0% found this document useful (0 votes)
8 views42 pages

radiationAdS Talk

AdS Radiation short talk

Uploaded by

Beyond Café
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
8 views42 pages

radiationAdS Talk

AdS Radiation short talk

Uploaded by

Beyond Café
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 42

Radiation in AdS and Flat Holography

Gabriel Arenas-Henriquez
Yau Mathematical Sciences Center, Tsinghua University
In coll bor tion with Felipe Di z (ITMP, Moscow), Weizhen Ji (CUHK, Chin ), nd D vid River -Bet ncour (ITMP, Moscow)
rxiv:2505.xxxx

The University of Edinburgh

May 5th, 2025


a
a
a
a
a
a
a
a
a
a
Motivation
• AdS/CFT correspondence is well-est blished p r digm th t rel tes gr vity in n nti-de
Sitter sp ce in d + 1 dimensions with conform l ield theory t its d− dimension l
bound ry Maldacena 97; Gubser, Klebanov, Polyakov 98; Witten 98

• It provides hologr phic du lity: bulk dyn mics is fully c ptured by qu ntum ield theory
without gr vity on the bound ry.

Successes:

• Non-perturb tive de inition of qu ntum gr vity in AdS.

• Re lis tions of strongly coupled QFTs, bl ck hole thermodyn mics, ent nglement,
tr nsport, etc.

C n we formul te hologr phic du lity in sp cetimes th t re not symptotic lly AdS?


a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
• Fl t Hologr phy: Aims to gener lise the hologr phic principle to symptotic lly l t
sp cetimes.

Key ch llenges:

• No timelike bound ry where is the du l theory pl ced?

• No conform l bound ry metric like in AdS wh t repl ces the role of the CFT?

• Absence of r di l hologr phic direction hologr phic RG low interpret tion?

Luckily, some of these questions h ve lre dy been nswered (or p rti lly nswered)
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
a
a
a
a
f
a
Current ppro ches:

• C rrolli n Hologr phy: The bound ry of symptotic lly l t sp ces is the null in inity - its
geometry is given by degener te metric -> C rrolli n m nifold
• [Barnich-Troessaert 10, Barnich-González 13, Hartong 16, …]

• Exploit the properties of its symptotic symmetry group: Bondi-v n der Burg-Metzner-S chs
(BMS) group

4 ∼ℭ 3
[Duval-Gibbons-Horvathy 14]

• T king the ultr rel tivistic limit c → 0 of CFT le ds to C rrolli n ield theory
𝔟
𝔪
𝔰
𝔠
𝔬
𝔫
𝔣
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
a
a
a
f
f
a
Celesti l Hologr phy: Du lity between the gr vit tion l S-m trix of four-dimension l
symptotic lly l t sp ce nd correl tors in conform l ield theory living on the celesti l
2
sphere S loc ted t the sp ti l sections of the null in inity [Strominger 14]
[Pasterski-Pate-Raclariu 21]
a
a
a
a
f
a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
f
a
a
a
• These ppro ches re rel ted s the sourced W rd identities of conform l C rrolli n ield
theory living t null in inity reproduce the BMS lux-b l nce l ws
[Donnay-Fiorucci-Herfray-Ruzziconi 22]
[Bagchi-Banerjee-Basu-Dutta 22]

• Correspondence between l t limit in AdS nd ultr rel tivistic limit t the bound ry
[Barnich-Gomberoff-Gonzalez 12]
ℓ→∞↔c→0 [Bagchi-Detournay-Fareghbal-Simon 12]
[Ciambelli-Marteau-Petkou-Petropoulos-Siampos 18]
[Campoleoni-Delfante-Peka-Petropoulos-Rivera Betancour-
Vilatte 23]
[Alday-Nocchi-Ruzziconi-Yelleshpur Srikant 24]

• Still lot to underst nd on the Fl t/C rrolli n-Celesti l limit from AdS/CFT correspondence
[de Boer-Hartong-Obers-Sybesma-Vandoren 23]
[Poulias, Vandoren 25]
[Lipstein-Ruzziconi-Yelleshpur Srikant 25]
a
a
a
a
a
a
f
a
f
a
a
a
a
a
a
f
a
a
a
a
a
a
a
a
a
a
a
a
a
f
Gr vit tion l r di tion pl ys n import nt role in l t hologr phy!

