Carbon Steel Heat Treatment Guide
Carbon Steel Heat Treatment Guide
Q)
0.
E
1400
1600
12 10 8
-1-__+-__--1 800
6
1020 steel
150-mm (6-in.) diam
Weight, approx 65 kg (142 lb)
4 2
O'-------'-----'-----'---------'-----L-----'
o
8001-\''r''Y''k----+---+---_j__--_+---------j
1000 ,..----.-----,-------,----,-------,------,
U
o
6001----\---i';.-T-lHf--
,a
Q)
0.
E 400
c:
30 1-----/---+--+----=-f"""'=::---1
I
700 800 600 500 400
10 '-------'----'---"------'----'-------'
200 300
U
a::
I
<h
en
Q)
c:
"E
'" I
Tempering temperature, C Tempering temperature, C Tempering temperature, C
126/ Heat Treater's Guide
Room-temperature hardness of three carbonsteelsafter production tempering. (a) Automotivesteering-armforgings made of fine-
grain1035steel. Sectionthicknessvaried from16to29 mm(%to 1%in.). Forgingswereaustenitizedat 825C (1520OF) inoil-firedpusher
conveyor furnace, held45 min, quenched in water at 21C (70 OF), andtempered45 minat 580to 625C (1080to 1160OF) in oil-firedIink-
belt furnaceto requiredhardnessrangeof 217to285HB. Hardnesswascheckedhourlywitha 5%sample; readingsweretakenonpolished
flash lineof 29 mm(1 %in.) section. Survey of furnace revealedtemperaturevariationat 605C (1120OF) of 8, -4C (15, -7 OF). Datarep-
resent forgings fromfour mill heats of steel and cover a 6-week period. (b) Woodworkingcutting tools forged from 1045 steel. Sectionof
cuttinglip was hardenedlocally by gas burnersthat heatedthe steel to 815C (1500OF). Toolswere oil quenchedand temperedat 305to
325 C (585 to 615 OF) for 10 min in electrically heated recirculating-airfurnaceto a desired hardness range of 42 to 48 HRC. Datawere
recordedduringa 6-monthperiodand representforgingsfrom12mill heats. (c) Platesections, 19to22 mm(%to 7Ja in.) thick, of 1045steel
werewater quenchedto ahardnessrangeof 534to653 HRBandtempered1hat 475C (890OF) incontinuousroller-hearthfurnaces. Data
represent a 2-monthproductionperiod. (d) Forged1046steel heatedto 830C (1525OF), and quenchedin caustic. Forgingswere heated
ina continuousbelt-typefurnaceand individuallydumpquenchedin agitatedcaustic. Forgingsweighed9 to 11 kg (20to 241b)each; maxi-
mumsection, 38mm(1%ln.). (e) As-quenchedforged1046steel shownin (d), temperedat 510C (950OF) for 1h. (f)As-quenchedforged
1046steel shown in (d), tempered at 525C (975OF) for 1 h. Averagehardnessdata for all but (c) obtained by calculatingaverage of high
and lowextremesof hardnessspecification rangefor each batch.
Average hardness, HB
(f)
331-
340
340 350 360 370 380
Hardness, H8
281- 291- 301- 311-
290 300 310 320
Average hardness, HB
24
~ 20
E
'g 16
Q.
.: 12
0
~
8
'"
.0
E
4 :J
Z
0
290
(e)
10..---------------, ~ - - - - - - - - - , I
(e)
11 81----------------i 1----------11
s
~ 61----------------i 1----------11
...
o
~ 41------1
.0
E
~ 2 1------rT77r-V/
Average hardness, HRC
(b)
591- 601- 611- 621-
600 610 620 630
Average hardness, HB
Average hardness, H8
12
ID 10
s:
u
...
8
'"
.0
...
0
6
~
'"
.0
E 4
:J
Z
0
(a)
10
'"
'"
8
s:
~
.0
6
...
0
~
4
'"
.0
E
:J
2
z
0
561-
570
(d)
Carbon Steels (1000,1100,1200, and 1500 Series)/127
1062: Heat-to-Heat Variations in Depth of Hardness. Heat-to-
heat variations in depth of hardness among three heats. Hubs
were flame hardened on the inside diameter to a minimum of 59
HRC at 1.9 mm (0.075 in.) below the surface. Parts were heated
12 s and quenched in oil. Hardness was measured on cross sec-
tions of heated area.
1062 steel
hub
12r--------------t
Heat A
Heat , I
8 [----------------1
.L;
'0 4 [---------1:1-------1
0
1 0
j
1.8 2.3 2.8 3.3
Maximum depth of hardness
to 60 HRC, mm
II IIIIBJIm 8 Measurement of diameter A
: Heat l Heat a
'0
i
o 25 50 75 100 125 0 25 50 75100125 0 25 50 75 100125
A = 54.3mm B = 54.3mm
54.4 mm 54.4 mm
Hub 1062 steel
79 84 89 119.94
20
10
Converter gear hub
1052 steel
1052 and 1062: Flame hardening hubs. Distribution of dimensional change as a result of flame hardening. (a) Change in pitch diameter of
converter gear hubs made of 1052 steel. Gear teeth on inside diameter were heated for a total of 9.5 s, before being quenched in oil to pro-
vide a depth of hardness of 0.9 mm (0.035 in.) above the root. (b) Close-in of inside diameters of converter hubs made of 1062 steel. Inside
diameter was heated for a total of 12 s and then oil quenched to harden to 59 HRC min at a depth of 1.9 mm (0.075 in.) below the surface.
