Unit 2
Unit 2
                                         Dr. S. SABARINATHAN,
                                           Assistant Professor,
                                        Department of Mathematics,
                                         Kattankulathur-603 203.
                                   ⇒ 3x 2 − 3y = 0 and 3y 2 − 3x = 0
                                                         x2 = y               (1)
                                                              2
                                        y =x     and                          (2)
                                         √
   Substituting (2) in (1), we get x 2 = x
                                         ⇒ x 4 = x ⇒ x(x 3 − 1) = 0
                                                      ⇒ x = 0, 1
                                                     . ˙ . y = 0, 1
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima   6 / 66
  Example 2: (Contd.)
                                                         (0,0)           (1,1)
                                       r = 6x              0            6 (> 0)
                                       s = −3             -3               -3
                                       t = 6y              0            6 (> 0)
                                       rt − s2         -9 (<0)          27 (>0)
                                                                           π π 
                                                                              ,
                                                                           √3 3
                                 r = − sin x − sin(x + y)                 − 3√(< 0)
                                                                                3
                                      s = − sin(x + y )                     −
                                                                           √ 2
                                 t = − sin y − sin(x + y)                 − 3 (< 0)
                                                                           9
                                              rt − s2                        (> 0)
                                                                           4
              π π 
   . ˙ . the point
                 ,   is a maximum point.
               3 3
   Hence the maximum value of
                                                             √
                              π π       π     π      2π   3 3
                            f   ,    = sin + sin + sin    =     .
                               3 3        3     3       3    2
                                             p=0                        q=0
                                      ⇒ 3x 2 − 3 = 0             ⇒ 3y 2 − 12
                                      ⇒ x2 − 1 = 0               ⇒ y2 − 4 = 0
                                       ⇒ x = ±1                   ⇒ y = ±2
   Hence the maximum value of f (−1, −2) is 38 and the minimum value
   of f (1, 2) is 2.
                                                                              a3 a3
   Examine for extreme values of f (x, y) = xy +                                + .
                                                                              x  y
                                   a3 a3
   Solution: Given f (x, y ) = xy +   +
                                   x    y
                a3          a3      2a3               2a3
   Now p = y − 2 , q = x − 2 , r = 3 , s = 1 and t = 3
                x           y        x                 y
   The stationary points are obtained by equating p = 0 and q = 0
                                                        a3
                                             ⇒y−           =0             and         (5)
                                                        x2
                                                            a3
                                                     x−        =0                     (6)
                                                            y2
                              a3
   From (5) ⇒ y =
                              x2
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima           12 / 66
  Example 4: (Contd.)
                                                    x4
                                                     x−=0
                                                    a3
                                                      x3
                                                        
                                               ⇒ x 1− 3 = 0
                                                      a
                                                     ⇒ x = 0, a.
   When x = 0 ⇒ y = ∞ and When x = a ⇒ y = a
   Omit (0, ∞), the stationary point is (a, a).
                                                                  (a, a)
                                                       2a3
                                                r=               2 (> 0)
                                                      x3
                                                  s=1                 1
                                                     2a3
                                                t= 3             2 (> 0)
                                                     y
                                                 rt − s2         3 (> 0)
                                           ⇒ x 2 = ay and y 2 = ax
   Solving these two equations, we get (0,0) and (a, a).
   Therefore the stationary points are (0,0) and (a, a).
                                                        (0,0)            (a, a)
                                     r = 6x               0               6a
                                    s = −3a              -3a              -3a
                                     t = 6y               0               6a
                                     rt − s2          -9 (<0)          27a2 (>0)
⇒ x 2 y 2 (3 − 4x − 3y ) = 0 and x 3 y (2 − 2x − 3y ) = 0
⇒ x = 0, y = 0, 4x + 3y = 3 and x = 0, y = 0, 2x + 3y = 2
                                            ⇒ 4x + 3y = 3                     and   (7)
                                     2x + 3y = 2                            (8)
                                                  
                                               1 1
   Solving these two equations, we get          ,    .
