0% found this document useful (0 votes)
7 views66 pages

Unit 2

Uploaded by

am8847
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
7 views66 pages

Unit 2

Uploaded by

am8847
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 66

18MAB101T- Calculus And Linear Algebra

Unit II-Functions of Several Variables

Dr. S. SABARINATHAN,
Assistant Professor,
Department of Mathematics,
Kattankulathur-603 203.

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR


SRM ()Institute of Science and Technology 1 / 66
Maxima and Minima of Functions two variables

Maximum Value: A function f (x, y) is said to have a maximum value at


x = a, y = b if f (a, b) > f (a + h, b + k ), for small and independent values
of h and k , positive or negative.

Minimum Value: A function f (x, y ) is said to have a maximum value at


x = a, y = b if f (a, b) < f (a + h, b + k ), for small and independent values
of h and k , positive or negative.

Extreme Value: f (a, b) is said to be an extremum value of f (x, y ) if it is


either maximum or minimum.

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 2 / 66


Working rule to find extreme values (Necessary
Conditions)
∂f ∂f
Step 1: Find and .
∂x ∂y
∂f ∂f
Step 2: Solve the equations = 0 and = 0 simultaneously.
∂x ∂y
Let the solutions be (a, b), (c, d), . . .
∂f ∂f
Stationary Points: The point (a, b) at which = 0 and = 0 are
∂x ∂y
called stationary points of the function f (x, y).
Stationary values: The values of f (x, y ) at the stationary points are
called stationary values of the function f (x, y ).
Note: Every extremum value is a stationary value but a stationary value
need not be an extremum.
Notations:
∂f ∂f ∂ 2f ∂ 2f ∂ 2f
p= ,q = ,r = , s = and t =
∂x ∂y ∂ x2 ∂ x∂ y ∂y2
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 3 / 66
Sufficient Condition for Maxima and Minima

Let (a, b) be a stationary point. Then if


rt − s2 > 0 at (a, b) and r < 0 (t < 0) then f (a, b) is maximum value.
rt − s2 > 0 at (a, b) and r > 0 (t > 0) then f (a, b) is minimum value.
rt − s2 < 0 at (a, b) then f (a, b) has neither a maximum nor a mini-
mum value. In this case, the point (a, b) is called a saddle point of
the function f (x, y ).
if rt − s2 = 0, then the case is doubtful and hence further investiga-
tions are required.

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 4 / 66


Example 1:

Discuss the maximum and minimum of x 2 + y 2 + 6x + 12.

Solution: Let f (x, y ) = x 2 + y 2 + 6x + 12


Now p = 2x + 6, q = 2y, r = 2, s = 0 and t = 2
The stationary points are given by p = 0, q = 0
⇒ 2x + 6 = 0 and 2y = 0
⇒ x = −3 and y = 0
. ˙ . (-3, 0) is the stationary point.
(-3,0)
r 2 (> 0)
s 0
t 2 (> 0)
rt − s2 4 (> 0)
Hence f (x, y) is minimum when x = −3 and y = 0.
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 5 / 66
Example 2:

Examine f (x, y) = x 3 + y 3 − 3xy for maximum and minimum values.

Solution: Let f (x, y ) = x 3 + y 3 − 3xy


Now p = 3x 2 − 3y, q = 3y 2 − 3x, r = 6x, s = −3 and t = 6y
The stationary points are given by p = 0, q = 0

⇒ 3x 2 − 3y = 0 and 3y 2 − 3x = 0
x2 = y (1)
2
y =x and (2)

Substituting (2) in (1), we get x 2 = x

⇒ x 4 = x ⇒ x(x 3 − 1) = 0
⇒ x = 0, 1
. ˙ . y = 0, 1
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 6 / 66
Example 2: (Contd.)

Therefore (0, 0) and (1, 1) are the stationary points.

(0,0) (1,1)
r = 6x 0 6 (> 0)
s = −3 -3 -3
t = 6y 0 6 (> 0)
rt − s2 -9 (<0) 27 (>0)

At (0,0) is a saddle point and at (1,1) is a point of minimum value.


. ˙ . the minimum value of f (1, 1) = 1 + 1 − 3 = −1.

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 7 / 66


Example 3:

Find the maximum or minimum value of sin x + sin y + sin(x + y ).