Inside diameter was finish ground after hardening.
30 r-.--.--.--.--r-r-l
(a)
Variation of pitch diameter, mm
(bl
Amount of close-in of inside diameter, p.m
128/ Heat Treater's Guide
1018 and 1024: Gas carburizing. Effect of tempering on hardness of 1018 and 1024 steel. Parts were carburized at 925C (1700 OF) for
4.5 h, then oil quenched and tempered.
Distance below surface, 0.001 in. Distance below surface, 0.001 in.
1.25
40
1.00
30
0.75
20
0.50
10
0.25
o
70
1024
25mm (1-in.i diam bar
60
20 '--__'--__'--__'--__L-_-----l
o
30 1-----t----t----t---1'>--I2'J------l
..
c
'E
I
1.25
40
1.00
30
0.75
20
0.50
10
0.25
o
70 r---,-----.-----or-----rr-----,
50
60
20 '---__-'-__-'---__--'---__--'-__---J
o
30
U
a:
I
Distance below surface, mm
Distance below surface, rnm
Distance below surface, 0.001 in.
Distance below surface, 0.001 in.
1.251
40
1.00
30
0.75
20
0.50
10
0.25
o
70 .-------.-------.-------.--------,.--------,
40 1-----*---:+-+----1I-------".....
20 '------'-------'-------'-------'------'
o
30 I-----+---+----+---+-----l
U
a:
I
1.25
40
1.00
30
0.75
20
0.50
10
0.25
20 L-_--.JL-_--.JL-_--.JL-_-----'__-----'
o
40
30 1-------1I-------1I-------1----;I------j---==-------j
60 h ....._+-=----"''''--j-------j!-------j
u
a:
I
Distance below surface. mm
Distance below surface. mm
LIVE GRAPH
Click here to view
LIVE GRAPH
Click here to view
LIVE GRAPH
Click here to view
LIVE GRAPH
Click here to view
Carbon Steels (1000,1100,1200, and 1500 Series) /129
Effect of time andtemperature on case depthof liquidcarburizedsteels
10.00
1.00
45 HRC
1020
25-mm diam by 152 mm
50 HRC
{t-in. diam by 6 in. 1
200 0.50 20
5.00 -
E
Oil quenched 925 C(1700 of) . ~
E
a
ill
0
.
ci
E
11
~
E
0.25 10
g
(;
100
5
ci
-6
2.00
(;
5
~
s: (; -e
g
~ -6 (;
0
50
-e 0-
'"
-6 f-
~ 0
0.10 0-
1.00 0
'"
f- 0
0.50
20
0.050
0 10 15 20 25 30
Carburized at 900 C(1650 OF),
Time at carburizingtemperature, h
water quenched
0.025
1
0 8
1.00
1020
Time at carburizing temperature, h
t l-rnrn diam by 6.35 mm
(O.4in. diam
0.50
by 0.2 in.)
20
.CO
2.50
E g 1117
E
ci
~
10
~
u
(;
(;
50
E. Carburized at 855 C(1575 of),
s:
1.00
'"
E.
0 brinequenched,
~
tempered al150 C(300 of)
0.10
0.50
20
0
c
E
Time at carburizingtemperature. h
E ;;
~
0
ci
c
0.25
~ .
1.00
's
11
t
's
-6
0
~
20
0
0.50
0.10
E
. ~
E
s
~
0.25 10:;
"0
~
0.050
s:
E.
"0
0 .c
g 0.025
1
0.10 0 0 8
Carburized at 925 C11700 Fl,
Time at carburizingtemperature, h
water quenched
0.050
2
0 8
2.50
Time at carburizing temperature, h 1117
12.7-mm (0.5-in.) diam bars
E
.5
2.50
E ;;
E
1118
. ~
ill
50 0
E
;;
1.00
ci
5
11
5
0
(;
ci
(;
50 ill
E.
(;
s:
1.00
11
'" 0.50
Depth of case to 50 HRC
20 -6
g
~
0
I I
0-
0
'" 0
-6 Carburized at 900 C(1650 OF),
0
Carburized at 855C 11575 of).
0-
quenched in 10% brine
slow cooled
'" 0
0.50 20
0.25 10
0 10
0 5
Time at carburizing temperature, h Time at carburizing temperature, h
LIVE GRAPH
Click here to view
LIVE GRAPH
Click here to view
LIVE GRAPH
Click here to view
LIVE GRAPH
Click here to view
LIVE GRAPH
Click here to view
LIVE GRAPH
Click here to view
130 I Heat Treater's Guide
Nitriding Carbon Steels. Effect of carbon content in carbon
steels on the nitrogen gradient obtained in aerated bath nitriding
Distance below surface. 0.001 in.