                                               2 3
   Put x = 0 in (7), we get y = 1
                                   3
   Put y = 0 in (7), we get x =
                                   4
                                   2
   Put x = 0 in (8), we get y =
                                   3
   Put y = 0 in (8), we get x = 1                                   
                                            1 1               2     3
   . ˙ . the stationary points are (0,0),    ,    , (0,1), 0,    ,    , 0 and
                                            2 3               3     4
   (1,0).
                                                                                               
                                                        1 1                           2         3
                                         (0,0)           ,               (0,1)     0,             ,0    (1,0)
                                                        2 3                           3         4
                                                       1
      r = 6xy 2 (1 − 2x − y )               0        − (< 0)                  0     0            0        0
                                                       9
                                                           1
     s = x 2 y (6 − 8x − 9y)                0          −                      0     0            0        0
                                                         12
                                                       1                                         27
       t = x 3 (2 − 2x − 6y )               0        − (< 0)                  0     0                     0
                                                       8                                        128
                                                      1
                rt − s2                     0            (> 0)                0     0            0        0
                                                     144
                                         inco.         Max.             incon.     inco.    inco.       inco.
                              
               1 1
   Therefore    ,   is a maximum point.
               2 3
   Hence   the
            maximum
                3  value
                          of
                      1 2
                                  
       1 1      1              1 1       1
   f    ,    =             1− −      =      .
       2 3      2     3        2 3      432
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima                             19 / 66
  Lagrange’s Method of Undetermined Multipliers
   This method is to find the maximum or minimum value of a function of
   three or more variables, given the constraints.
   Let
                                u = f (x, y, z)                     (9)
   be a function of three variables which is to be tested for maximum or
   minimum value, subject to the condition (constraint)
g(x, y, z) = 0 (10)
                                       ∂f        ∂f        ∂f
                             du =         . dx +    . dy +    . dz             by (9)   (11)
                                       ∂x        ∂y        ∂z
                                    ∂g        ∂g        ∂g
                             0=        . dx +    . dy +    . dz               by (10)   (12)
                                    ∂x        ∂y        ∂z
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima              20 / 66
  Lagrange’s Method of Undetermined Multipliers
   The conditions for f (x, y, z) to have a maximum point or a minimum
   point is du = 0. Therefore (11), we get
                                       ∂f        ∂f        ∂f
                                          . dx +    . dy +    . dz = 0        (13)
                                       ∂x        ∂y        ∂z
                                      ∂g          ∂g          ∂g
                                  λ      . dx + λ    . dy + λ    . dz = 0     (14)
                                      ∂x          ∂y          ∂z
                ∂F ∂F       ∂F
           Find   ,     and
                ∂x ∂y       ∂z
               ∂F      ∂F         ∂F
           Set    = 0,    = 0 and    = 0 and then solve we get x, y , z.
               ∂x      ∂y         ∂z
   A rectangular box open at the top is to have volume of 32 cubic ft. Find
   the dimensions in order that the total surface area is minimum.
   Solution: Given
                                          g(x, y, z) = xyz − 32 = 0           (15)
   Let x, y, z be the dimension of rectangular box open at the top.
   Total surface area (S): f (x, y , z) = xy + 2xz + 2yz
   We define the function
                            F (x, y, z) = xy + 2xz + 2yz + λ (xyz − 32)
   At the critical points, we have
                                  ∂f    ∂g
                                     +λ    = 0 ⇒ y + 2z + λ yz = 0            (16)
                                  ∂x    ∂x
                                  ∂f    ∂g
                                     +λ    = 0 ⇒ x + 2z + λ xz = 0            (17)
                                  ∂y    ∂y
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima    24 / 66
  Example 1: (Contd.)
                      ∂f    ∂g
                         +λ    = 0 ⇒ 2x + 2y + λ xy = 0                       (18)
                      ∂z    ∂z
   (16) × x − (17) × y ⇒ 2(zx − zy) = 0 ⇒ z 6= 0, x − y = 0
⇒x =y (19)
                                           ⇒ y 2 − 2yz = 0 by (19)
                       ⇒ y(y − 2z) = 0 ⇒ y =
                                           6 0, y − 2z = 0
                                           y
                                    ⇒z =                                      (20)
                                           2
   Using (19) and (20) in (16) we get x = 4.
   . ˙ . y = 4, z = 2.
   Hence the dimensions are 4cm, 4cm and 2cm.
