Assignment 1 New
Assignment 1 New
Figure 1: Caption
1
Step 2: Express V1 and V2 in terms of I1 and I2
From the first equation:
V1 = rπ I1 .
From the second:
V2
I2 = −gm V1 − ⇒ V2 = −ro I2 + gm V1 .
ro
Substitute V1 = rπ I1 :
V2 = −gm ro rπ I1 − ro I2 .
Thus " # " #" #
V1 rπ 0 I1
= .
V2 − gm ro rπ − ro I2
• z12 = 0: no direct dependence of base voltage on collector current in this simple model.
• z22 = −ro : output impedance at collector with base open (negative sign from current
convention).
1.2 h-parameters
2
I1
I2
B h11 C
+ +
h21 I1
V1 +
- h22
V2
h12 V2
- -
E
Figure 2: Small-signal model of BJT using h-parameter
VBE
h11 = (Input impedance, VCE = 0) (5)
IB
VBE
h12 = (Reverse voltage gain, IB = 0) (6)
VCE
IC
h21 = (Current gain, VCE = 0) (7)
IB
IC
h22 = (Output admittance, IB = 0) (8)
VCE
B C
+ +
hie
VBE VCE
hfe ib
- -
E
Figure 3: small signal model of BJT using h-parameter
3
VBE
h12 = hre = =0 (9)
VCE
h12 = hre = 0 (neglected) (10)
IC
h22 = hoe = =0 (11)
IB
h22 = hoe = 0 (12)
1
= (very large = replace by open circuit ) (13)
hoe
1.3 Y-parameters
I1 A B V1
= (14)
I2 C D V2
1. Current at base:
VBE
IBE = (15)
rπ
2. Current at collector:
VCE
IC = gm VBE + (16)
ro
where:
VCE = VC − VE = V2 (17)
VBE V1 − V2
Base current: I1 = IB = =
rπ rπ
VCE
Collector current: IC = gm VBE +
ro
V2
= gm (V1 − V2 ) +
ro
4
So,
I2 = −IC
V2
= −gm (V1 − V2 ) −
ro
V2
= −gm V1 + gm V2 −
ro
1
= −gm V1 + gm − V2
ro
I1 -I2
V1 + ABCD +V
2
- PARAMETRS -
Now, from the above Y-parameter equations, we can derive the ABCD parameters using I1
and I2 .
From I1 :
V1 − V2
I1 =
rπ
V1 = I1 rπ + V2
5
V2
I2 = −gm (V1 − V2 ) −
ro
V2
Substitute V1 : I2 = −gm (I1 rπ ) − + gm V 2
ro
1
I2 = −gm rπ I1 + gm − V2
ro
1
Solve for I1 : gm rπ I1 = −I2 + gm − V2
ro
−I2 gm − r1o
I1 = + V2
gm rπ gm rπ
Alternative approach: isolate VBE from I2 .
V2
I2 = −gm VBE −
ro
V2
gm VBE = −I2 −
ro
V2
−I2 − ro
VBE =
gm
VBE
Now, using I1 = :
rπ
V2
!
1 −I2 − ro
I1 =
rπ gm
−I2 V2
I1 = −
gm rπ gm rπ ro
Let’s now directly write the expressions.
From V1 :
V1 = I1 rπ + V2
A = 1, B = rπ
From I1 :
We already have it.
From I2 :
6
Start again:
V2
I2 = −gm (V1 − V2 ) −
ro
V2
I2 = −gm (I1 rπ + V2 − V2 ) −
ro
V2
I2 = −gm rπ I1 −
ro
Rearrange:
V2
I2 + = −gm rπ I1
ro
−1 V2
I1 = I2 +
gm rπ ro
This form helps isolate I1 as needed.
Now, solving for C and D:
I1 = CV2 + DI2
Comparing:
−1 −1
I1 = V2 + I2
gm rπ ro gm rπ
Thus:
−1 −1
C= , D=
gm rπ ro gm rπ
The ABCD parameters for the BJT small-signal model are:
ro 1 ro
A=1+ , B = ro (1 + gm rπ ), C=− , D=− (21)
rπ rπ rπ
General Formula
For a two-port with reference impedance Z0 :
−1
S = Z − Z0 I Z + Z0 I .
Let
A = Z + Z0 I, B = Z − Z0 I.
−1
Then S = BA .
7
Step 1: Write A and B
" # " #
rπ + Z0 0 rπ − Z0 0
A= , B= .
− gm ro rπ −ro + Z0 − gm ro rπ −ro − Z0
Step 2: Invert A
Since A is lower-triangular,
1
rπ +Z0
0
A−1 = gm ro rπ
.
1
(rπ +Z0 )(−ro +Z0 ) −ro +Z0
• S12 = 0: Reverse isolation (no signal from output to input in this model).
8
2 Solution (Equivalent small-signal low frequency AC
model for the MOSFET)
2.1 y-parameters
The small-signal y-parameter equations for a MOSFET are expressed as:
1. General equation of y-parameter:
I1 = Y11 V1 + Y12 V2 (22)
I2 = Y21 V1 + Y22 V2 (23)
3. Input Conductance:
IGS = 0 (26)
∂IGS
=0 (27)
∂VGS
∂IGS
=0 (28)
∂VDS
y11 = 0
(29)
y12 = 0
4. Output Conductance:
∂IDS λKn
y22 = = (VGS − VT )2 (30)
∂VDS 2
5. Transconductance:
∂IDS
gm = = kn (VGS − VT )(1 + λVDS ) (31)
∂VGS
9
D G D
+ gmVgs
ro
G Vgs
M1
-
S
S
2.2 h-parameters
Similarly, the h-parameter representation is written as:
IGS
h11 IDS
G D
+ +
h21 I1
+
VGS - h22 VDS
h12 V2
- -
S
Figure 6: Small-signal model of MOSFET using h-parameter
2.3 Z-parameter
We want the Z-matrix defined by
v1 Z11 Z12 i1
= .
v2 Z21 Z22 i2
10
Step 1: Gate relation
v1
From i1 = we get
Rg
v1 = Rg i1 ⇒ Z11 = Rg .