Solution: Given f (x, y ) = sin x + sin y + sin(x + y)


Now p = cos x + cos(x + y), q = cos y + cos(x + y)
r = − sin x − sin(x + y ), t = − sin y − sin(x + y) and s = − sin(x + y)
The stationary points are obtained by equating p = 0 and q = 0
⇒ cos x + cos(x + y) = 0 and cos y + cos(x + y) = 0
. ˙ . cos x = − cos(x + y )
⇒ cos x = cos(π − (x + y)) ⇒ x = π − (x + y)
2x + y = π (3)
Similarly q = 0, we get
x + 2y = π (4)
π π
Solving (3) and (4), we get x = and y =
3
π π  3
. ˙ . the stationary points is , .
3 3
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 8 / 66
Example 3: (contd.)

π π 
,
√3 3
r = − sin x − sin(x + y) − 3√(< 0)
3
s = − sin(x + y ) −
√ 2
t = − sin y − sin(x + y) − 3 (< 0)
9
rt − s2 (> 0)
4
π π 
. ˙ . the point
, is a maximum point.
3 3
Hence the maximum value of

π π  π π 2π 3 3
f , = sin + sin + sin = .
3 3 3 3 3 2

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 9 / 66


Example 4:

Find the extreme values of the function


f (x, y ) = x 3 + y 3 − 3x − 12y + 20.

Solution: Given f (x, y ) = x 3 + y 3 − 3x − 12y + 20


Now p = 3x 2 − 3, q = 3y 2 − 12, r = 6x, s = 0 and t = 6y
The stationary points are obtained by equating p = 0 and q = 0

p=0 q=0
⇒ 3x 2 − 3 = 0 ⇒ 3y 2 − 12
⇒ x2 − 1 = 0 ⇒ y2 − 4 = 0
⇒ x = ±1 ⇒ y = ±2

. ˙ . the stationary points are (1,2), (1,-2), (-1,2), (-1,-2).

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 10 / 66


Example 4: (Contd.)

(1,2) (1,-2) (-1,2) (-1,-2)


r = 6x 6 (> 0) 6 (> 0) -6 (< 0) -6 (> 0)
s=0 0 0 0 0
t = 6y 12 (> 0) -12 (< 0) 12 (> 0) -12 (< 0)
rt − s2 72 (<0) -72 (<0) -72 (< 0) 72 (> 0)
min. saddle saddle max.

Hence the maximum value of f (−1, −2) is 38 and the minimum value
of f (1, 2) is 2.

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 11 / 66


Example 4:

a3 a3
Examine for extreme values of f (x, y) = xy + + .
x y
a3 a3
Solution: Given f (x, y ) = xy + +
x y
a3 a3 2a3 2a3
Now p = y − 2 , q = x − 2 , r = 3 , s = 1 and t = 3
x y x y
The stationary points are obtained by equating p = 0 and q = 0

a3
⇒y− =0 and (5)
x2
a3
x− =0 (6)
y2
a3
From (5) ⇒ y =
x2
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 12 / 66
Example 4: (Contd.)

Substituting this value in (6), we get

x4
x−=0
a3
x3
 
⇒ x 1− 3 = 0
a
⇒ x = 0, a.
When x = 0 ⇒ y = ∞ and When x = a ⇒ y = a
Omit (0, ∞), the stationary point is (a, a).

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 13 / 66


Example 4: (Contd.)

(a, a)
2a3
r= 2 (> 0)
x3
s=1 1
2a3
t= 3 2 (> 0)
y
rt − s2 3 (> 0)

. ˙ . the point (a, a) is a minimum point.


Hence the minimum value of f (a, a) = 3a2 .

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 14 / 66


Example 5:

Examine f (x, y) = x 3 + y 3 − 3axy for maxima and minima.

Solution: Given f (x, y ) = x 3 + y 3 − 3axy


Now p = 3x 2 − 3ay, q = 3y 2 − 3ax, r = 6x, s = −3a and t = 6y
The stationary points are obtained by equating p = 0 and q = 0

⇒ 3x 2 − 3ay = 0 and 3y 2 − 3ax = 0

⇒ x 2 = ay and y 2 = ax
Solving these two equations, we get (0,0) and (a, a).
Therefore the stationary points are (0,0) and (a, a).

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 15 / 66


Example 5: (Contd.)

(0,0) (a, a)
r = 6x 0 6a
s = −3a -3a -3a
t = 6y 0 6a
rt − s2 -9 (<0) 27a2 (>0)

Hence the point (a, a) is a minimum if a > 0 and (a, a) is a maximum if


a < 0.

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 16 / 66


Example 6:

Find the extreme values of f (x, y) = x 3 y 2 (1 − x − y).