                                                     3z 2
                                                         
                                            ⇒ 8xy 1 − 2 = 0
                                                      c
                                                          3z 2
                                                     ⇒         =1
                                                           c2
                                             c
                                      ⇒ z = √ , since x 6= 0, y 6= 0
                                              3
                 b       a
   Similarly y = √ , c = √
                  3       3
                                                                              8abc
   Hence the volume of rectangular parallelopiped is V =                       √ units.
                                                                              3 3
⇒ x = y since λ 6= 0, z 6= 0 (30)
   Find the maximum and minimum distance of the point (3,4,12) from the
   sphere x 2 + y 2 + z 2 = 1.
2(x − 3) + 2λ x = 0 (33)
                                               2(y − 4) + 2λ y = 0            (34)
                                              2(z − 12) + 2λ z = 0            (35)
   From (33), (34) and (35), we get
                                            3       4        12
                                    x=         ,y=     ,z =                   (36)
                                           1+λ     1+λ      1+λ
   Using (36) in (32), we get
   Therefore
   s        the distance are
           3 2           4 2         12 2
                                    
      3−        + 4−          + 12 −      = 12 and
          13            13           13
   s
           3 2           4 2         12 2
                                    
      3+        + 4+          + 12 +      = 14
          13            13           13
   Hence the maximum distance is 14 and the minimum distance is 12.
                                                   4λ           y2
                                            1−        = 0 ⇒ λ =               (40)
                                                   y2           4
                               5λ             z2
                                    = 0 ⇒ λ 1−
                                            =                                 (41)
                                z2            5
   From (39), (40) and (41), we get
                                             x 2 y 2 z2
                                          λ=     =    =
                                             3      4     5
                                          √          √       √
                                     ⇒ x = 3λ , y = 2 λ , z = 5λ              (42)
   Using (42) in (38), we get
                                            3   4    5
                                           √ +√ +√      =6
                                            3λ   λ   5λ
                                                 √      √
                                              √    3+2+ 5
                                           ⇒ λ=
                                                     6
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima    35 / 66
  Example 5: (Contd.)
                        √
   Substituting          λ in (42), we get
                                        √
                                          3 √       √
                                    x=     ( 3 + 2 + 5)
                                         6
                                                 1 √        √
                                             y = ( 3 + 2 + 5)
                                                 6
                                                √
                                                  5 √       √
                                            z=     ( 3 + 2 + 5)
                                                6
   Solution: Given
                                       g(x, y, z) = x + y + z − a = 0          (43)
   The required function is f (x, y , z) = x m y n z p
   We define the function
F (x, y, z) = x m y n z p + λ (x + y + z − a)
mx m−1 y n z p + λ = 0 (44)
                                              nx m y n−1 z p + λ = 0           (45)
                                              px m y n z p−1 + λ = 0           (46)
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima     37 / 66
  Example 6: (Contd.)
                                                     ∂u               ∂u      ∂u
                                                     ∂x               ∂y      ∂z
                                      ∂ (u, v , w)   ∂v               ∂v      ∂v
                                                   =
                                      ∂ (x, y, z)    ∂x               ∂y      ∂z
                                                     ∂w               ∂w      ∂w
                                                     ∂x               ∂y      ∂z
   Property 1:
   If J1 is the Jacobian of u, v with respect to x, y and J2 is the Jacobian
   of x, y with respect to u, v then J1 J2 = 1.
        ∂ (u, v ) ∂ (x, y )
   i.e.          ×          = 1.
        ∂ (x, y) ∂ (u, v )
   Proof:
                        ∂u                    ∂u   ∂x              ∂x
   ∂ (u, v ) ∂ (x, y)
            ×         = ∂∂ vx                 ∂y × ∂u
                                              ∂v   ∂y
                                                                   ∂v
                                                                   ∂y
   ∂ (x, y) ∂ (u, v )
                         ∂x                   ∂y   ∂u              ∂v
                                 ∂u ∂x ∂u ∂y                        ∂u ∂x ∂u ∂y
                                      .     +   .                     .  +  .
                               = ∂∂ vx ∂∂ u   ∂y ∂x
                                          x ∂v ∂y
                                                                    ∂x ∂v ∂y ∂v
                                                                    ∂v ∂x ∂v ∂y   (47)
                                      .     +   .                     .  +  .
