Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance
Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin
Error Detection: A Simple Example
Suppose bits are occasionally ipped in transmission, e.g., the message 1110001 gets corrupted to 0110011 (two bit ips) By using a code with sucient redundancy, we can hope to detect/correct such errors, assuming there arent too many of them For example, suppose we just repeat each bit twice If the receiver gets xx, it assumes the bit is x If the receiver gets two dierent bits, it requests retransmission The above is an example of an error detecting code (that can detect one error) The code is not considered to be error correcting because retransmission is necessary
Theory in Programming Practice, Plaxton, Spring 2005
Error Correction: A Simple Example
Suppose the sender codes each bit x as xxx Claim: The receiver can now correct a single error How? How many errors can be detected?
Theory in Programming Practice, Plaxton, Spring 2005
Parity Check Code
Commonly used technique for detecting a single ip Dene the parity of a bit string w as the parity (even or odd) of the number of 1s in the binary representation of w Assume a xed block size of k A block w is encoded as wa where the value of the parity bit a is chosen so that wa has even parity Example: If w = 10101, we send 101011 If there are an even number of ips in transmission, the receiver gets a bit string with even parity If there are an odd number of ips in transmission, the receiver gets a bit string with odd parity
Theory in Programming Practice, Plaxton, Spring 2005
Parity Check Code: Decoding
If the receiver gets a bit string wa with even parity, it assumes that there were zero ips in transmission and outputs w Note that the receiver fails to decode properly if the (even) number of ips is nonzero If the receiver gets a bit string wa with odd parity, it knows that there were an odd (and hence nonzero) number of ips, so it requests retransmission The receiver never makes a mistake in this case Still, it is a bad case because no progress is being made Underlying assumption: Flips are rare, so we can tolerate the corruption of the extremely small fraction of blocks with a nonzero even number of ips
Theory in Programming Practice, Plaxton, Spring 2005
Parity Check Code: Analysis of a Simple Example
Note that the bit-duplicating code (where bit a is transmitted as aa) we discussed earlier is a parity check code Suppose we are using this code in an environment where each bit transmitted is independently ipped with probability 106 Without the code, one bit in a million is corrupted We use one bit to encode each bit With the code, only about one bit in a trillion is corrupted The retransmission rate is negligible, so on average we use slightly over each bits to encode each bit
Theory in Programming Practice, Plaxton, Spring 2005
Two-Dimensional Parity Check Code
Generalization of the simple parity check code just presented Assume each block of data to be encoded consists of mn bits View these bits as being arranged in an m n array (in row-major order, say) Compute m + n + 1 parity bits One for each row, one for each column, and one for the whole message Send mn + m + n + 1 bits (in some xed order) How many errors can be detected?
Theory in Programming Practice, Plaxton, Spring 2005
Hamming-Distance-Based Bounds on Error Correction and Detection
Assume we would like to encode each symbol in a given set by a distinct codeword, where all codewords have the same length k For a given k, and some desired level of error correction or detection, how large a set of symbols can we support? It is also interesting to consider variable-sized codewords, but we will restrict our attention to the simpler scenario of xed-size codewords Theorem: Let S be a set of codewords and let h be the minimum Hamming distance between any two codewords in S. Then it is possible to detect any number of errors less than h and to correct any number of errors less than h/2
Theory in Programming Practice, Plaxton, Spring 2005
Error Detection Bound
Let S be a set of codewords and let h be the minimum Hamming distance between any two codewords in S Why are we guaranteed to detect any number of errors less than h? Is there guaranteed to be a case in which we are unable to detect h errors?
Theory in Programming Practice, Plaxton, Spring 2005
Error Correction Bound
Let S be a set of codewords and let h be the minimum Hamming distance between any two codewords in S Why are we guaranteed to be able to correct any number of errors less than h/2? Is there guaranteed to be a case in which we are unable to correct h/2 errors?
Theory in Programming Practice, Plaxton, Spring 2005