Solution: Given f (x, y ) = x 3 y 2 (1 − x − y ) = x 3 y 2 − x 4 y 2 − x 3 y 3


Now p = 3x 2 y 2 − 4x 3 y 2 − 3x 2 y 2 = x 2 y 2 (3 − 4x − 3y),
q = 2x 3 y − 2x 4 y − 3x 3 y 2 = x 3 y (2 − 2x − 3y ),
r = 6xy 2 − 12x 2 y 2 − 6xy 3 = 6xy 2 (1 − 2x − y ),
s = 6x 2 y − 8x 3 y − 9x 2 y 2 = x 2 y(6 − 8x − 9y ) and
t = 2x 3 − 2x 4 − 6x 3 y = x 3 (2 − 2x − 6y )
The stationary points are obtained by equating p = 0 and q = 0

⇒ x 2 y 2 (3 − 4x − 3y ) = 0 and x 3 y (2 − 2x − 3y ) = 0

⇒ x = 0, y = 0, 4x + 3y = 3 and x = 0, y = 0, 2x + 3y = 2

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 17 / 66


Example 6: (Contd.)

⇒ 4x + 3y = 3 and (7)
2x + 3y = 2 (8)
 
1 1
Solving these two equations, we get , .
2 3
Put x = 0 in (7), we get y = 1
3
Put y = 0 in (7), we get x =
4
2
Put x = 0 in (8), we get y =
3
Put y = 0 in (8), we get x = 1      
1 1 2 3
. ˙ . the stationary points are (0,0), , , (0,1), 0, , , 0 and
2 3 3 4
(1,0).

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 18 / 66


Example 6: (Contd.)

     
1 1 2 3
(0,0) , (0,1) 0, ,0 (1,0)
2 3 3 4
1
r = 6xy 2 (1 − 2x − y ) 0 − (< 0) 0 0 0 0
9
1
s = x 2 y (6 − 8x − 9y) 0 − 0 0 0 0
12
1 27
t = x 3 (2 − 2x − 6y ) 0 − (< 0) 0 0 0
8 128
1
rt − s2 0 (> 0) 0 0 0 0
144
inco. Max. incon. inco. inco. inco.
 
1 1
Therefore , is a maximum point.
2 3
Hence the
 maximum
 3  value
  of
1 2
 
1 1 1 1 1 1
f , = 1− − = .
2 3 2 3 2 3 432
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 19 / 66
Lagrange’s Method of Undetermined Multipliers
This method is to find the maximum or minimum value of a function of
three or more variables, given the constraints.
Let
u = f (x, y, z) (9)
be a function of three variables which is to be tested for maximum or
minimum value, subject to the condition (constraint)

g(x, y, z) = 0 (10)

By total differentials, we have

∂f ∂f ∂f
du = . dx + . dy + . dz by (9) (11)
∂x ∂y ∂z

∂g ∂g ∂g
0= . dx + . dy + . dz by (10) (12)
∂x ∂y ∂z
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 20 / 66
Lagrange’s Method of Undetermined Multipliers
The conditions for f (x, y, z) to have a maximum point or a minimum
point is du = 0. Therefore (11), we get

∂f ∂f ∂f
. dx + . dy + . dz = 0 (13)
∂x ∂y ∂z

Multiply (12) by λ , we get

∂g ∂g ∂g
λ . dx + λ . dy + λ . dz = 0 (14)
∂x ∂y ∂z

Adding (13) and (14), we get


     
∂f ∂g ∂f ∂g ∂f ∂g
+λ dx + +λ dy + +λ dz = 0
∂x ∂x ∂y ∂y ∂z ∂z

Here λ is called the Lagrange multiplier.


Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 21 / 66
Lagrange’s Method of Undetermined Multipliers

Now we shall choose λ such that


∂f ∂g
+λ =0
∂x ∂x
∂f ∂g
+λ =0
∂y ∂y
∂f ∂g
+λ =0
∂z ∂z
Solving the above equations along with the given relation, we get the
values of x, y , z and λ .
These values give finally the required maximum or minimum value of
the function f (x, y, z).

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 22 / 66


Working Rule

To find the maximum and minimum values of f (x, y, z) where x, y, z are


subject to the constraint g(x, y , z)
We define a Function

F (x, y, z) = f (x, y , z) + λ g(x, y , z)

∂F ∂F ∂F
Find , and
∂x ∂y ∂z
∂F ∂F ∂F
Set = 0, = 0 and = 0 and then solve we get x, y , z.
∂x ∂y ∂z

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 23 / 66


Example 1:

A rectangular box open at the top is to have volume of 32 cubic ft. Find
the dimensions in order that the total surface area is minimum.
Solution: Given
g(x, y, z) = xyz − 32 = 0 (15)
Let x, y, z be the dimension of rectangular box open at the top.
Total surface area (S): f (x, y , z) = xy + 2xz + 2yz
We define the function
F (x, y, z) = xy + 2xz + 2yz + λ (xyz − 32)
At the critical points, we have
∂f ∂g
+λ = 0 ⇒ y + 2z + λ yz = 0 (16)
∂x ∂x
∂f ∂g
+λ = 0 ⇒ x + 2z + λ xz = 0 (17)
∂y ∂y
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 24 / 66
Example 1: (Contd.)