C rrolli n: It rel tes to non-equilibrium phenomen in the bound ry C rrolli n luid


[Ciambelli-Marteau-Petkou-Petropoulos-Siampos 18]
[Fiorucci-Pekar-Petropoulos-Vilatte 25]
Celesti l: Soft theorems, memory e ects, nd Celesti l W rd Identities

Two guiding questions:

• How do we ch r cterise r di tion in AdS?

• Is the l t sp ce limit of ‘’r di tion`` in Ads comp tible with l t hologr phy?

-> C n we recover celesti l oper tors nd C rrolli n dyn mics from AdS?
a
a
f
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
ff
a
a
a
a
a
f
a
a
a
a
a
a
f
a
a
a
a
a
a
f
Radiation in Asymptotically Flat Spacetimes

• In l t sp ce, gr vit tion l w ves re un mbiguously de ined s the


r di tive modes t null in inity

• To study r di tion system tic lly, we use the Bondi g uge

( )( )
2 β V 2 2β A 1 A B 1 B
ds = e du − 2e dudr + gAB dΘ + U du dΘ + U du
r 2 2

• Null geodesics re gener ted long the ine p r meter r

• Extr g uge condition ∂rdet ( 2 ) = 0


gAB
r
a
f
a
a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
a
a
a
a
a
ff
a
a
a
f
a
• Asymptotic lly, for l rge r, we h ve the following f llo conditions

2 2 2
2m B 2 2 z
ds = − du − 2dudr + 2r γzz̄dzdz̄ + du + rCzzdz + D Czzdudz
r

r [3 ]
1 4 1
( Nz + u∂zmB) − ∂z(CzzC ) + cc + …
zz
+
4

mB = mB(u, z, z̄) : Bondi M ss

Czz = Czz(u, z, z̄) : She r

Nz = Nz(u, z, z̄) : Angul r Momentum Aspect


a
a
a
a
a
a
a
ff
+
The she r tensor CAB is free d t t ℐ , nd it cont ins inform tion bout r di tion
through the Bondi news tensor

Nzz = ∂uCzz

• C n be interpreted s the gr vit tion l n logue of the ield strength Fuz = ∂u Az

+
• The tot l energy lux cross ℐ is

dE 1
32πG ∫S2
AB
= NABN dΩ
du

• Non-zero news ⇒ non-zero gr vit tion l r di tion


a
a
a
f
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
a
a
Gr vit tion l w ves c use tr nsverse tid l deform tions,
governed by the geodesic devi tion equ tion:
2 A
d ξ 1 A B
= − NB ξ
du 2 2
Wh t detector sees:

• If NAB ≠ 0, detector records oscill tory stretching nd


squeezing of the sp cetime —this is the physic l imprint of
gr vit tion l w ve.
• The integr ted e ect of burst of r di tion gives the displ cement memory
— gr vit tion l memory e ect
uf

∫u
ΔCAB = duNAB(u)
i [Braginsky-Thorne 87, Christodoulou 91, …]

11
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
ff
a
a
a
a
ff
a
a
a
a
a
a
a
a
a
a
a
These me surements re directly tied to symptotic ch rges nd symmetries in the
BMS fr mework:

• The gr vit tion l memory e ect corresponds to l rge supertr nsl tion
rel ting the v cuum before nd fter r di tion p sses.

• The ch nge corresponds to the soft sector of gr vity — encoded hologr phic lly
in Celesti l mplitudes nd memory observ bles. [Strominger-Zhiboedov 14]

Direct me surement of the gr vit tion l memory effect m y be possible in the coming dec des
[Van Haasteren-Levin 10, Lasky-Thrane-Levin-Blackman-Chen 16, Einstein Telescope Collaboration 25]
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
ff
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
A novel characterisation of radiation
[Fern ndez-Álv rez nd Senovill 19,20,21,22] proposed geometric ch r cteris tion of gr vit tion
r di tion for symptotic lly l t nd de Sitter sp cetimes.

