0% found this document useful (0 votes)
9 views26 pages

Field Theory

The document discusses various concepts in ring theory, including definitions of rings, ideals, homomorphisms, and properties of commutative rings. It covers topics such as maximal and prime ideals, local rings, and the structure of fields and integral domains. Additionally, it introduces Zorn's lemma and its implications for the existence of maximal ideals in rings.

Uploaded by

Rahad
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
9 views26 pages

Field Theory

The document discusses various concepts in ring theory, including definitions of rings, ideals, homomorphisms, and properties of commutative rings. It covers topics such as maximal and prime ideals, local rings, and the structure of fields and integral domains. Additionally, it introduces Zorn's lemma and its implications for the existence of maximal ideals in rings.

Uploaded by

Rahad
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 26
Corarau tative Algebreo. & Padigels (2.0128 Bak- yw Atiyo ‘ sk : FED a. Lee-o2 9- 0125 DeLeon’ A me Aw a oat with quo bina Hera achons called addi and rnoltiplication euch thot _ DR ie an adddive abelian QreeP « @O Molkileation is osociatve and dish bulive. overc addition . @Ouge yr, La all my eR ond have an idenditey element denoted by 4.5 ® here exists -1€R sech Phat AM Ape %, lon oll uER. _Dellinalion Led Rand BR be due reings . A mapping fig — R' is colled 9 ring hemomor phism i O Plary) = fos FE) ® t(4y) - Low Pes) | Ofoye a. - - _defnadion tA subset ofa rung Bris a, subring ob R ifs S 6 closed wdert addition and. multiplication and contains the idendily element of R QB camscanner TA The ashy nag of a R. iss then a reing homoman phism ‘ TP PL po RO) Bs RE R” one ring hamornoripism Then 60 \s reine “compositn Ses ip R DeRaolian “s Let R hevasreing: and: be @ scdsel- eee Then I is called an ideol of! rg if OL on’ additive: subgrcovp of. R,. O fon everty ie] and reeR) such that Wee I and otiet Definolion > Let 1 ve an ideal of a range Ri ‘Let ; Al she family. of! aosets of! Timer Le, oc -Vort rae ry. Define addition and molfiglzeadion eS follows O(a+1) +(o42) = (a+b)+ 2. ; and @ (ast) Pen ae -obt+ I. “Tren me is ue aca hence these eas . Cpercocion . his ring cS eolled a’ esseb th 4 he, RI GT. (59 CamScanner souueaguiny EY (Bm ANW - quotient | residue class ring. BA A. mapping @s — which maps each HER to ite cose x4T isa eurtyective| (orto) ring Faia on epimorephism - : Inte _jeoe-03 _ . a 40-01-25 Zeno. divisor. A zerts divisore . isa rang | Ais an element eA uch thot these exists _ eA , 340 with ry =0. relratan § A commuletive rang with 1 is’ called an’ inte. } has nd zeno divisores except 0 - af sal domain if Debnotion 3 fn element xin A is called ripaleh n= 0 fon some positive ntegert n - potent element is a Zeno aso (unless Aza) but not eonvertsely gener! i ‘ i} in A‘ \s an ' element “ER ueh Lhe with xy =e4- m oO enolliplicative odelian grag le clement ‘is called “Del nikon.» ‘A uni thene pene eviels 4e¢A ~ FEI the unils-in A fore Debnatim + An An ideal generaded ‘ty a sing “av principle cea, Ite generated be Lo, sauvage Ey JZ eA Wd diers J 2Z-A0,42,24,-°°7 Dellnation 8 An ideat Pp ino rang fie ealled pre’ iP PeA ond if ayep =) either WEP are dep. , Debnalion s An ideal Mino Teing A is called maxim ex Pome A land if) there is no! deal Tin A sie het MCICA. THO P is. prime te» AL is an inkegerall domain. OM is marina iff A is a field. BH Precblem § Every marimal. ideal is prime bt a Prime ideal need. nat be maxemal - SN) Let Mibena vpood.mal ideal ina rein A, “Then Ay wa field we Enews shat "eve rty Bet 15 oy integral domarn , therefore A is an integral domain and hepce M i prome. , r ret A=ZI*)] ond peru , the ideat genercor® by 4. Then A = Z. inte Zits an integral donain bt ol a Pete Thee Pre op is preine bt not -marxtmal . soumogume> RY Defnation 3 A ring A is called a fold if ® A. is eommulafive , . O A Nov on identity element and ® Every ‘non Zeto element ph is ‘umike! _deReatin ! A” rung is said “to be ckew- fleld v ils monzero elements foam a qrcoup under wnulliplication LA feld is a commulative division fing Reoposition 1-2 / Let A ve a rung #0. Then the. following. -ace equivalent 1 - O fis ao fetd.; ilself ; @ “he oly ideals in A ace 0 and A ® Every homomorcp ism of A into @ nonzerto rig woe Al is ingeetive. ie. one-one: Prroed 4 Finst we show thet WORDS Let “TO be an ideal, in: A. Then I cintains o nonzero element. % euch that % is unit and hee LRDO=A. Ths wnplles T- AY Neat, we have to chow that ODO: le Q1A— Al be % rein g hernomortphis Ther kotp@ an deck ¢ A ond herve &% @ kor = 0 Le, @ jis ingective souuogeme Ey Finally ,we have to show that @) = @ : Let x be an clement | of A. which is nob unit Then Loy: = A and hence A. =f is rot the. eto, ring. Leb GL ASA be Ine. natural homomorphism of andy Alecuith vera)» Oy hypolhesis + @ ts ingeclive , hence eny 9 Lie. since og. Now applying Zorin's lemma’, we chow’ that every chain in, 3, has an uppert bound in SZ 3 leh then {ley be chain ideal In Sj So Vhat--fore each wiih of indices PB, © we have. wither Ie Ty om Tee bet Tx Udo We TPS the least upre somos) FRY Z Defrotin 3 A ring A with, exaetly oe ond of Atay. Then J is an ideot of A ond 144 Sine Ja FA fn all w . So TE Z. Hence by Zorn's lemma S has a maxima), element. Corcellarcy 44. Te THA an ‘deal of A, there existe a maramal ’ ideal of A contedning LT. Pecoef SWe Know that every ring A +0 has ot least one mnardimal ideal i. Now appl ying this theorem do Bs Lek M! bev the masimal ideal in ft L ideal ™ of A such that Then om’e St fon some deol in A cobain. io o mardimal i TCM. Hence M ing Gorrallarcy 1.6. Every nor-unit of A ts contained . in & monimal ideal « ; ' Preaof! Let be % non-unit in A and lef f=oo. We prow shat if TEA is an, ideal A, there ericke a. mardmal. ideal of A containing I. Clearly» o is contained in M. . : marcivna| Wy , we have, VEU)» say =z, Pore some zeA, so that yze(ny and 4 ¢™). ene 2 & (x) ond go eetn fr some FEA: (s4-1) = 0 | Ginee 10, therefre He don he. MW so (4s= A. We-120 2) yea. Henee (xj) is mondmo) + Debnation + “The set N of all nilpotent elements ina rang A is an ideal of A and. te has no nilpotent element except id: This, ideal nN is called tre’ ailnedi weal? of in ; Preoposilion 1.3 } The cet Ny oP ial spend element ino Ting A ison ideal ‘and fe has no, ndn-zerta nilpotent. Secoof! s TP KEN, leary aE fin oll GEA. Let myer WN. “Then w= 0 > 920 