∂f ∂g
+λ = 0 ⇒ 2x + 2y + λ xy = 0 (18)
∂z ∂z
(16) × x − (17) × y ⇒ 2(zx − zy) = 0 ⇒ z 6= 0, x − y = 0

⇒x =y (19)

⇒ y 2 − 2yz = 0 by (19)
⇒ y(y − 2z) = 0 ⇒ y =
6 0, y − 2z = 0
y
⇒z = (20)
2
Using (19) and (20) in (16) we get x = 4.
. ˙ . y = 4, z = 2.
Hence the dimensions are 4cm, 4cm and 2cm.

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 25 / 66


Example 2:
Find the volume of the largest rectangular parallelopiped that can be
x 2 y 2 z2
inscribed in the ellipsoid 2 + 2 + 2 = 1.
a b c
Solution: The given ellipsoid is
x 2 y 2 z2
g(x, y , z) =
+ + −1 = 0 (21)
a2 b 2 c 2
Let 2x, 2y, 2z be the dimensions of the required parallelopiped.
The volume of the parallelopiped (V ) : f (x, y, z) = 8xyz
We define the function
 2
y 2 z2

x
F (x, y , z) = 8xyz + λ + + −1
a2 b 2 c 2
At the critical points, we have
 
∂f ∂g 2x
+λ = 0 ⇒ 8yz + λ =0 (22)
∂x ∂x a2
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 26 / 66
Example 2: (Contd.)
 
∂f ∂g 2y
+λ = 0 ⇒ 8xz + λ =0 (23)
∂y ∂y b2
 
∂f ∂g 2z
+λ = 0 ⇒ 8xy + λ =0 (24)
∂z ∂z c2
(22) × x + (23) × y + (24) × z, we get
 2
y 2 z2

x
24xyz + 2λ + + =0
a2 b 2 c 2
⇒ 2λ = −24xyz by (21)
λ = −12xyz (25)
Using (25) in (24), we get
 
2z
8xy + (−12xyz) =0
c2
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 27 / 66
Example 2: (Contd.)

3z 2
 
⇒ 8xy 1 − 2 = 0
c
3z 2
⇒ =1
c2
c
⇒ z = √ , since x 6= 0, y 6= 0
3
b a
Similarly y = √ , c = √
3 3
8abc
Hence the volume of rectangular parallelopiped is V = √ units.
3 3

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 28 / 66


Example 3:

Find the dimensions of the rectangular box, open at the top of


maximum capacity whose surface is 432 sq.cm.

Solution: Let x, y, z be the dimensions of the rectangular bx, open at


the top.
Given its surface area
g(x, y , x) = xy + 2yz + 2zx − 432 = 0 (26)
The volume is (V ) : f (x, y, z) = xyz
We define the function
F (x, y, z) = xyz + λ (xy + 2yz + 2zx − 432)
At the critical points, we get
yz + λ (y + 2z) = 0 (27)
xz + λ (x + 2z) = 0 (28)
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 29 / 66
Example 3: (Contd.)

xy + λ (2y + 2x) = 0 (29)


(27) × x − (28) × y ⇒ 2λ z(x − y) = 0

⇒ x = y since λ 6= 0, z 6= 0 (30)

(28) × x − (29) × z ⇒ λ y(x − 2z) = 0


x
⇒z = since λ 6= 0, y 6= 0 (31)
2
Using (30) and (31) in (26), we get x = 12.
. ˙ . y = 12, z = 6.
Hence the dimensions of the rectangular box are 12 cm, 12 cm and 6
cm.

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 30 / 66


Example 4:

Find the maximum and minimum distance of the point (3,4,12) from the
sphere x 2 + y 2 + z 2 = 1.

Solution: Let (x, y , z) be any point on the sphere.


Given
g(x, y, z) = x 2 + y 2 + z 2 − 1 = 0 (32)
Distance
p of the point (x, y , z) from (3, 4, 12) is given by
d = (x − 3)2 + (y − 4)2 + (z − 1)2
f (x, y , z) = square of the distance from the point (3, 4, 12) to the sphere

i.e. f (x, y , z) = (x − 3)2 + (y − 4)2 + (z − 1)2


We define the function
 
F (x, y , z) = (x − 3)2 + (y − 4)2 + (z − 1)2 + λ x 2 + y 2 + z 2 − 1

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 31 / 66


Example 4: (Contd.)