This novel propos l provides criterion b sed on geometric construction th t utilises conform l
2
comp cti ic tion techniques, introducing non-physic l metric g ̂ =Ωg

Using this metric, we c n construct resc led version of the Bel-Robinson tensor

̂ = ŵ β α β α
μνρσ ρμαŵ νσβ + *ŵ ρμα * ŵ νσβ ,

β
where ŵ ρμα ̂ β−1
= Ω W ρμα is resc led version of the Weyl tensor
𝒟
a
a
á
a
f
a
a
a
a
a
a
a
f
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
From here, we de ine the super Poynting vector s

̂μ=− ̂μ n ̂ α β γ
n ̂ n ̂
αβγ
μℬ
where nμ̂ = ∂μΩ is norm l to the bound ry, s tisfying nμ̂ n ̂ = − Λ/3

• In bscence of m tter, the super Poynting vector is conserved t the bound ry ∇̂ μ ̂ = 0


μℬ

Wh t inform tion is encoded in this qu ntity?

• In l t sp ce, using Bondi coordin tes, one c n check th t the le ding order is

̂ r = 2∂ N ∂ N AB ̂ u = 2D N C D N AB ̂ A = − 4∂ N ABD N C
u AB u C A B u C B

NAB = 0 ⇒ ̂ = 0
ℐ μ ℐ
• Therefore, in l t sp ce
𝒫
𝒟
𝒫
𝒫
𝒫
𝒫
𝒫
a
f
a
a
a
a
f
a
f
a
a
a
a
a
a
a
a
a
a
a
a
a
Criterion:

Absence of gr vit tion l r di tion t ℬ if nd only if

̂ =0
μ ℬ

• This criterion h s been tested for known solutions in l t sp ce (within Petrov


cl ssi ic tion) greeing with previous results.

C n we extend this de inition to AdS?

If so, wh t inform tion is c ptured by this qu ntity?


𝒫
a
a
f
a
a
a
a
a
a
a
f
a
a
a
a
a
a
a
f
a
a
Radiation in AdS
[Ci mbelli-P sterski-T bor 24] proposed to extend the fr mework to neg tive cosmologic l
const nt
Using Fe erm n-Gr h m exp nsion, we c n rewrite the super Poynting in terms of hologr phic
d t

̂ = − 4C i T jk = ϵ ijk[ , T]
i ℬ
jk jk

Bound ry Cotton tensor Hologr phic stress tensor

• For non-trivi l Poynting vector in AdS, we need non-conform l bound ry!

• Addition lly, the Cotton nd hologr phic stress tensors need to be line rly independent
𝒫
𝒞
a
a
a
a
a
a
a
ff
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Ex mple A: T ub-NUT-AdS
2 2 2 2
dsbdy = − (dt + 2n(1 − cos θ)dϕ) + ℓ dΩ
[Kalamakis-Leigh-Petkou 20]

ℓ ( ℓ )
2
n 4n
( )
(0)
Non-conform lly l t ij = 1 + 3ui uj + g With u i = δti
• 4 2 ij

M
( )
(0)
• Hologr phic stress tensor describes perfect luid ij = 3uiuj + gij
8πGℓ 2

• Energy-momentum/Cotton du lity ij ∝ ij ⇒ ̂ =0
iℬ
𝒞
𝒯
𝒯
𝒫
𝒞
a
a
a
a
f
a
a
a
f
Ex mple B: Robinson-Tr utm n AdS

2 i j 2 2 dζd ζ̄
dsbdy = hijdx dx = − dt + 2ℓ
P 2

• Non-conform lly l t provided non-const nt G ussi n curv ture

( ij )
(0)
• Hologr phic stress tensor h s dissip tive corrections ij = ε 3ui uj + g + Π ij
[de Freitas-Reall 14]
[Bakas-Skenderis 14]
[Ciambelli-Petkou-Petropoulos-Siampos 17]


• Non-v nishing Super Poynting ̂ i
≠0

Are dissipative e ects in uid/gravity related to radiation?