fon some Myo, nyo. 85 pall theonemn , flty yr! ie a wme of in. tow 2S mubliple of prodvels Tus, whete retse ment» We cannot have both rem and san, have each o these preoduets vattishes ‘ond trere bre haa oy 5 44 EN and sauvage ERY drertelne No ts on) ideal. nega Re ns be -given by een rf X is’ nilpotent) “then 3%EN, fn some n Thus yen * ond, Pie ARYAN Sty ef 1 ako, POS $0 ("= 0, Or some kyo. vs WN sQ and so HEN. , Henee , JK =eN 4 the zero element of A and hene & A hos. no snore zorta "element . Lee-oc_° | ' 0-09-20 Qipao A® —the nilradrcod of Ais the intersection of alt pretine ; ideals of A. Proof. Ld N be the ailgadicows) of ands Ni denote the inlertseetion of) oll pretme ideals d Pre Wt eA w nilpotent ond P is a prime ideo »| thea f"20, dure some n'>0, “Yienee PrelP icine, pis prame Herre) PEN’. Thertesoree NEN. Conversely suppase that is no nilptent . Leb 2 be re set of all ideals 1 with property thak nyo DIET. Ron SF is not empl sinee 062. Sine TES, Doane lemma be applied to the'celZ, ordered 44 nelusion and theredne Zs han & maraimal element P (say) = : ft sauuvoguies ERY We chad show thak.p is a praime . Let 4 EP. Then Pr dns , Pr LYy frilly aonbin © and sherefene , Preps ony, fre preys for Some paltive ‘sahegeres mn. T+ follows that fmt Ne pt myy. Hence the ideok Premys is nob me therteforte . SEP. Therefore pis prime , Henee we have a prime such that fe P \Thenefne £ & A’ Henve N' en. therelbrre Nen'. Dellrakn $ The xpeobson radical J ofa (org A is the intersection - of all ymardmal ideals of A. Proposition 1.9 3 let “EA. “Then HED Cd I-HAY tSaenid inh for au ye A esol; let xEAgT and ang isnol a wit, We ‘row’ that ever’ ‘non mit of A ts contatned ina maximal ‘ideal. Hence 4— xy belongs sto manuimo ideal Mol A, Qt 2xEJ eM, so ay eM and thus TEM, So thal MA‘ uhich is irpussible. Henge Jy ls amit. | | Conversely » lef xd y. Then EM) fr ame manimal ideal M. ‘Then pq and gerenade A. ; a Thus A=Meeny - souuvogwie FRY = where Lay is the ideak’ generated: by 8a deg we have qeu4 ay , tor come veM and some SEA. Thus a 9y =U OM, cy that ry y unit . q on Opercadions on ideals De nadton % Leb T and I be, to devo ideals of, oO ing A. Then T4+Jeo4 uty) ver, yedgy 15.07 ideoK ofp. and is called the som of t and J «It is the Smallest ideo ae T andig.s In general Avy, tye = 4% ve Og, paveltt sf GEE The interseetion of. any hy kay of ideals of Ai ideal of A je. Ade is an. ideal of A and this 5 the largest ideal of A whieh is worfetned in each Le. “_Lee- 07 | 7. josh jeopetacll “he oie of wo dele Tord, J of a ‘rong asl cet of all Anite ums iq a+ ip Sy tee ct etd tlie Ie Od, ude, dneT. FT te antler of A. Cheadly, Ia tng. sauvage FY 1 Similacly, we de-Bre the product TTe2,,.,2n for omy Anite of ideals 2y,J2,-+,. In TH The union UT: of tomo ideols Ty ond Ts, fla rang A is not in general an ideal , Tul, wan ideol of A C=) Iq £2, om T, < J. “Engle! 