0 10 20 30
0.20 I I I I I
,
Equal processing time
<f. 0.15
~ "
--1010-
c'
Q) - -1015
e0.10
...... ~
- - -1035-
~
...... ~
""',
- - - - - 1060
-....:::
0.05
--..:;
~ " " ' - - " " ' - L
-
0
-------::r-
0 200 400 600 800
Distance below surface, 11m
Typical Normalizing Temperatures for Standard Carbon
Steels
Temperature(a)
Grade C
of
Plain carbon steels
1015 915 1675
1020 915 1675
1022 915 1675
1025 900 1650
1030 900 1650
1035 885 1625
1040 860 1575
1045 860 1575
1050 860 1575
1060 830 1525
1080 830 1525
1090 830 1525
1095 845 1550
1117 900 1650
1137 885 1625
1141 860 1575
1144 860 1575
(a) Based on production experience. normalizing temperature may vary from as much
as 27C (50 "F) below. to as much as 55C (100F) above, indicated temperature. The
steel should be cooled in still air from indicated temperature.
Properties of Selected Carbon Steels in the Hot-Rolled, Normalized, and Annealed Conditions
Izodimpact
AISI Tensile strength Yield strength Reduction Hardness, strength
grade(a) Condition or treatment MPa ksi MFa ksi Elongation(b), % in area, % HB J ft Ibf
1015 As-rolled 420 61 315 46 39.0 61 126 111 82
Normalized at 925C(1700 oF) 425 62 325 47 37.0 70 121 115 85
Annealed at 870 C(1600 oF) 385 56 285 41 37.0 70 111 115 85
1020 As-rolled 450 65 330 48 36.0 59 143 87 64
Normalized at 870C(1600 oF) 440 64 345 50 35.8 68 131 118 87
Annealed at 870 C(1600 oF) 395 57 295 43 36.5 66 111 123 91
1022 As-rolled 505 73 360 52 35.0 67 149 81 60
Normalized at 925C (1700 oF) 485 70 360 52 34.0 68 143 117 87
Annealed at 870 C (1600 oF) 450 65 315 46 35.0 64 137 121 89
1030 As-rolled 550 80 345 50 32.0 57 179 75 55
Normalizedat925 C (1700 oF) 525 76 345 50 32.0 61 149 94 69
Annealed at 845C(1550 oF) 460 67 345 50 31.2 58 126 69 51
1040 As-rolled 620 90 415 60 25.0 50 201 49 36
Normalized at 900 C (1650 oF) 595 86 370 54 28.0 55 170 65 48
Annealed at 790C (1450 oF) 520 75 350 51 30.2 57 149 45 33
1050 As-rolled 725 105 415 60 20.0 40 229 31 23
Normalized at 900 C (1650 oF) 750 109 430 62 20.0 39 217 27 20
Annealed at 790C (1450 oF) 635 92 365 53 23.7 40 187 18 13
1060 As-rolled 815 118 485 70 17.0 34 241 18 13
Normalized at 900 C (1650 oF) 775 113 420 61 18.0 37 229 14 10
Annealed at 790C (1450 "P) 625 91 370 54 22.5 38 179 11 8
1080 As-rolled 965 140 585 85 12.0 17 293 7 5
Normalized at 900 C (1650 oF) 1015 147 525 76 11.0 21 293 7 5
Annealed at 790C (1450 oF) 615 89 380 55 24.7 45 174 7 5
1095 As-rolled 965 140 570 83 9.0 18 293 4 3
Normalized at 900 C (1650 oF) 1015 147 505 73 9.5 14 293 5 4
Annealed at 790C (1450 oF) 655 95 380 55 13.0 21 192 3 2
1117 As-rolled 490 71 305 44 33.0 63 143 81 60
Normalized at 900 C (1650 oF) 470 68 305 44 33.5 54 137 85 63
Annealed at 860C (1575 oF) 430 62 285 41 32.8 58 121 94 69
1118 As-rolled 525 76 315 46 32.0 70 149 109 80
Normalized at 925 C (1700 oF) 475 69 315 46 33.5 66 143 103 76
Annealed at 790C(1450 oF) 450 65 285 41 34.5 67 131 107 79
1137 As-rolled 625 91 380 55 28.0 61 192 83 61
Normalized at 900 C (1650 oF) 670 97 400 58 22.5 49 197 64 47
Annealed at 790C (1450 "P) 585 85 345 50 26.8 54 174 50 37
(continued)
LIVE GRAPH
Click here to view
Carbon Steels (1000,1100,1200, and 1500 Series) /131
Properties of Selected Carbon Steels in the Hot-Rolled, Normalized, and Annealed Conditions (continued)
hod impact
AISI Tensile strength Yield strength Reduction Hardness, strength
grade(a) Condition or treatment MPa ksi MPa ksi Elongation(b), % in area, % HB J ft lbf
1141 As-rolled 675 98 360 52 22.0 38 192 11 8
Normalized at 900C(1650 oF) 710 103 405 59 22.7 56 201 53 39
Annealedat 815C(1500 oF) 600 87 355 51 25.5 49 163 34 25
1144 As-rolled 705 102 420 61 21.0 41 212 53 39
Normalized at 900C(1650 oF) 670 97 400 58 21.0 40 197 43 32
Annealedat 790C(1450 oF) 585 85 345 50 24.8 41 167 65 48
(a) All grades arefine grainedexcept for thosein the 1100 series, which are coarse grained. (b) In 50nunor 2in.