                                  ∂x ∂u ∂y ∂u                       ∂x ∂v ∂y ∂v
                                        ∂ (u, v ) ∂ (u, v ) ∂ (r , s)
                                                 =          ×
                                        ∂ (x, y)   ∂ (r , s) ∂ (x, y )
   Proof: R.H.S
                                      ∂u ∂u            ∂r                     ∂r
                ∂ (u, v ) ∂ (r , s)
                         ×          = ∂∂ vr ∂∂ vs × ∂∂ xs                     ∂y
                                                                              ∂s
                ∂ (r , s) ∂ (x, y )
                                       ∂r ∂s           ∂x                     ∂y
                                      ∂u ∂r ∂u ∂s                              ∂u ∂r ∂u ∂s
                                           .     +     .                         .  +  .
                                    = ∂∂ vr ∂∂ xr ∂∂ vs ∂∂ xs                  ∂r ∂y ∂s ∂y
                                                                               ∂v ∂r ∂v ∂s
                                           .     +     .                         .  +  .
                                       ∂r ∂x ∂s ∂x                             ∂r ∂y ∂s ∂y
                               ∂u ∂u
        ∂ (u, v ) ∂ (r , s)
                 ×          = ∂∂ vx ∂∂ vy
        ∂ (r , s) ∂ (x, y)
                               ∂x ∂y
                              ∂ (u, v )
                            =           = L.H.S
                              ∂ (x, y)
   Note:
       ∂ (u, v , w) ∂ (u, v , q) ∂ (r , s, t)
    1                =                ×
        ∂ (x, y, z)     ∂ (r , s, t)     ∂ (x, y , z)
    2  If u, v , w are functionally dependent functions of three independent
                                    ∂ (u, v , w)
       variables x, y , z then                     =0
                                     ∂ (x, y, z)
    3  If u, v , w are said to be functionally dependent, if each can be ex-
       pressed interms of the others.
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima   44 / 66
  Example 1:
   Proof:
                                    ∂x ∂x                  ∂x
                                    ∂r ∂θ                  ∂φ
                   ∂ (x, y, z)      ∂y ∂y                  ∂y
                                  =
                   ∂ (r , θ , φ )   ∂r ∂θ                  ∂φ
                                    ∂z ∂z                  ∂z
                                    ∂r ∂θ                  ∂φ
                                    sin θ cos φ             r cos θ cos φ     −r sin θ sin φ
                                  = sin θ sin φ             r cos θ sin φ     r sin θ cos φ
                                       cos θ                   −r sin θ              0
                                                           #
                                                        
                                        2             2
                       + sin θ sin θ cos φ + sin θ sin φ     = r 2 sin θ
   Proof:
                                                   ∂u               ∂u        ∂u
                                                   ∂x               ∂y        ∂z
                                    ∂ (u, v , w)   ∂v               ∂v        ∂v
                                                 =
                                    ∂ (x, y, z)    ∂x               ∂y        ∂z
                                                   ∂w               ∂w        ∂w
                                                   ∂x               ∂y        ∂z
                                                    yz                z         y
                                                   − 2
                                                    x                 x         x
                                                    z                 zx        x
                                                 = y                − 2
                                                                      y         y
                                                    y                 x         xy
                                                                               − 2
                                                    z                 z         z
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima          48 / 66
  Example 3: (Contd.)
                                           −yz zx                              yx
                      ∂ (u, v , w)    1
                                   = 2 2 2 zy −zx                              xy
                      ∂ (x, y , z)  x y z
                                            yz xz                             −xy
                                                     −1 1  1
                                           x 2y 2z 2
                                       =              1 −1 1
                                           x 2y 2z 2
                                                      1 1 −1
                                       = −1(1 − 1) − 1(−1 − 1) + 1(1 + 1) = 4
   Solution:
                                ∂u            ∂u
                    ∂ (u, v )
                              = ∂∂ vx         ∂y
                                              ∂v
                    ∂ (x, y)
                                 ∂x           ∂y
                                          1                                     1
                                      √                                      p
                                = p     1 − x2                                 1 − y2
                                               xy                       √            xy
                                   1 − y2 − √                            1 − x2 − p
                                             1 − x2                                 1 − y2
                                =0
   Solution:
                                                ∂u ∂u
                                    ∂ (u, v )
                                              = ∂∂ vx ∂∂ vy
                                    ∂ (x, y)
                                                 ∂x ∂y
                                                    1 + y2                1 + x2
                                                            2            (1 − xy)2
                                              = (1 − xy)
                                                      1                      1
                                                    1 + x2                1 + y2
                                              =0
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima          51 / 66
  Example 5: (Contd.)