𝒫
𝒯
a
a
a
a
f
a
ff
a
a
fl
a
a
a
a
a
a
Fluid/gravity perspective
Fluid/Gr vity correspondence connects the dyn mics of long-w velength perturb tions
in AdS sp ce to the one of rel tivistic conform l luid de ined t the timelike bound ry
[Bh tt ch ryy -Hubeny-Minw ll -R ng m ni 07]

(0)
The conform l luid dyn mics is given by its b ckground geometry gij nd the stress
ij ij
tensor th t s tis ies ∇i =0

The luid energy-momentum tensor is decomposed long the velocity ield s


ε : Energy Density
( )
2 (0) 2 2
ij = ε + p ℓ u u
i j + pgij + τij + ℓ uiqj + ℓ ujqi
ij
τ : Viscous Stress
Conform l inv ri nce requires the energy momentum to be i
q : Heat Current
tr celess, hence implying the conditions 1
(0) i j
gij u u =− 2
ε = 2p , and τii = 0 ℓ
𝒯
𝒯
19
𝒯
a
a
f
a
a
a
a
a
a
a
a
a
f
a
a
f
a
a
a
a
a
a
a
a
a
a
a
f
a
f
a
a
f
a
a
a
a
• The Cotton-York tensor c n lso be decomposed long the timelike congruence

2( )
c 1 (0)
ij = 3ℓuiuj + gij − ℓcij + ℓuicj + ℓujci

• Here, c, ci nd cij correspond to Cotton density, Cotton current nd Cotton stress tensor,
respectively

Just s the bound ry energy-momentum tensor, the Cotton-York tensor ij is tr celess nd


cov ri ntly conserved, n mely
ij (0) ij
g(0) ij =0 ∇i =0
𝒞
𝒞
𝒞
𝒞
20
a
a
a
a
a
a
a
a
a
a
a
a
Let us focus on the lgebr ic lly speci l solutions of the Petrov type.

The bound ry geometry s tis ies the following identities


1 ℓ2
σij = 0 , qi = *ci , and τij = − *cij .
8πG 8πG

[Ciambelli-Marteau-Petkou-Petropoulos-Siampos 18]

Using bulk reconstruction techniques, the line element written in the Newm n-Unti g uge is

( )
4
ℓ 8πGεr + cγ
( )
2 2 i 2 (0) 2 4 i j
ds = 2ℓ uidx dr + r gij + 2rℓ u(i Aj) + ℓ Sij + uiuj dx dx
r2 + γ2

21
a
a
a
a
a
f
a
a
a
We c n obt in the super Poynting vector in terms of luid v ri bles

1
( k )
̂ i = 3ℓ 2 (8πGεq i − c *q i) − 16πGℓ 2 2τ ijq + u i (τ klτ − ℓ 2q kq )
j kl
16πG
i ij
Cle rly, it v nishes when the luid is perfect, i.e., q = 0 nd τ = 0

In lgebr ic lly speci l solutions, dissip tive processes re m pped to the bulk sp cetime s
gr vit tion l r di tion.
𝒫
22
a
a
a
a
a
a
a
a
a
a
a
a
a
f
a
f
a
a
a
a
a
a
a
For sp cetimes outside Petrov cl ssi ic tion, the super Poynting is

1
( j) ( j k)
̂ i = 3ℓ 2 (ε *c i − c *q i) + 2ℓ 2 ℓ 2 *c ijq + *τ ijc + 2ℓ 3η ijk c jlτ + c q
j j lk
16πG

Even in the bsence of dissip tion, the super Poynting is non-v nishing

1 ̂ i = 3ℓ 2ε *c i .
16πG

According to this, the minimum necess ry condition for the solution to r di te is non-v nishing
bound ry Cotton current (with non-zero energy density).
𝒫
𝒫
23
a
a
a
a
a
f
a
a
a
a
a
a
a
The condition of the Poynting to be divergence-free t the bound ry implies

̂ ̂
∇i = 0 i ℬ

[2 ]
1 3 4 1
(0) i
∇i S = (0)
∇i ε u + τ qj − u (τ − ℓ q ) +
2 i ij i 2 2 2 j
c *q − εT
εT 3 16πG

There is bound ry entropy production due to bulk r di tion


𝒫
24
a
a
a
a
a
Flat Limit
• In order to comp re with the l t sp ce result, we c n consider the l t limit of the super
Poynting of AdS. To this end, we will m ke use of the Λ− BMS g uge
[Compère-Fiorucci-Ruzziconi 19]