Effect of Mass on Hardness of Normalized Carbon and
Alloy Steels
Grade
Normalizing
temperature
C OF
Hardness, HB, for bar
with diameter, mm (in.), of
13(lh) 25(1) 50(2) 100(4)
Carbon steels, carburizing grades
1015 925 1700 126 121 116 116
1020 925 1700 131 131 126 121
1022 925 1700 143 143 137 131
1117 900 1650 143 137 137 126
1118 925 1700 156 143 137 131
Carbon steels, direct-hardening grades
1030 925 1700 156 149 137 137
1040 900 1650 183 170 167 167
1050 900 1650 223 217 212 201
1060 900 1650 229 229 223 223
1080 900 1650 293 293 285 269
1095 900 1650 302 293 269 255
1137 900 1650 201 197 197 192
1141 900 1650 207 201 201 201
1144 900 1650 201 197 192 192
Note: All data arebased on single heats.
Approximate Critical Temperatures for Selected Carbon Steels
Critical temperatures on heating at 28 C/h (50F/h) Critical temperatures on cooling at28 Cfh (50F/h)
Ac. Ac, Ar) Ar.
Steel C
OF
C
OF
C
OF
C
OF
1010 725 1335 875 1610 850 1560 680 1260
1020 725 1335 845 1555 815 1500 680 1260
1030 725 1335 815 1495 790 1450 675 1250
1040 725 1335 795 1460 755 1395 670 1240
1050 725 1335 770 1415 740 1365 680 1260
1060 725 1335 745 1375 725 1340 685 1265
1070 725 1335 730 1350 710 1310 690 1275
1080 730 1345 735 1355 700 1290 695 1280
132/ Heat Treater's Guide
Recommended Temperatures and Cooling Cycles for Full Annealing of Small Carbon Steel Forgings
Data are for forgings up to 75 mm (3 in.) in section thickness. Time at temperature usually is a minimum of 1 h for sections up to 25 mm (1 in.)
thick; %h is added for each additional 25mm (1 in.) of thickness.
Cooling cycle(a)
Annealing temperature C
of
Hardness
Steel C
of
From To From To range,HB
1018 855-900 1575-1650 855 705 1575 1300 111-149
1020 855-900 1575-1650 855 700 1575 1290 111-149
1022 855-900 1575-1650 855 700 1575 1290 111-149
1025 855-900 1575-1650 855 700 1575 1290 111-187
1030 845-885 1550-1625 845 650 1550 1200 126-197
1035 845-885 1550-1625 845 650 1550 1200 137-207
1040 790-870 1450-1600 790 650 1450 1200 137-207
1045 790-870 1450-1600 790 650 1450 1200 156-217
1050 790-870 1450-1600 790 650 1450 1200 156-217
1060 790-845 1450-1550 790 650 1450 1200 156-217
1070 790-845 1450-1550 790 650 1450 1200 167-229
1080 790-845 1450-1550 790 650 1450 1200 167-229
1090 790'830 1450-1525 790 650 1450 1200 167-229
1095 790-830 1450-1525 790 655 1450 1215 167-229
(a) Furnace cooling at 28 CIb (50 FIb)
Approximate Grossmann Quenching Severity Factor of
Various Media in the Pearlite Temperature Range
Circulation
or agitation
Grossmann quench severity factor, H
Brine Water Oil and salt Air
None
Mild
Moderate
Good
Strong
Violent
2
2-2.2
5
0.9-1.0
1.0-1.1
1.2-1.3
1.4-1.5
1.6-2.0
4
0.25-0.30
0.30-0.35
0.35-0.40
0.4-0.5
0.5-0.8
0.8-1.1
0.02
Grossmann Numbers and Film Coefficients for Selected Quenchants
Grossmann
Quenchant temperature Quenchant velocity number, Effective mmcoefficient
Quenchant C
OF
mls ft/min (H=hl2k) w/m
2
K Btu/ft
2
. h . OF
Water 32 90 0.00 0 1.1 5000 880
0.25 50 2.1 9000 1600
0.51 100 2.7 12000 2100
0.76 150 2.8 12000 2100
55 130 0.00 0 0.2 1000 180
0.25 50 0.6 2500 440
0.51 100 1.5 6500 1100
0.76 150 2.4 10500 1850
Fast oil 60 140 0.00 0 0.5 2000 350
0.25 50 1.0 4500 790
0.51 100 1.1 5000 880
0.76 150 1.5 6500 1200
25% polyvinyl pyrrolidone 43 110 0.00 0 0.8 3500 620
0.25 50 1.3 6000 1100
0.51 100 1.5 6500 1200
0.76 150 1.8 7500 1300
Conventional oil 65 150 0.51 100 0.7 3000 530
Martempering oil 150 300 0.51 100 1.2 5000 880
Air 27 80 0.00 0 0.05 200 35
2.54 500 0.06 250 44
5.08 1000 0.08 350 62
Carbon Steels (1000,1100,1200, and 1500 Series)/133
Comparison of the Cooling Power of Commercially Available Quenching and Martempering Oils According to
Magnetic Quenchometer Test Results
Types of quenching oil