At the critical points, we have

2(x − 3) + 2λ x = 0 (33)

2(y − 4) + 2λ y = 0 (34)
2(z − 12) + 2λ z = 0 (35)
From (33), (34) and (35), we get

3 4 12
x= ,y= ,z = (36)
1+λ 1+λ 1+λ
Using (36) in (32), we get

(1 + λ )2 = 169 ⇒ 1 + λ = ±13 (37)

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 32 / 66


Example 4: (Contd.)

Using (37) in (36), we get


   
3 4 12 −3 −4 −12
, , and , ,
13 13 13 13 13 13

Therefore
s the distance are
3 2 4 2 12 2
    
3− + 4− + 12 − = 12 and
13 13 13
s
3 2 4 2 12 2
    
3+ + 4+ + 12 + = 14
13 13 13
Hence the maximum distance is 14 and the minimum distance is 12.

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 33 / 66


Example 5:
3 4 5
If + + = 6 find the values of x, y, z which make x + y + z is
x y z
minimum.
Solution:
Given
3 4 5
+ + −6 = 0
g(x, y, z) = (38)
x y z
The required function is f (x, y , z) = x + y + z
We define the function
 
3 4 5
F (x, y, z) = x + y + z + λ + + −6
x y z
At the critical points, we have
3λ x2
1− = 0 ⇒ λ = (39)
x2 3
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 34 / 66
Example 5: (Contd.)

4λ y2
1− = 0 ⇒ λ = (40)
y2 4
5λ z2
= 0 ⇒ λ 1−
= (41)
z2 5
From (39), (40) and (41), we get
x 2 y 2 z2
λ= = =
3 4 5
√ √ √
⇒ x = 3λ , y = 2 λ , z = 5λ (42)
Using (42) in (38), we get
3 4 5
√ +√ +√ =6
3λ λ 5λ
√ √
√ 3+2+ 5
⇒ λ=
6
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 35 / 66
Example 5: (Contd.)


Substituting λ in (42), we get

3 √ √
x= ( 3 + 2 + 5)
6
1 √ √
y = ( 3 + 2 + 5)
6

5 √ √
z= ( 3 + 2 + 5)
6

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 36 / 66


Example 6:

Find the maximum value of x m y n z p when x + y + z = a.

Solution: Given
g(x, y, z) = x + y + z − a = 0 (43)
The required function is f (x, y , z) = x m y n z p
We define the function

F (x, y, z) = x m y n z p + λ (x + y + z − a)

At the critical points, we have

mx m−1 y n z p + λ = 0 (44)

nx m y n−1 z p + λ = 0 (45)
px m y n z p−1 + λ = 0 (46)
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 37 / 66
Example 6: (Contd.)

From equations (44), (45) and (46), we get

−λ = mx m−1 y n z p = nx m y n−1 z p = px m y n z p−1


m n p
= = ⇒
x y z
m+n+p
=
x +y +z
m+n+p
= by (43)
a
am an ap
.˙. x = ,y= , z=
m+n+p m+n+p m+n+p
am+n+p mm nn pp
The maximum value of f = .
(m + n + p)m+n+p

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 38 / 66


Jacobians

If u and v are functions of the two independent variables x and y , then


the determinant
∂u ∂u
∂x ∂y
∂v ∂v
∂x ∂y
iscalledthe Jacobian of u, v with respect to x, y . It is denoted by
u, v ∂ (u, v )
J or .
x, y ∂ (x, y)

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 39 / 66


Jacobians: Note

The Jacobian of u, v , w with respect to x, y , z is

∂u ∂u ∂u
∂x ∂y ∂z
∂ (u, v , w) ∂v ∂v ∂v
=
∂ (x, y, z) ∂x ∂y ∂z
∂w ∂w ∂w
∂x ∂y ∂z

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 40 / 66


Properties of Jacobians

Property 1:
If J1 is the Jacobian of u, v with respect to x, y and J2 is the Jacobian
of x, y with respect to u, v then J1 J2 = 1.
∂ (u, v ) ∂ (x, y )
i.e. × = 1.
∂ (x, y) ∂ (u, v )

Proof:
∂u ∂u ∂x ∂x
∂ (u, v ) ∂ (x, y)
× = ∂∂ vx ∂y × ∂u
∂v ∂y
∂v
∂y
∂ (x, y) ∂ (u, v )
∂x ∂y ∂u ∂v
∂u ∂x ∂u ∂y ∂u ∂x ∂u ∂y
. + . . + .
= ∂∂ vx ∂∂ u ∂y ∂x
x ∂v ∂y
∂x ∂v ∂y ∂v
∂v ∂x ∂v ∂y (47)
. + . . + .
∂x ∂u ∂y ∂u ∂x ∂v ∂y ∂v