V
ds = e du − 2e dudr + gAB (dΘ − U du) (dΘ − U du)
2 β 2 β A A B B
r

( )
2 1 1 1 1
gAB = r qAB + CAB + 2 DAB + 3 EAB + 4 FAB + …
r r r r
a
f
a
a
a
a
a
f
a
Solving Einstein’s equ tions order by order in the symptotic exp nsion

A 1 AB
β = β0(u, x ) − C CAB + …
32r 2

(2 )
A A B 2 2β0 A 1 2β0 1 AB AB
U = U0 (u, x ) + e ∂ β0 − 2 e DBC + C ∂B β0
r r

[ ( 3 ) ]
2 2β A 1 AB C 1 AB 3 CD A
− e 0 N − C D CBC + ∂B β0 + DB − CCDC ∂ β0 + …
3 2 16

V Λ 2β 2
= e r − r (DAU0 + ℓ)
0 A ̂
r 3

[2 ]
2β0 1 Λ AB A A 2m
−e R[q] + CABC + 2DA∂ β0 + 4∂Aβ0∂ β0 + +…
16 r
𝒟
26
a
a
a
The tr celess symmetric tensor becomes free in the l t limit

Λ
[( 0) A]
CAB = e −2β0
∂ − ℓ ̂ − D U C
q + D U 0
+ D U 0
u C AB A B B
3

The bound ry structure

(3 )
2 Λ 4β0 A 0 2 0 A A B
ds(0) = e + U0 UA du − 2UAdudx + qABdx dx ,

0 ∘
In the l t limit (Λ → 0), the bound ry g uge freedom U = 0 , β0 = 0 , q= q
renders the line element degener te.

27
a
f
a
a
a
a
a
f
a
There is di eomorphism order by order in the hologr phic coordin te to comp re with the
Fe erm n—Gr h m g uge

4 (Λ) 2 (Λ)
3|Λ| −3m − 3 NB
Tij = ,
16πG 2 (Λ)
− 3 NB 2 (Λ)
m qAB + JAB
Λ

1
( )
(Λ)
mB = mB + ∂ + ℓ ̂ C C AB
AdS Bondi M ss
u AB
16

( ) 4 (Λ )
(Λ) 3 B 1 ̂ 3 1 3 CD AdS ngul r
NA = NA − D NAB − ℓCAB − ∂A R[q] − C CCD
2Λ 2 8 momentum spect

28
ff
a
a
a
a
ff
a
a
a
a
a
a
a
a
Then, we c n use the hologr phic stress tensor expressed in terms of Λ− BMS qu ntities nd
exp nd in powers of the cosmologic l const nt before t king the l t limit

(Λ) (Λ) (Λ)


3 2 2
3 3 3
̂u= ̂u (Λ ) , ̂A= (Λ )
AB −1 AB C −1
2∂uN ∂uNAB + (−2) + 2∂uN DC N B +

[Ciambelli-Pasterski-Tabor 24]

Λ→0 ( 3 )
0 0
(0 − 16πG ∂uNAB)
|Λ| 2
lim Tij = 1

1
0 0
Λ→0 ( 3 )
ij = ( C ) (0 − 2 NAB)
|Λ| 2
0 0
lim lim ij = 1
0 −ϵAC∂uN B Λ→0

NAB = 0 ⇒ ̂ = 0
ℐ μ ℐ
We c n see th t it is consistent with the l t sp ce de inition!
𝒞
𝒮
𝒫
𝒫
𝒪
𝒫
𝒪
𝒫
29
a
a
a
a
a
a
f
a
a
a
f
a
f
a
a
a
Carrollian luid structure

Consider the P p petrou-R nders p r meteris tion

( )
(0) i j 1 A 2 A B
gij dx dx = − 2 Ωdu − bAdx + aABdx dx

• Under C rrolli n di eomorphisms, Ω tr nsforms s sc l r, bA tr nsforms s connection,
nd aAB tr nsforms s r nk two tensor

i 1 i 1
• We lso consider the bound ry luid velocity u = ∂ u to be t rest, s tisfying u ui = −
Ω ℓ2
2 A B
ds = aABdx dx : Degener te metric
After t king the l t limit Carroll
1
υ = ∂u : C rroll vector
Ω
A
μ = − Ωdu + bAdx : clock-form with bA being the Ehresm nn conn.
30
a
a
a
a
a
a
a
f
a
a
f
a
a
ff
a
a
a
a
a
f
a
a
a
a
a
a
a
a
a
a
a
a
a
a
• We w nt to obt in the C rrolli n exp nsion of the super Poynting for lgebr ic lly speci l
solutions.