Conventional
Fast
Martempering, without speed improvers
Martempering, with speed improvers
Quenching duration from 885C (1625 oF)
Viscosity to 355C (670 oF), s
at400C At 27C (80 oF) At 120C (2S0oF)
Oil (100F) Flash point Chromized Chromized
sample SUS(a) C
of
Ni-ball Ni-ball Ni-ball Ni-ball
1 102 190 375 22.5 27.2
2 105 195 380 17.8 27.9
3 107 170 340 16.0 24.8
4 50 145 290 7.0 (a)
5 94 170 335 9.0 15.0
6 107 190 375 10.8 17.0
7 110 185 370 12.7 19.6
8 120 190 375 13.3 17.8
9 329 235 455 19.2 27.6 18.4 22.1
10 719 245 475 26.9 29.0 25.1 30.4
11 2550 300 575 31.0 32.0 31.7 32.8
12 337 230 450 15.3 (b) 12.8 (b)
13 713 245 475 16.4 17.9 14.0 15.6
14 2450 300 570 19.7 17.0 15.1 15.4
(a) SUS, Saybolt universal seconds. (b) Not available
Comparison of the Ranges of Cooling Power of Commercially Available Quenching and Martempering Oils According
to Magnetic Quenchometer Test Results using Pure Nickel Balls
Quenching duration from 88S C (1625 oF) to 355C (670 oF)
Type of quenching oil
At 120 C At175C
(2S0 oF) (3S0oF)
Conventional
Fast
Martempering, without speed improvers
Martempering, with speed improvers
14-22
7-14
18-34
14-20
14-22
7-14
18-34
13-18
22-38
16-22
=47
=33
Typical Hardnesses of Various Carbon Steels after Tempering
Carbon Hardness, HRC, after tempering for 2 h at
content, 20SoC 260C 31SoC 370C 42SoC 480C 540C 595C 650C
Grade % (400F) (SOOF) (600F) (700F) (800F) (900F) (1000 oF) (1100 oF) (1200 oF) Heat treatment
Carbon steels, water hardening
1030 0.30 50 45 43 39 31 28 25 22 95(a) Normalized at 900 C(1650 "F), water quenched
from 830-845 C(1525-1550 oF); average dew
point, 16C(60 oF)
1040 0.40 51 48 46 42 37 30 27 22 94(a)
1050 0.50 52 50 46 44 40 37 31 29 22
1060 0.60 56 55 50 42 38 37 35 33 26 Normalized at 885C(1625 "F), water quenched
from 800-815 C (1475-1500 "F); average dew
point, 7 C (45 oF)
1080 0.80 57 55 50 43 41 40 39 38 32
1095 0.95 58 57 52 47 43 42 41 40 33
1137 0.40 44 42 40 37 33 30 27 21 91(a) Normalized at 900 C(1650 "F), water quenched
from 830-855 C(1525-1575 "F); average dew
point, 13 C (55 oF)
1141 0.40 49 46 43 41 38 34 28 23 94(a)
1144 0.40 55 50 47 45 39 32 29 25 97(a)
Data were obtained on 25 mrn (l in.) bars adequately quenched to develop full hardness. (a) Hardness, HRB
134/ Heat Treater's Guide
Carbon Steels: Typical Austempering Applications
Parts listed in order of increasing section thickness
Maximumsection
thickness Parts per unit weight Salt temperature Immersion Hardness,
Part Steel mm in. kg-I lb-
I
C
of
time, min HRC
Plain carbon steel parts
Clevis 1050 0.75 0.030 770fkg 350lIb 360 680 15 42
Follower ann 1050 0.75 0.030 412fkg 187IIb 355 675 15 42
Spring 1080 0.79 0.031 220fkg 100lIb 330 625 15 48
Plate 1060 0.81 0.032 88fkg 40/lb 330 630 6 45-50
Cam lever 1065 1.0 0.040 62fkg 28IIb 370 700 15 42
Plate 1050 1.0 0.040 0.5 kg 1!.1lb 360 675 15 42
Type bar 1065 1.0 0.040 141fkg 64IIb 370 700 15 42
Tabulator stop 1065 1.22 0.048 440fkg 200lIb 360 680 15 45
Lever 1050 1.25 0.050 345 650 15 45-50
Chain link 1050 1.5 0.060 573fkg 260lIb 345 650 15 45
Shoe-last link 1065 1.5 0.060 86fkg 39/1b 290 550 30 52
Shoe-toe cap 1070 1.5 0.060 18fkg 8IIb 315 600 60 50
Lawn mower 1065 3.18 0.125 1.5 kg 2!:llb 315 600 15 50
blade
Lever 1075 3.18 0.125 24fkg 1lI1b 385 725 5 30-35
Fastener 1060 6.35 0.250 110fkg 50/lb 310 590 25 50
Stabilizer bar 1090 19 0.750 22 kg 10Ib 370 700 6-9 40-45
Boron steel bolt lOB20 6.35 0.250 100fkg 45IIb 420 790 5 38-43
Typical Operating Conditions for Through Hardening Carbon Steel Parts by Induction Process
Total Work temperature Inductor
Section size Frequency(a), Power(b), heating Scan time Entering coil Leaving coil Production rate input(c)
mm in. Material Hz kW time,s slcm s/in. C
OF
C
OF
kg/h lb/h kW/cm
2
kW/in.