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 41 / 66


Property 1: (Contd.)
Let u = u(x, y) and v = v (x, y)
Differentiating partially w.r.to u and v , we get
∂u ∂u ∂x ∂u ∂y 

=1= . + . 
∂u ∂x ∂u ∂y ∂u 



∂u ∂u ∂x ∂u ∂y 


=0= . + .  
∂v ∂x ∂v ∂y ∂v

(48)
∂v ∂v ∂x ∂v ∂y 

=0= . + . 
∂u ∂x ∂u ∂y ∂u


∂v ∂v ∂x ∂v ∂y 


=1= . + .  
∂v ∂x ∂v ∂y ∂v
Substituting (48) in (47), we get
∂ (u, v ) ∂ (x, y ) 1 0
× = =1
∂ (x, y) ∂ (u, v ) 0 1

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 42 / 66


Properties of Jacobians
Property 2:
If u, v are functions of r , s where r , s are functions of x, y then

∂ (u, v ) ∂ (u, v ) ∂ (r , s)
= ×
∂ (x, y) ∂ (r , s) ∂ (x, y )

Proof: R.H.S
∂u ∂u ∂r ∂r
∂ (u, v ) ∂ (r , s)
× = ∂∂ vr ∂∂ vs × ∂∂ xs ∂y
∂s
∂ (r , s) ∂ (x, y )
∂r ∂s ∂x ∂y
∂u ∂r ∂u ∂s ∂u ∂r ∂u ∂s
. + . . + .
= ∂∂ vr ∂∂ xr ∂∂ vs ∂∂ xs ∂r ∂y ∂s ∂y
∂v ∂r ∂v ∂s
. + . . + .
∂r ∂x ∂s ∂x ∂r ∂y ∂s ∂y

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 43 / 66


Property 1: (Contd.)

∂u ∂u
∂ (u, v ) ∂ (r , s)
× = ∂∂ vx ∂∂ vy
∂ (r , s) ∂ (x, y)
∂x ∂y
∂ (u, v )
= = L.H.S
∂ (x, y)
Note:
∂ (u, v , w) ∂ (u, v , q) ∂ (r , s, t)
1 = ×
∂ (x, y, z) ∂ (r , s, t) ∂ (x, y , z)
2 If u, v , w are functionally dependent functions of three independent
∂ (u, v , w)
variables x, y , z then =0
∂ (x, y, z)
3 If u, v , w are said to be functionally dependent, if each can be ex-
pressed interms of the others.
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 44 / 66
Example 1:

If x = u 2 − v 2 and y = 2uv , find the Jacobian of x and y with respect to


u and v .
Solution:
∂x ∂x
∂ (x, y )
= ∂u ∂v
∂ (u, v ) ∂y ∂y
∂u ∂v
2u −2v
=
2v 2u
= 4(u 2 + v 2 )

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 45 / 66


Example 2:

If x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ , show that


∂ (x, y , z)
= r 2 sin θ .
∂ (r , θ , φ )

Proof:
∂x ∂x ∂x
∂r ∂θ ∂φ
∂ (x, y, z) ∂y ∂y ∂y
=
∂ (r , θ , φ ) ∂r ∂θ ∂φ
∂z ∂z ∂z
∂r ∂θ ∂φ
sin θ cos φ r cos θ cos φ −r sin θ sin φ
= sin θ sin φ r cos θ sin φ r sin θ cos φ
cos θ −r sin θ 0

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 46 / 66


Example 2: (Contd.)

sin θ cos φ cos θ cos φ − sin φ


∂ (x, y, z) 2
= r sin θ sin θ sin φ cos θ sin φ cos φ
∂ (r , θ , φ )
cos θ − sin θ 0
(
cos θ cos φ − sin φ
= r 2 sin θ cos θ
cos θ sin φ cos φ
)
sin θ cos φ − sin φ
+ sin θ by expanding the third row
sin θ sin φ cos φ
"
 
= r sin θ cos θ cos θ cos2 φ + cos θ sin2 φ
2

#
 
2 2
+ sin θ sin θ cos φ + sin θ sin φ = r 2 sin θ

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 47 / 66


Example 3:
yz zx xy
If u = ,v = ,w = . Show that the Jacobian of u, v , w with
x y z
respect to x, y, z is 4.

Proof:
∂u ∂u ∂u
∂x ∂y ∂z
∂ (u, v , w) ∂v ∂v ∂v
=
∂ (x, y, z) ∂x ∂y ∂z
∂w ∂w ∂w
∂x ∂y ∂z
yz z y
− 2
x x x
z zx x
= y − 2
y y
y x xy
− 2
z z z
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 48 / 66
Example 3: (Contd.)