• Exp nding for sm ll cosmologic l const nt (l rge ℓ), we ind the following exp nsion of the
he t current nd viscous stress

A A 1 A AB 2 AB AB
q = Q + 2π , τ =−ℓ Σ −Ξ

1 1
With the C rroll he t currents given by QA = *χ A , πA = *ψ A
8πG 8πG

AB 1 AB AB 1 AB
And C rroll viscous stress Σ = *X , and Ξ = *Ψ
8πG 8πG

31
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
a
a
a
Exp nding the super Poynting round the l t limit

1 ̂ 4 ̂ (−4) 2 ̂ (−2) ̂ (0) 1 ̂ (2)


u = ℓ u + ℓ u + u + u
Ω ℓ 2

̂ A = ℓ4 ̂ A 2 ̂A + ̂A + 1 ̂A
(−4) + ℓ (−2) (0) (2)
ℓ 2

We ind the le ding terms to be

̂ (−4) = 16πGΣABΣ , ̂ (−2) = 16πG (2Σ ΞAB − Q AQ )


u AB u AB A

̂A = 32πGΣ Q AB
(−4) B

The le ding beh viour is rel ted to the C rrolli n energy lux -> non-conserved qu ntities
[Ciambelli-Marteau-Petkou-Petropoulos-Siampos 18]
𝒫
𝒫
𝒫
𝒫
𝒫
𝒫
𝒫
𝒫
𝒫
𝒫
𝒫
𝒫
𝒫
32 [Campoleoni-Delfante-Peka-Petropoulos-Rivera Betancour-Vilatte 23]
f
a
a
a
a
a
a
a
f
a
a
f
a
Comp ring with the result in the Λ -BMS g uge, we propose the following C rrolli n version of
the Bondi news tensor

AB 1 ¯ AB
Σ ∝ u
Ω
𝒟
𝒩
33
a
a
a
a
AdS C-Metric
As n ex mple, we c n consider n cceler ting bl ck hole in AdS
[Kinnersley-Walker 70]
[Plebanski-Demianski 76]
[Hong-Teo 03]
¯
( Σ̄(x̄) )
2 2
2 1 ¯ 2 dr̄ 2 d x̄ 2
ds = − f(r̄)dt̄ + + r̄ + Σ̄(x̄)dȳ
Ω̄(r̄, x̄)2 ¯
f(r̄)

Using the Newm n-Penrose form lism, it h s been


Ω̄(r̄, x̄) ≡ 1 + Ar̄x̄
shown th t it is r di tive solution for ny v lue of
the cosmologic l const nt
2
Σ̄(x̄) ≡ (1 + 2mAx̄)(1 − x̄ ) […, Bicak-Krtous 02, Podolsky-Ortaggio-Krtous 03, Fernández-Álvarez-
Podolsky-Senovilla 24]

(3 )
2m Λ Slow cceler tion regime Aℓ < 1 , only one bh horizon
¯f(r̄) ≡ 1 − − r̄ 2 2 2
+ A + 2mA r̄

R pidly cceler ting regime Aℓ > 1 bh horizon + cc horizon
34
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
In order to obt in hologr phic qu ntities, we put the metric in the Weyl—Fe erm n—Gr h m
g uge [AH-Cistern -Di z-Gregory 23]
[AH-Di z-River -Bet ncour 24]

( z̄ )
2
1 i n 2 2 2 dz̄ i i j
r̄ ∑
= ζ(n)(x̄ )z̄ ds = ℓ H − kid x̄ + hijd x̄ d x̄
n≥0