2
Rounds
19 % 1035 mod 180 28.5 68.4 0.71 1.8 75 165 620 1150 113 250 0.062 0.40
9600 20.6 28.8 0.71 1.8 620 1150 955 1750 113 250 0.085 0.55
25 1041 180 33 98.8 1.02 2.6 70 160 620 1150 141 311 0.054 0.35
9600 19.5 44.2 1.02 2.6 620 1150 955 1750 141 311 0.057 0.37
29 11;8 1041 180 36 114 1.18 3.0 75 165 620 1150 153 338 0.053 0.34
9600 19.1 51 1.18 3.0 620 1150 955 1750 153 338 0.050 0.32
Flats
16 % 1038 3000 300 11.3 0.59 1.5 20 70 870 1600 1449 3194 0.361 2.33
19 % 1038 3000 332 15 0.79 2.0 20 70 870 1600 1576 3474 0.319 2.06
22 7/s
1043 3000 336 28.5 1.50 3.8 20 70 870 1600 1609 3548 0.206 1.33
25 1 1036 3000 304 26.3 1.38 3.5 20 70 870 1600 1595 3517 0.225 1.45
29 11;8 1036 3000 344 36.0 1.89 4.8 20 70 870 1600 1678 3701 0.208 1.34
Irregular shapes
17.5-33
11/
16_151)6 1037mod 3000 580 254 0.94 2.4 20 70 885 1625 2211 4875 0.040 0.26
(a) Note use of dual frequencies for round sections. (b) Power transmitted by the inductor at the operating frequency indicated. This power is approximately 25% less than the power
input to the machine. because of losses within the machine. (c) At the operating frequency of the inductor
Carbon Steels (1000, 1100, 1200, and 1500 Series)/135
Operating and Production Data for Progressive Induction Tempering
VVorktemperature
Total Entering Leaving Production Inductor
Section size Frequency, Power(a), heating Scan time coil coil rate input(b)
mm in. Material Hz kVV time,s s/cm s/in. C
OF
C
OF
kg/h Ib/h kVV/cm
1
kVV/in.
1
Rounds
19 % 1035mod 9600 12.7 30.6 0.71 1.8 50 120 510 950 113 250 0.050 0.32
25 1 1041 9600 18.7 44.2 1.02 2.6 50 120 565 1050 141 311 0.054 0.35
29 1
1
/s 1041 9600 20.6 51 1.18 3.0 50 120 565 1050 153 338 0.053 0.34
Flats
16 % 1038 60 88 123 0.59 1.5 40 100 290 550 1449 3194 0.014 0.089
19 % 1038 60 100 164 0.79 2.0 40 100 315 600 1576 3474 0.013 0.081
22
7/
8 1043 60 98 312 1.50 3.8 40 100 290 550 1609 3548 0.008 0.050
25 1 1043 60 85 254 1.22 3.1 40 100 290 550 1365 3009 0.011 0.068
29 IV
s
1043 60 90 328 1.57 4.0 40 100 290 550 1483 3269 0.009 0.060
Irregular shapes
17.5-33 11/
16
- 1
5/16
1037mod 9600 192 64.8 0.94 2.4 65 150 550 1020 2211 4875 0.043 0.28
17.5-29 11/
16
- 1'Is 1037mod 9600 154 46 0.67 1.7 65 150 425 800 2276 5019 0.040 0.26
(a) Power transmittedby theinductorat theoperatingfrequencyindicated.For convertedfrequencies. thispoweris approximately 25%less thanthepowerinput to themachine.
becauseoflosses withinthemachine.(b) At theoperatingfrequencyof theinductor
1062: Spot Flame Hardening of a Free-Wheel Cam
Preliminary operation
Turn onwater,air, oxygen,power,andpropane. Linepressures: water,205kPa(30
psi); air, 550kPa (80psi);oxygen,825kPa(120psi); propane,205kPa(30psij.Ig-
nitepilots.
Loading and positioning
Mountcamonflamehead.Campositioned onlocatingplateandtwowearpads,and
againstthree locatingpinsthatareintegralpartsof flamehead.Distancefromflame
head to camsurface,approximately 7.9mm e!J6 in.)
Cycle start and heating cycle
Propaneandoxygensolenoidvalvesopen(oxygenflowdelayedslightly). Mixtureof
propaneandoxygenignitedat flameheadsbypilots.Checkpropaneandoxygenpres-
sures. Adjustflamebyregulatingpropane. Heatingcyclecontrolledbytimer. Time
predetermined toobtainspecifiedhardening depth.Propaneandoxygensolenoid
valvesclose(propaneflowdelayedslightly). Ejectorplate(air operated) advances
andstripscamfromflamehead.
Propaneregulatedpressure, 125kPa(18psi);oxygenregulatedpressure, 585kPa(85
psi); oxygenupstreampressure, 425kPa(62psi);oxygendownstreampressure, 110
kPa (16psi).Flamevelocity(approximate), 135mls (450ft/s). Gasconsumption (ap-
proximate): propane,0.01m
3
(0.4ft3) perpiece;oxygen.0.04m
3
(1.3 ft3) perpiece.