−yz zx yx
∂ (u, v , w) 1
= 2 2 2 zy −zx xy
∂ (x, y , z) x y z
yz xz −xy
−1 1 1
x 2y 2z 2
= 1 −1 1
x 2y 2z 2
1 1 −1
= −1(1 − 1) − 1(−1 − 1) + 1(1 + 1) = 4

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 49 / 66


Example 4:

Are the functions u = sin−1 x + sin−1 y and v = x
p
1 − y 2 + y 1 − x 2,
functionally dependent? (Given x 2 < 1, y 2 < 1.)

Solution:
∂u ∂u
∂ (u, v )
= ∂∂ vx ∂y
∂v
∂ (x, y)
∂x ∂y
1 1
√ p
= p 1 − x2 1 − y2
xy √ xy
1 − y2 − √ 1 − x2 − p
1 − x2 1 − y2
=0

Therefore u and v are functionally dependent.


Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 50 / 66
Example 5:
Verify whether the following functions are functionally dependent, and
if so, find the relation between them.
x +y
u= , v = tan−1 x + tan−1 y
1 − xy

Solution:
∂u ∂u
∂ (u, v )
= ∂∂ vx ∂∂ vy
∂ (x, y)
∂x ∂y
1 + y2 1 + x2
2 (1 − xy)2
= (1 − xy)
1 1
1 + x2 1 + y2
=0
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 51 / 66
Example 5: (Contd.)

Hence u, v are functionally dependent.


Now

v = tan−1 x + tan−1 y
 
x +y
= tan−1
1 − xy
= tan−1 u
⇒ u = tan v .

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 52 / 66


Example 5:

u = xy + yz + zx, v = x 2 + y 2 + z 2 and w = x + y + z, determine whether


there is a functional relationship between u, v , w and if so, find it.

Solution:
∂u ∂u ∂u
∂x ∂y ∂z
∂ (u, v , w) ∂v ∂v ∂v
=
∂ (x, y , z) ∂x ∂y ∂z
∂w ∂w ∂w
∂x ∂y ∂z
y +z z +x x +y y +z z +x x +y

= 2x 2y 2z =2 x y z

1 1 1 1 1 1

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 53 / 66


Example 5: (Contd.)

x +y +z x +y +z x +y +z
∂ (u, v , w)
=2 x y z R1 → R1 + R2
∂ (x, y, z)
1 1 1
1 1 1

=2 x y z =0

1 1 1

Hence the functional relationship exists between u, v and w.


Now
w 2 = (x + y + z)2
= x 2 + y 2 + z 2 + 2(xy + yz + zx)
= v + 2u
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 54 / 66
Example 6:

If u = y + z, v = x + 2z 2 and w = x − 4yz − 2y 2 , find the Jacobian of


u, v , w with respect to x, y, z. Comment on the result.

Solution:
∂u ∂u ∂u
∂x ∂y ∂z
∂ (u, v , w) ∂v ∂v ∂v
=
∂ (x, y, z) ∂x ∂y ∂z
∂w ∂w ∂w
∂x ∂y ∂z
0 1 1

= 1 0 4z

1 −4y − 4z −4y

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 55 / 66


Example 6: (Contd.)

∂ (u, v , w)
= −1(−4y − 4z) + (−4y − 4z)
∂ (x, y , z)
=0

Therefore u, v and w are functionally dependent.


Now

v − w = 2z 2 + 4yz + 2y 2
= 2(y + z)2
= 2u 2 .

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 56 / 66


Example 7:

∂ (u, v , w)
If u = xyz, v = xy + yz + zx and w = x + y + z, find .
∂ (x, y, z)

Solution:
∂u ∂u ∂u
∂x ∂y ∂z
∂ (u, v , w) ∂v ∂v ∂v
=
∂ (x, y , z) ∂x ∂y ∂z
∂w ∂w ∂w
∂x ∂y ∂z
yz xz xy

= y +z x +z y +z
1 1 1

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 57 / 66


Example 7: (Contd.)

z(x − y) x(y − z) xy
∂ (u, v , w)
= x −y y −z y +x
∂ (x, y, z)
0 0 1
z x xy

= (x − y )(y − z) 1 1 y + x
0 0 1

= (x − y )(y − z)(z − x)

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 58 / 66


Example 8:

∂ (u, v )
Find the value of the Jacobian , where u = x 2 − y 2 , v = 2xy and
∂ (r , θ )
x = r cos θ , y = r sin θ .