2 2
ℓ Ω f 1
(2Aδi − z̄ ∂iα)
−2 i n x̄ 2
(z̄ + αz̄ ) ∑
H = ζ(n)(x̄ )z̄ , ki =
2 2
n≥0
2z̄(1 + αz̄)

(0)
ki = αi Weyl Connection

35
a
a
a
a
a
a
a
a
a
ff
a
a
a
The bound ry is non-conform lly l t nd the stress tensor is non-perfect

( i j γij ) diag (0, −Σ )


2 4
(0) ϵ (0) 3mA ℓ 1 2
Tij = Tij + Πij = 2
3u u + + 16πG
,
1 − A 2ℓ 2Σ
Perfect Fluid part Dissipative corrections

We ind th t the Poynting vector is non-v nishing for ny v lue of the cceler tion p r meter

( ) ( )
2 2 2 2 2
9Am Σ 1 − A ℓ Σ 1 − 2A ℓ Σ
̂ i = − 4C i T jk = δ i
jk x̄
2πG
• There is no bound ry entropy production, in greement with [Ci mbelli-Petkou-Petropoulos-
Si mpos 17]
(0) i
∇i S =0
𝒫
36
a
f
a
a
a
a
f
a
a
a
a
a
a
a
a
a
a
a
To c st the metric in the Λ-BMS g uge, we propose the following di eomorphism which llows to
solve the coe icients order by order ne r the bound ry

A −n

t̄ = U(n)(u, x )r
n≥0
1 A −n

= r̃ = R(L)r + R(n)(u, x )r
z̄ n≥0

A A A −n

x̄ = X(n)(u, x )r
n≥0

37
a
ff
a
a
a
ff
a
(r ) (r )
−4 −3
With these functions, we ind th t grr = grA =

(r )

detgAB = detqAB + −3
β0 = 0 = ℓ̂

Addition lly, we obt in


·2
(Λ) 3Υ
m = mB+ ·
32Υ 2
(Λ + 3A 2Υ
)

(Λ) 3 B
NA = − D NAB + NA

3
(Λ )
−2
JAB = − ∂uNAB +
Λ
𝒳
𝒪
𝒪
𝒪
𝒪
38
a
a
f
a
As expected from r di tive solution, in the l t limit, we ind non-trivi l she r nd news tensor

[ ]
·
( )
1 2
Υ Υ∂ x − 1 ∂x
CAB = ·
Υ2
2A ∂x 1

This llows us to construct the Celesti l oper tors ssoci ted with the C-metric

One c n comp re with l t sp ce comput tion by [Strominger nd Zhiboedov 16], where they
provide physic l interpret tion for superrot tions in the presence of topologic l defects.
𝒴
𝒳
𝒴
𝒴
39
a
a
a
a
a
a
a
a
a
f
a
a
a
a
a
f
a
a
a
a
a
f
a
a
a
a
a
a
Final remarks
Gr vit tion l r di tion in AdS sp cetimes o ers powerful window into the dyn mics of
hologr phy beyond equilibrium.

Cruci lly, underst nding r di tion in AdS m y sh rpen our intuition nd strengthen the
conceptu l bridge to l t sp ce hologr phy

T ke- w y mess ges:

1. The Super-Poynting vector o ers consistent nd cov ri nt criterion for identifying gr vit tion l r di tion in AdS
sp cetimes.

2. This notion is supported by well-known ex mples, including lgebr ic lly speci l solutions nd the AdS C-metric.

3. 3. Dissip tive corrections in the bound ry luid encode r di tive bulk degrees of freedom

4. The l t limit of r di tive AdS solutions n tur lly connects to celesti l nd C rrolli n hologr phy, suggesting
uni ied picture of r di tion cross symptotics.

40
a
a
a
f
f
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
f
a
a
ff
a
a
a
a
a
a
a
a
a
a
f
a
a
a
ff
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Future Work

• Poynting vector through n improved ction principle?

• A more robust criterion for r di tion in AdS?

• Check more gener l b ckgrounds with bound ry entropy production

• Rel te the lgebr nd OPEs of Energy Detector Oper tors with contr ctions of the AdS
symptotic symmetry group

• A generic m p between NU nd Λ-BMS g uge

41
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Thanks for listening!

42

You might also like