In the intrinsic low-frequency MOSFET model (ignoring Cgd , Cgs and body effect), the gate
node is electrically isolated from the drain. Thus, any current i2 injected into the drain
cannot affect the gate voltage. With i1 = 0, the gate current is zero, and therefore v1 = 0.
Hence,
Z12 = 0.
Final Z-matrix
Thus, the low-frequency Z-matrix is
Z11 Z12 Rg 0
Z= = .
Z21 Z22 − gm ro Rg ro
11
From the Z-matrix of the MOSFET:
" #
Rg 0
Z= ,
− gm ro Rg ro
we obtain
1 1 1 1
A=− , B=− , C=− , D=− .
gm ro gm gm ro Rg gm Rg
1 1
− gm ro −
" #
A B gm
=
C D 1 1
− −
gm ro Rg gm Rg
2.5 S-parameter
Assume a small–signal MOSFET with source grounded, ideal gate (no gate current), transcon-
ductance gm and output resistance ro . Port impedance is Z0 at both ports.
Step 1: Y–parameters
The current–voltage relationship is:
" #
I1
"
Y11 Y12
#" #
V1 Y11 = 0, Y12 = 0,
= with 1
I2 Y21 Y22 V2 Y21 = gm , Y22 = .
ro
Hence " #
0 0
Y= 1
.
gm ro
S = (I + Z0 Y)−1 (I − Z0 Y)
12
Compute " #
0 0
Z0 Y = Z0 .
Z0 gm ro
Determinant of (I + Z0 Y):
Z0
∆=1+ .
ro
Inverse:
1 0
(I + Z0 Y)−1 = Z0 gm 1 .
−
1 + Zro0 1 + Zro0
Multiply by (I − Z0 Y) to obtain the S–parameters:
S11 = 1,
S12 = 0,
2Z0 gm
S21 = − ,
1 + Zro0
Z0
1− ro
S22 = Z0
.
1+ ro
Problem Statement
Q3. Determine the impedance at various nodes (Gate, Drain, Source, and Bulk) of a MOS-
FET using Thevenin’s or Norton’s theorem.
Given/Assumption
For Thevenin/Norton analysis:
13
– gm : transconductance
– ro : drain-source output resistance
– RG : gate resistor
– RD : drain resistor (load)
– RS : source resistor (degeneration)
Solution
VD
ID
RG RG
IG ID
+
+ + VGS
− −
VG VG - ro
IS
IS
RS RS
+ +
−
VS −
VS
Figure 7: Caption
1. Small-Signal Model
The MOSFET small-signal current is:
vds
id = gm vgs + , vgs = vg − vs , vds = vd − vs
ro
14
3. Drain Impedance (ZD )
Attach a test voltage Vtest at drain:
ZD = ro ∥ RD
With source degeneration RS , feedback modifies the impedance:
6. High-Frequency Considerations
Including gate-source Cgs and gate-drain Cgd capacitances:
1
ZG (jω) ≈ RG ∥
jω (Cgs + Cgd (1 − Av ))
1
ZD (jω) ≈ ro ∥ RD ∥
jωCgd
1 1
ZS (jω) ≈ RS ∥ ∥
gm jωCgs
ZB (jω) ≈ junction capacitance Csb in parallel with other paths
Conclusion
Using Thevenin’s theorem, the small-signal impedances of MOSFET nodes are summarized:
15
Vc
ic
Rb Vc
Rb Vb
ib
ic
+ +
− Ve
− gmVbe
Vb ro
Vb ie
Re Re
+ +
− −
Ve Ve
Problem Statement
Q4. Determine the impedance at various nodes (Collector, Emitter, and Base)
of a BJT using Thevenin’s or Norton’s theorem.
Given/Assumptions
For Thevenin/Norton analysis:
– rπ : base-emitter resistance
– gm : transconductance (gm = IC /VT )
– ro : collector-emitter output resistance
– RC : collector resistor
– RE : emitter resistor (degeneration)
– RB : base resistor (biasing)
16
Solution
1. Small-Signal Model
The small-signal current equation is:
vce
ic = gm vbe + , vbe = vb − ve , vce = vc − ve
ro
ZB ≈ RB ∥ rπ ∥ (β + 1)(RE ∥ ro )
5. High-Frequency Considerations
Including base-emitter capacitance Cπ and base-collector capacitance Cµ :
1
ZB (jω) ≈ RB ∥
jω(Cπ + Cµ (1 − Av ))
1
ZC (jω) ≈ RC ∥ ro ∥
jωCµ
rπ 1
ZE (jω) ≈ RE ∥ ∥
β + 1 jω(Cπ + Cµ )
17
Conclusion
Using Thevenin’s theorem, the small-signal impedances of the BJT nodes are summarized
as:
ZB ≈ RB ∥ rπ ∥ (β + 1)(RE ∥ ro )
ZC ≈ RC ∥ ro
rπ
ZE ≈ RE ∥
β+1
18