lOMoARcPSD|59550491
MATH204 Final EXAM WITH Solutions DEC 2018
Vectors and Matrices (Concordia University)
Scan to open on Studocu
Studocu is not sponsored or endorsed by any college or university
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
CONCORDIA UNIVERSITY
Department of Mathematics & Statistics
Course Number Section(s)
Mathematics 204 All except EC
Examination Date Pages
Final December 2018 2
Instructors Course Examiner
All E. Cohen
Special Instructions:
[> Only approved calculators are allowed.
l> Justify all your answers.
[> All questions have equal value.
MARKS
1. Use Cramer’s rule to compute the solution of the system:
II’] + 1‘2 2 3
—3ml + 2.13 = 0
:1'2 — 2.173 = 2
l 0 —2
2. Find the inverse of the matrix A 2 ~13 1 4 , if it exists.
2 —3 4
3. Find all solutions of the system:
1:1 + 61'2 + 2273
213
~ 51‘;
— 81:4
—
—
2:175
:115
:
2
—-4
I5 :— 7
1 3 0 5
2 7 1 3
4. Flnd the detemnnant of.
_
.
. A —
1 2 1 6
2 3 4 5
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
MATH 204 Final Examination December 2018 Page 2 of 2
5. a) Let u : (1, 5, —2). v = (3. —1. 5). Find the orthogonal projection of v on u.
b) Let 2 (3.1.2),
u': (2,3,1), 1L2 113 2 (1.2.3). Find Che-2c; such that
01 U1 +02 11.2 +C3 U3 = (1,0,1).
6. a) Find the area of a triangle with vertices (1, 1, 2) , (0.1.4), (1. 2, 5).
Find a vector orthogonal to the plane of the triangle.
b) Find the distance between the point (2, —3) and the line 217 2 3y + <1.
7. a) Are the vectors (2. ——2, 1) . (1, —3. 2) . (—7.5,4)
linearly dependent or independent?
b) Find the parametric equations for the line in R3 passing through
(1. 4, 5) and perpendicular to the plane 23* — 41/ + 3; = 1.
@HI
7
8. Let A: OOH COCO
GOA Ol-‘O OCEN)
H00
5 and X =
NM
—2 u
v
117
Find a basis for the solution space of the homogeneous system AX = 0.
9. Find the standard matrices for following operators on R2:
a) a rotation clockwise of 45°.
b) a reflection about line y = ~17.
l 3 3
10. Let A = —3 —5 —3 . Find a matrix P such that P”1AP = I).
3 3 1
a diagonal matrix.
The present document and the contents thereof are the and copyright of the professor(s)
who prepared this exam at Concordia University. No partproperty
of the present document may be used for
any purpose other than research or teaching purposes at Concordia University. Furthermore. no part
of the present document may be sold. reproduced. republished or i'e»Llisseiniiiate<l in
form without the prior written pern ssion of its owner and any manner or
holder. copyright
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
M 120/6",
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
r9757?
M
M my“
:fi (45an
\
I
2K32_/)5)'(/1/_
Has/"a //
8 fi/ 22:01
£3
3
/ «1’0 ————————-7 0 l
0‘. 4/9
I
a 3 / 0 0 I; V?
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
6A, Mel/<51); GHQ/fl); M4935).
$5 .
PR =€>,/ 3)
=éL/IP'ZIXID75”
flax/2*; o a 4-21, 3,—0
3"“,O / 3
’2)
A=§L//(—a,a/—0// ”72””;
D:
f fl’f—l
/9~(9~)”3<;3)~_L/-/
a
I W9 —’
figs?" +63) /3 /3
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
—-7 0
f‘flo
O
9/1/sz
I
L1 I
W
'-;{-—3 5 1
o
0
'
O I
8’
”(/1455)x=(005,%/%1
MMW¢mei//%
”T“ (:2 :(DV’Z’L/J”).
flu :2 ”g +ol7t/’_7:%+0¢At/’2/:%+Oégt
4a.... Hat/’7- : 94¢; 3:54—32:
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
‘41“
8W4 l ).H‘
m
o / o
OO\ I o
O
O
’6
/
W 0
00%
J O
.
0.! L.
C7.
A. g: ~45” 9513/5?
Coax (3/5] _’6€;,V(3/5)
@(3/5) QM, (3/5)
\E Mi
'5: R
:12 W9:
51
3
.
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)
lOMoARcPSD|59550491
/o, 1
; 5—4; (at.
Downloaded by Omar Mostafa (omarmostafa427@gmail.com)