1 Ae Z,T=(m) > T=). Then 947 2th} > whore his dhe Weight earmmon Pachorr of m ard. TNT = Gly) vere ok Ae beast , eaenmen tiple of m and ns TI = (mo) > here mn i isthe preodyet of m ard 2. del To vdedbs add ogo a. Ng ‘A. are " enid ts be coprime ( or Co- movimal ) =f = (41). me hoe A Rohe T and J (eee copreime p= only if) therce ‘eraish EL’ and» Seg, such, ital sere “Problem, Tf 1 ands] ane Co-p gNdo= TI-5 teldgnetaun + . ; Presel : We Enows (a @. Se OL (143)(1Na) = VWireand Gare eo-prime, je. fon wel, gel such et wr ye 4. me, the prove thet, race! Ass Os Jauueagured, &S Le eermg-ay ibe’ (143) Gos). “2 4 e1 ” thende TAT ¢ ‘Out cleared ‘hae ah aie Therefre 107, ald > provided. +d > A=(4), so ee 08 teil soit 05-02-2625 rr Leb oh Aa, 27An be rings. Ther Gircec¥ presdvet A= = Thi te the oct of all sequences t= = (40243 95-9 %q) ve with we fi (azien) , ‘aed’ patitwise addition end multigitecdion . | A ‘iso auton wy with ‘denies element (1,1, 4 [oles 1) Def Rae map Pi PAL Ain given by P(e) =i exe called’ progeetions | wand » they! ane rag hamamnaphions _Def": Let be a ring and MT, 2a,u--y Pn be tdeals of fr. define a hormorephtson 03 aom(4,| by the role Qlx)= (an, nds yeh 4tSn) ; Eu0-Hrropo sition 1-10, ou te Jp are eo pretme, wheheven 4 B , the ah ite ae be [13> rose Pa7 souuvogwie Fy iff @ @ is urijective e> Ie ond Tp are ge-prine whenever 4 ? , @ @ is injective suppose that n= 2, “then N+h> A=0). We shall prove that 1. =10N , ° We have, (34h) Che) = (1: An)+ 1 (104) =2jty Leb? me NAL , then Jom e(14 42) (ints) => N-E NIy oD, tn cht: ‘ : Pegain ib is cleart, that. 1)In ef Of Hente “UI '= DAL, Wow, le nye and, the result be ave Br ‘Eb Lg jo - Ta-) and let a- it le a (ite 2s Gince Iet+In = A=U)..(4 Ea En-1) > WE have. equation , Met Sa=1, We Cle $e € Te and therebre We = I-4, = 4 (mod In} , dee en-sa- "Thys oh ne = IU (1-4) = J (mod tm) ol asl souuvogwue ERY . An A Henee! T+ = A and soe Tes gin = In, “ate Thus a Te = A Le, : set ate @ let @ s serge and <4 0. We shall Preove that ter Te =A: Sine @ is cungectiva,s 4 rere “exist “eA such that Plh= (onsiyortsy 2 5 » Atte, - 5, o+ Dn ) Hence 4-” € Le and ne t¢ (#46) it. Rey (med tx) and 2 =0.(md Ie) Ths DeU-W +n eter te Thenedore Tetfe = (4)= (hee Baa) Hence le ei cv “arte eapreime. . Convernely + Suppo sé Txr'omd Ipiorce Coprame, ‘co thot fe Qe A) Ameach 2 ond 2 ond LB. . Th: is enough to ghee that there ercists wen such Hak Pm) = (Tete tte, Ba) Since Ta tie =A, then there baths: Une ly. oad Vat e Ip _sveh or Untve 5.4 seuuwoguie FRY cate then ne (ve) 28 nd Let a TRY , then 4 i ke ( n “The Tt fae AT « ser asl \- , so 7 = (med ta) and also a 20 (ww tt)» yemen. vue) “Hence (n= Ty, Tere , atlas ‘| Leeoa So that’ @ “is curgectve . . ® Fiest suppose that 5. @ is injective + and Ie be of ideal of A... shen vou? = Ange) = Te J eA KL a4 Le =TeS a Lal vere gi = Anne AL, 5 cht, Letageh. tay et Hosa cae a Pre ote. ed tefl be an ideal of . ; 3 ' '=(@} Dewe on jo'dow thok @ 4s ingeative « le. Ferg=(. vel WE Are 1 det J uueasure) ERY ‘tey'wemt abe = =) Qtr) = Se oom de. korg =). Hence Q@ injeodive + Sagan. Let PPro, *- Pn be prime ideals and. Jet I be on ideot eonfeutned in Oe icthen SS Px ton geome 4. . wr@ ret hh jla,+.,In be jhe deols and P bea prime ideal cortaining (\Ie , Ther Peo te for some <> # pele ; Tren pete fore some Pen: O he reals! by saduetion. on Kn the Grom Té< qt is aontainly true, Lor nes. TP nva. and the mesult is true fie Ets then fn each <, there exh, Hee T ach Pot An 4 % whenevnn < ff, th fon ea cee We dB = fh sauuwoguie FRY dhrevgh RL: oot ythen Ne @ A fon a 4. dhe element! t. Consider / de my Mee ee. a (A meanr ot { omission od the term ) + We have > yell and I¢ Pe , 1eeem D there fire, is € Uk pthen Heme 4 DR ond az y ce font seme a, ” ! ah xe 3° Cuppos & pz Ta , fort Qe nee de gach Mt ate EP, , 1Ee EAM jreneBre The e7 Tt Ie. 2 0m . wt Tum ep since P prime » J p2 ht ; ant Henee exe. p.2 0% _ Here @ then pol Por gore oa : Finally , P PSA PEL and Hence pete for gome a» “ seuuwoguie FRY Def t Let T and J beideols of a reny t =Aneal xJetTy . Clearly (13) is on ideoA of A. Emencze ’ va O® relr:d) Oriayyer Ole: 3) te ) = C438) ) -(@x)#3) ® (Ar: :3) pete: a) @ (x: Ba) = (Feds) Prof: ‘ ' oO Le} WOL,. hen fn om ser , nyet, since. J is an ideal. hus wd ST aS’ a (tia) aed Renee y elt:a) © Let we (1:9) 3. “Then He Ab, $42 by ee. A dnbe Pre g0me ar, Aas ers Ore e(tia) and bi, day--- 7 DME d- Since af CCT ia), SETEN, then A the ideal quis tient of 2 and ad (1 witha) ofsg) souueogure) &S oavel 7 aid; =) nél- Henee (1:3)3 et. é} e4f7er ied my ae RUS oe Hen Wet nH 6d 1h Yi Some my d, NYO. - . m+n HIN man at figs. : then (ot % ) ig 2 ALOE where either ym ort AANA YN Ths ae ty @ RCT) y fn + 4 Also , nee bad rte Axy then 63 AW Yu nso, ’ (rey" eearctan ay ane 66 Hat nae as “there ne ptr) is an ident of a eng fi mthue wa eee drat | RCRCL)) is debined « Wend ae ghow hat RCR()) © ec) Since, reRu) , “RU eR(RU)) —o lel we RORC)) » ston E R(T) oe ome 170 and 0 (wm)? ¢€ L Qin some nd. Thus AMeT -) NE r(r) RR) oc R(T), iotoebone RCRUD)) = ‘acr) (P reed) ($9 CamScanner Let mu te RUD Her MED mE TD for Some myd, NYO. , ‘ = n Then (xu my" - 2" mg irre eT rn neo where either nym on wane “non, Ths M+ e RCI) : Also , me aad. © re ign nyo. “see moe" mre at ae spenefine R(T) is an sash of a ring A« ths we cee Hot RERCE)) is defined « News, we show that acrc)) = RY RCD) EAC REF) ), —O (1), Lon seme m70 then x” € 1, far som ay and so that Since, peru) , let we RCRCL)) » “Then HER and go (am)? EL in seme nO. Thus wer =) ne Ady RR) CS RUT), “herefone _RCRCI)) = Ret 1). ( preved.) ‘CamScanner x (G) Let %E Rd)’, “hen WE 10, “Bre some nog Since ITS TAT» Then we INI. Saer(rnd) Henee i R (13) ERCINT) » i) wertrng) sen WENN, fre some ny This implies UNMET cond | AED ya 4 , “Ly pr einer)" 1nd? wm € ROG) Me Rin Rr(a) e(r0a) J att) RCT): gauss < Rms) 2 RIN) NRG) yer (ry cand werd) and YET Finsme “Thus Let ye n(tidets) «Then 3 ; bs Ey M0; Pd. . oie ‘ : - eae ey g € 19 Hence = ver(tI) | Therce frre nas Rca) ‘ep (2d) Hence Hopes crs. pera Rid). ( preoved ) ($9 CamScanner @ rea» then Binee peg) as. Rll)=A (niger deal ring qo rm aE He neta = me eg catictece Conweresely $ l Hileolc if pie, Hen FERC)” g® syed. ond co RU) et Bch et.) but £ , Gort some'n70- D> ama yaz ,whece gers), 26RY > yer ond YP ET, “fon ‘seme W030, 0270. ny my tN; " ae wu Va) a Gey" . (642) s = ty f iia Ce , where athe mpm an mane- 7a ~ MERC IAD) CBcamscanner cHenee, p(.RU) + Rl@)) = Alisa) —@ From) BOD 5 rwe have, R(4a) = RCP wyancy) CD We vnow thet . 2 (13) RUA RIT) SREP) HRCPIARCP). = RU) Lene @ Aone evercy rdea P of A. % indvehin an n frve)> : Wwe hove » ROP") = RM Let me ACPM then ae RU) => 4" ep fon gome moo. If “mets ; “ken obiousl mepoo! ieee Tp : rp meen also nee cP i ALP") =P aut RCE) = PO SPs Hence R(p™) = P (59 CamScanner

You might also like