                                             v = tan−1 x + tan−1 y
                                                               
                                                         x +y
                                               = tan−1
                                                         1 − xy
                                                = tan−1 u
                                                ⇒ u = tan v .
   Solution:
                             ∂u               ∂u ∂u
                             ∂x               ∂y ∂z
              ∂ (u, v , w)   ∂v               ∂v ∂v
                           =
              ∂ (x, y , z)   ∂x               ∂y ∂z
                             ∂w               ∂w ∂w
                             ∂x               ∂y ∂z
                             y +z              z +x x +y                      y +z z +x   x +y
= 2x 2y 2z =2 x y z
1 1 1 1 1 1
                                    x +y +z x +y +z x +y +z
            ∂ (u, v , w)
                         =2            x       y       z                      R1 → R1 + R2
            ∂ (x, y, z)
                                       1       1       1
                                    1 1 1
=2 x y z =0
1 1 1
   Solution:
                                                  ∂u               ∂u         ∂u
                                                  ∂x               ∂y         ∂z
                                   ∂ (u, v , w)   ∂v               ∂v         ∂v
                                                =
                                   ∂ (x, y, z)    ∂x               ∂y         ∂z
                                                  ∂w               ∂w         ∂w
                                                  ∂x               ∂y         ∂z
                                                  0                 1              1
= 1 0 4z
1 −4y − 4z −4y
                             ∂ (u, v , w)
                                          = −1(−4y − 4z) + (−4y − 4z)
                             ∂ (x, y , z)
                                          =0
                                          v − w = 2z 2 + 4yz + 2y 2
                                                    = 2(y + z)2
                                                    = 2u 2 .
                                                                                        ∂ (u, v , w)
   If u = xyz, v = xy + yz + zx and w = x + y + z, find                                              .
                                                                                        ∂ (x, y, z)
   Solution:
                                                  ∂u               ∂u         ∂u
                                                  ∂x               ∂y         ∂z
                                   ∂ (u, v , w)   ∂v               ∂v         ∂v
                                                =
                                   ∂ (x, y , z)   ∂x               ∂y         ∂z
                                                  ∂w               ∂w         ∂w
                                                  ∂x               ∂y         ∂z
                                                   yz                xz            xy
                                                    = y +z x +z y +z
                                                            1           1          1
                                                   z(x − y) x(y − z) xy
                             ∂ (u, v , w)
                                          =         x −y     y −z    y +x
                             ∂ (x, y, z)
                                                      0        0       1
                                                                              z x   xy
                                              = (x − y )(y − z) 1 1 y + x
                                                                              0 0   1
= (x − y )(y − z)(z − x)
                                                       ∂ (u, v )
   Find the value of the Jacobian                                 , where u = x 2 − y 2 , v = 2xy and
                                                       ∂ (r , θ )
   x = r cos θ , y = r sin θ .
   Solution:
                              ∂ (u, v ) ∂ (u, v ) ∂ (x, y)
                                         =          ×
                              ∂ (r , θ )   ∂ (x, y) ∂ (r , θ )
                                            ∂u ∂u        ∂x ∂x
                                              x     y
                                         = ∂ v ∂ v × ∂∂ yr ∂∂ θ
                                            ∂     ∂
                                                                y
                                            ∂x ∂y         ∂r ∂θ
                                           2x −2y         cos θ −r sin θ
                                         =            ×
                                           2y 2x          sin θ r cos θ
                                          = 4r 2 .r = 4r 3
                                                                              ∂ (x, y, z)
   If u = x + y + z, uv = y + z, uvw = z, show that                                        = u2v .