Totalheatingtime, II s
Flame portdesign:nineportsperrow; eightrows;port size,No. 69(0.74mm, or
0.0292in.),withNo.56(1.2mm, or 0.0465in.) counterbore
Quench cycle
Camdropsintoquenchoil,isremovedfromtankbyconveyor. Oil temperature, 54
5.6 C(13010"F), Timeinoil (approximate), 30s
Hardness and pattern aim
Hardness, 60HRCminimumat surfaceand59HRCminimumat adepthof 1.3mm
(0.050in.)belowsurface,for widthof8.8 mm(0.345in.)oncamrollersurface.Di-
mensionsbelowgivenininches
Depth of pattern,
0.050 min for 0.345
o . o " . " , i ~
o . ~
Hardness pattern
136/ Heat Treater's Guide
Flame Hardening Response of Carbon Steels Gas Carburizing: Carburizing Steel Compositions
Material
Typical hardness, HRC, as affected by quenchant
Air(a) Oil(b) Water (b) Steel C Mn
Composition, %
Ni Cr Mo Other
52-58
50-60 58-62
55-62 58-62
45-55 52-57(c)
50-55 55-60
Plain carbon steels
1025-1035
1040-1050
1055-1075
1080-1095
I125-I137
I138-I144
I146-I151
Carburized grades of plain carbon steels(d)
1010-1020 50-60 58-62
II 08-I120 50-60 60-63
33-50
55-60
60-63
62-65
45-55
55-62
58-64
62-65
62-65
Carbon steels
1010 0.08-0.13 0.30-0.60
1018 0.15-0.20 0.60-0.90
1019 0.15-0.20 0.70-1.00
1020 0.18-0.23 0.30-0.60
1021 0.18-0.23 0.60-0.90
1022 0.18-0.23 0.70-1.00
1524 0.19-0.25 1.35-1.65
1527 0.22-0.29 1.20-1.50
Resulfurized steels
III7 0.14-0.20 1.00-1.30
(a), (b)
(a), (b)
(a), (b)
(a), (b)
(a), (b)
(a), (b)
(a), (b)
(a), (b)
0.08-0.13 S
(a) Toobtain the hardness results indicated, those areas not directlyheated must bekept
relatively cool during the heating process. (b) Thin sections are susceptible tocracking
when quenched with oil or water. (c) Hardness is slightly lower for material heated by
spinning or combination progressive-spinning methods thanit is for material heated by
progressive or stationary methods. (d) Hardness values of carburized cases containing
0.90 to I.l0% C
(a) 0.04Pmax. 0.05 S max. (b) 0.15-0.35 Si
Effect of Cyaniding Temperatures and Time on Case Depth and Carbon and Nitrogen Contents
Material thickness, 2.03 mm (0.080 in.); cyanide content of bath, 20 to 30%
Case depth after cyaniding for: Analysis after 100 min at
15 min 100 min temperature(a)
Steel mm in. mm in. Carbon, % Nitrogen, %
Cyanided at 760.oC (1400 oF)
1008 0.038 0.0015 0.152 0.006 0.68 0.51
1010 0.038 0.0015 0.152 0.006 0.70 0.50
1022 0.051 0.0020 0.203 0.008 0.72 0.51
Cyanided at 845C (1550 oF)
1008 0.076 0.0030 0.203 0.008 0.75 0.26
1010 0.076 0.0030 0.203 0.008 0.77 0.28
1022 0.089 0.0035 0.254 0.010 0.79 0.27
(a) Carbon and nitrogen contents were determined from analysis of the outermost 0.076 nun (0.003 in.) of cyanided cases.
