋
Ast= 3 Y 20 ⇒ 𝐴𝑠𝑡 = 3𝑥 202 = 942.8 mm²
4
𝛽1 = 0.85 17 ≤ 𝑓𝑐 ′ ≤ 28 ⇒ 𝛽1 = 0.85
𝐴𝑠𝑡 942.8
𝜌= = = 0.0057
𝑏𝑑 300𝑥550
𝑓𝑐 ′ 600
𝜌𝑚𝑎𝑥/𝑑𝑢𝑐𝑡𝑖𝑙𝑒 = 0.75(0.85 𝛽1 )
𝑓𝑦 600 + 𝑓𝑠𝑦
25 600
𝜌𝑚𝑎𝑥 = 0.75 0.85 𝑥0.85𝑥 = 0.0203
400 600 + 400
0.25 𝑓𝑐′ 1.4 1.4
𝜌𝑚𝑖𝑛 = ≥ ⇒ 0.0031 ≥ = 0.0035
𝑓𝑦 𝑓𝑦 400
Pmin ≤ P ≤ Pmax => Section is under reinforced (Ductile)
From equilibrium : C=T
′
0.85 𝑓𝑐 𝛽1 𝑐 𝑏 = 𝐴𝑠𝑡 𝑓𝑠𝑦 𝑎 = 𝛽1 𝑐 𝑐 = 𝑘𝑑
𝐴𝑠𝑡 𝑓𝑠𝑦 𝜌 𝑏𝑑 𝑓𝑠𝑦
𝑘= =
0.85 𝑓𝑐 ′ 𝛽1 𝑑 𝑏 0.85 𝑓𝑐 ′ 𝛽1 𝑑 𝑏
𝜌 𝑓𝑠𝑦 0.0057𝑥400
⇒ 𝑘= = 0.126
0.85 𝑓𝑐 ′ 𝛽1 0.85𝑥25𝑥0.85
𝑓 𝛽
𝛽1 𝑘𝑑
𝑀𝑛 = 𝑇𝑗𝑑 = 𝐶𝑗𝑑 = 𝐴𝑠𝑡 𝑓𝑠𝑦 𝑑 −
2
𝛽1 𝑘𝑑
Or 𝑀𝑛 = 0.85𝑓𝑐 ′ 𝛽1 𝑘𝑑 𝑏 𝑑 −
2
0.126𝑥0.85𝑥550
𝑀𝑛 = 942.8𝑥400𝑥 550 − 10−6 = 196.3 kN.m
2
𝑀𝑢 = 𝜙𝑀𝑛 = 0.9𝑀𝑛 = 0.9𝑥 194.3 = 176.67 kN.m
A) If 𝜌 < 𝜌𝑚𝑖𝑛 ⇒ 𝑈𝑠𝑒 𝑃𝑚𝑖𝑛
0.25 𝑓𝑐′ 1.4 𝐴𝑠𝑡
𝜌𝑚𝑖𝑛 = ≥ = ⇒ 𝐴𝑠𝑡 = 𝜌𝑚𝑖𝑛 𝑏𝑑
𝑓𝑦 𝑓𝑦 𝑏𝑑