                                                                              ∂ (u, v , w)
                       ∂x ∂x                    ∂x
                       ∂u ∂v                    ∂w
        ∂ (x, y , z)   ∂y ∂y                    ∂y
                     =
        ∂ (u, v , w)   ∂u ∂v                    ∂w
                       ∂z ∂z                    ∂z
                       ∂u ∂v                    ∂w
                       1−v                      −u             0
                         = v − vw            u − uw         −uv
                             vw                 uw             uv
                              1 − vw         −uw        −uv
                         =         v            u          0        R1 → R1 + R2 ; R2 → R2 + R3
                                 vw           uw          uv
                                                       1 − vw         −w       −1
                          ∂ (x, y, z)
                                       = u2v                v          1        0
                          ∂ (u, v , w)
                                                          vw           w        1
                                                        1       0     0
                                           = u2v v              1     0       R1 → R1 + R3
                                                 vw             w     1
                                           = u2v
                                                             ∂ (x, y ) ∂ (r , θ )
   If x = r cos θ , y = r sin θ verify that                            ×          = 1.
                                                             ∂ (r , θ ) ∂ (x, y)
   Proof:
                                         y
   Now x 2 + y 2 = r 2 and θ = tan−1
                                         x
   Differentiating partially w.r.t x, we get
      ∂r             ∂θ        1       y 
   2r     = 2x and        =         .  − 2
      ∂x             ∂x          y2       x
                            1+ 2
                                 x
       ∂r    x      ∂θ        y
   ⇒      = and           =− 2
      ∂x     r       ∂x      r
                 ∂r    y       ∂θ      x
   Similarly ⇒      = and           = 2
                 ∂y     r      ∂y      r
                                ∂r        ∂r    x               y
                                                                      2    2
                                ∂x        ∂y    r                r = x +y = 1
                                ∂θ        ∂θ =   y              x       r3   r
                                               − 2                2
                                ∂x        ∂y    r               r
   and
                                     ∂x      ∂x
                                     ∂r      ∂ θ = cos θ              −r sin θ
                                                                               =r
                                     ∂y      ∂y    sin θ              r cos θ
                                     ∂r      ∂θ
                                       ∂x                   ∂x   ∂r           ∂r
                 ∂ (x, y) ∂ (r , θ )                                                   1
                           ×         = ∂r                   ∂θ × ∂x           ∂y
                                                                              ∂θ = r × r = 1
                 ∂ (r , θ ) ∂ (x, y)   ∂y                   ∂y   ∂θ
                                       ∂r                   ∂θ   ∂x           ∂y
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima                    64 / 66
  Example 11:
                                                          ∂ (x, y) ∂ (u, v )
   If x = u(1 − v ), y = uv verify that                            ×         = 1.
                                                          ∂ (u, v ) ∂ (x, y)
   Proof:
   Given x = u(1 − v ) ⇒ u = x + uv ⇒ u = x + y
      ∂u      ∂u
   ⇒     = 1,     =1
      ∂x      ∂y
                       y          y
   and y = uv ⇒ v = ⇒ v =
                       u        x +y
      ∂v         y       ∂v      x
   ⇒     =−          2
                       ,    =
      ∂y      (x + y) ∂ y     (x + y )2
      ∂v       y ∂v       x
   ⇒     = − 2,      = 2
      ∂y      u ∂y       u
                                    ∂u            ∂u    1                     1
                        ∂ (u, v )                                            x +y  1
                                  = ∂∂ vx         ∂y =
                                                  ∂v     y                x = u2 = u
                        ∂ (x, y)                       − 2
                                     ∂x           ∂y    u                 u2
   and
                                          ∂x             ∂x
                              ∂ (x, y )                  ∂ v = 1 − u −u = u
                                        = ∂u
                              ∂ (u, v )   ∂y             ∂y      v    u
                                          ∂u             ∂v
                                       ∂x                   ∂x   ∂u               ∂u
                 ∂ (x, y) ∂ (u, v )                                                        1
                          ×          = u
                                       ∂                    ∂v × ∂x
                                                                 ∂v
                                                                                  ∂y
                                                                                  ∂v = u × u = 1
                 ∂ (u, v ) ∂ (x, y )   ∂y                   ∂y
                                       ∂u                   ∂v   ∂x               ∂y
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima                        66 / 66