Solution:
∂ (u, v ) ∂ (u, v ) ∂ (x, y)
= ×
∂ (r , θ ) ∂ (x, y) ∂ (r , θ )
∂u ∂u ∂x ∂x
x y
= ∂ v ∂ v × ∂∂ yr ∂∂ θ
∂ ∂
y
∂x ∂y ∂r ∂θ
2x −2y cos θ −r sin θ
= ×
2y 2x sin θ r cos θ
= 4r 2 .r = 4r 3

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 59 / 66


Example 9:

∂ (x, y, z)
If u = x + y + z, uv = y + z, uvw = z, show that = u2v .
∂ (u, v , w)

Solution: Given z = uvw


∂z ∂z ∂z
⇒ = vw, = vw, = uv
∂u ∂v ∂v
and y + z = uv ⇒ y + uvw = uv ⇒ y = uv − uvw
∂y ∂y ∂y
⇒ = v − vw, = u − uw, = −uv
∂u ∂v ∂v
Also u = x + y + z ⇒ x = u − y − z = u − uv − uvw ⇒ x = u − uv
∂x ∂x ∂x
⇒ = 1 − v, = −u, =0
∂u ∂v ∂v

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 60 / 66


Example 9: (Contd.)

∂x ∂x ∂x
∂u ∂v ∂w
∂ (x, y , z) ∂y ∂y ∂y
=
∂ (u, v , w) ∂u ∂v ∂w
∂z ∂z ∂z
∂u ∂v ∂w
1−v −u 0
= v − vw u − uw −uv
vw uw uv
1 − vw −uw −uv
= v u 0 R1 → R1 + R2 ; R2 → R2 + R3
vw uw uv

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 61 / 66


Example 9: (Contd.)

1 − vw −w −1
∂ (x, y, z)
= u2v v 1 0
∂ (u, v , w)
vw w 1
1 0 0
= u2v v 1 0 R1 → R1 + R3
vw w 1
= u2v

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 62 / 66


Example 10:

∂ (x, y ) ∂ (r , θ )
If x = r cos θ , y = r sin θ verify that × = 1.
∂ (r , θ ) ∂ (x, y)

Proof:
y
Now x 2 + y 2 = r 2 and θ = tan−1
x
Differentiating partially w.r.t x, we get
∂r ∂θ 1  y 
2r = 2x and = . − 2
∂x ∂x y2 x
1+ 2
x
∂r x ∂θ y
⇒ = and =− 2
∂x r ∂x r
∂r y ∂θ x
Similarly ⇒ = and = 2
∂y r ∂y r

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 63 / 66


Example 10: (Contd.)

∂r ∂r x y
2 2
∂x ∂y r r = x +y = 1
∂θ ∂θ = y x r3 r
− 2 2
∂x ∂y r r
and
∂x ∂x
∂r ∂ θ = cos θ −r sin θ
=r
∂y ∂y sin θ r cos θ
∂r ∂θ
∂x ∂x ∂r ∂r
∂ (x, y) ∂ (r , θ ) 1
× = ∂r ∂θ × ∂x ∂y
∂θ = r × r = 1
∂ (r , θ ) ∂ (x, y) ∂y ∂y ∂θ
∂r ∂θ ∂x ∂y
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 64 / 66
Example 11:

∂ (x, y) ∂ (u, v )
If x = u(1 − v ), y = uv verify that × = 1.
∂ (u, v ) ∂ (x, y)

Proof:
Given x = u(1 − v ) ⇒ u = x + uv ⇒ u = x + y
∂u ∂u
⇒ = 1, =1
∂x ∂y
y y
and y = uv ⇒ v = ⇒ v =
u x +y
∂v y ∂v x
⇒ =− 2
, =
∂y (x + y) ∂ y (x + y )2
∂v y ∂v x
⇒ = − 2, = 2
∂y u ∂y u

Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 65 / 66


Example 11: (Contd.)

∂u ∂u 1 1
∂ (u, v ) x +y 1
= ∂∂ vx ∂y =
∂v y x = u2 = u
∂ (x, y) − 2
∂x ∂y u u2
and
∂x ∂x
∂ (x, y ) ∂ v = 1 − u −u = u
= ∂u
∂ (u, v ) ∂y ∂y v u
∂u ∂v
∂x ∂x ∂u ∂u
∂ (x, y) ∂ (u, v ) 1
× = u
∂ ∂v × ∂x
∂v
∂y
∂v = u × u = 1
∂ (u, v ) ∂ (x, y ) ∂y ∂y
∂u ∂v ∂x ∂y
Dr. S. SABARINATHAN, Dept. of Mathematics, KTR () Unit II-Maxima and Minima 66 / 66

You might also like