Carbon Steels (1000, 1100,1200, and 1500 Series)/137
Liquid Carburizing Carbon Steels in Cyanide Baths
Typical application of carbon steel and resulfurized steel
Weight Depth ofcase Temperature Subsequent
Part kg lb Steel mm in. C
of
Time,h Quench treatment Hardness, HRC
Carbon steel
Adapter 0.9 2 CR 1.0 0.040 940 1720 4 AC (a) 62-63
Arbor, tapered 0.5 1.1 1020 1.5 0.060 940 1720 6.5 AC (a) 62-63
Bushing 0.7 1.5 CR 1.5 0.060 940 1720 6.5 AC (a) 62-63
Die block 3.5 7.7 1020 1.3 0.050 940 1720 5 AC (a) 62-63
1.1 2.5 CR 1.3 0.050 940 1720 5 AC (a) 59-61
Disk 1.4 3 1020 1.3 0.050 940 1720 5 (b) (b) 56-57
Flange 0.Q3 0.06 1020 0.4-0.5 0.015-0.020 845 1550 4 Oil (c) 55min(d)
Gage rings, knurled 0.09 0.2 1020 1.5 0.060 940 1720 6.5 AC (a) 62-63
Hold-down block 0.9 2 CR 1.0 0.040 940 1720 4 AC (a) 62-63
Insert, tapered 4.75 10.5 1020 1.3 0.050 940 1720 5 AC (a) 62-63
Lever 0.05 0.12 1020 0.13-0.25 0.005-0.010 845 1550 1 Oil (c) (e)
Link 0.007 0.015 1018 0.13-0.25 0.005-0.010 845 1550 1 AC
Plate 0.007 0.015 1010 0.25-0.4 0.010-0.015 845 1550 2 Oil (c) (e)
Plug 0.7 1.6 CR 1.5 0.060 940 1720 6.5 AC (a) 62-63
Plug gage 0.45 1 1020 1.5 0.060 940 1720 6.5 AC (a) 62-63
Radius-cutoutroll 7.7 17 CR 1.5 0.060 940 1720 6.5 AC (a) 62-63
Torsion-bar cap 0.05 0.1 1022 0.02-0.05 0.001-0.002 900 1650 0.12 Caustic (f) 45-47
Resulfurized steel
Bushing 0.04 0.09 1118 0.25-0.4 0.010-0.015 845 1550 2 Oil (c) (e)
Dash sleeve 3.6 8 1117 1.1 0.Q45 915 1675 7 AC (g) 58-63
Disk 0.0009 0.002 1118 0.13-0.25 0.005-0.010 845 1550 1 Brine (c) (e)
Driveshaft 3.6 8 1117 1.1 0.Q45 915 1675 7 AC (h) 58-63
Guide bushing 0.2 0.5 1117 0.75 0.030 915 1675 5 (i) 58-63
Nut 0.04 0.09 1113 0.13-0.25 0.005-0.010 845 1550 1 Oil (c) (e)
Pin 0.003 0.007 1119 0.13-0.25 0.005-0.010 845 1550 1 Oil (c) (e)
Plug 0.007 0.015 1113 0.075-0.13 0.003-0.005 845 1550 0.5 Oil (c) (e)
Rack 0.34 0.75 1113 0.13-0.25 0.005-0.010 845 1550 1 Oil (c) (e)
Roller 0.01 0.03 1118 0.25-0.4 0.010-0.015 845 1550 2 Oil (c) (e)
Screw 0.003 0.007 1113 0.Q75-0.13 0.003-0.005 845 1550 0.5 Oil (c) (e)
Shaft 0.08 0.18 1118 0.25-0.4 0.010-0.015 845 1550 2 Oil (c) (e)
Spring seat 0.009 0.02 1118 0.25-0.4 0.010-0.015 845 1550 2 Oil (c) (e)
Stopcollar 0.9 2 1117 1.1 0.045 925 1700 6.5 AC (g) 60-63
Stud 0.007 0.015 1118 0.13-0.25 0.005-0.010 845 1550 1 Oil (c) (e)
Valve bushing 0.02 0.05 1117 1.3 0.050 915 1675 8 AC (g) 58-63
Valve retainer 0.45 1 1117 1.1 0.045 915 1675 7 (i) 58-63
Washer 0.007 0.015 1118 0.25-0.4 0.010-0.015 845 1550 2 Oil (c) (e)
(a) Reheated at 790C(1450 "F), quenched in caustic, tempered at 150 C (300 "F), (b) Transferred to neutral salt at 790C(1450 "F), quenched in caustic, temperedat 175C (350
oF). (c) Tempered at 165 C (325 oF). (d) Or equivalent. (e) File-hard. (f) Tempered at 205C (400 oF). (g) Reheated at 845 C (1550 oF), quenched in salt at 175C (350 oF). (h)
Reheated at 775 C (1425 "F), quenched in salt at 195C(380 oF). (i) Tempered at 165C (325 "P) and treated at-85C(-120 "F)
Liquid Carburizing Carbon Steels in Noncyanide Baths
Typical applications of carbon steels
Weight Case depth Temperature Subsequent Hardness,
Part kg lb Steel mm in. C
OF
Time,h Quench treatment HRC
Production tools 0.5-2.0 1.1-4.4 1018 0.375 0.015 925 1700 0.5-1.0 Brine 50-60
Bicycle forks 1.4 3.1 10l7(a) 0.05-0.08 0.002-0.003 925 1700 0.085 Brine Temper at 425C 60
(795 oF)
Shift lever and ball -1.5 -3.3 1040,1017(b) 0.25 0.010 925 1700 0.67 Air cool 30 s in brine File hard
Clockscrews and studs 0.005 0.011 1006,1113 0.08-0.10 0.003-0.004 955 1750 0.2 Brine 62-64
Flat head screws 0.015 0.033 1122 0.15 0.006 925 1700 0.33 Molten salt, 290C 56
(550F)
(a) Partial immersion. (b) Carburizer brass braze
138/ Heat Treater's Guide
Carbonitriding Carbon Steels
Typical applications and production cycles
Case depth Furnace temperature TotaItime
Part Steel mm 0.001in. C
of
in furnace Quench
Carbon steels
Adjusting yoke. 25 by 9.5 nun (1 by 0.37 in.) 1020 0.05-0.15 2-6 775 and 745 1425 and 1375 64 min Oil
Bearing block, 64 by 32 by 3.2 rnrn(2.5 by 1.3 by 0.13 in.) 1010 0.05-0.15 2-6 775 and 745 1425 and 1375 64 min Oil
Cam, 2.3 by 57 by 64 nun (0.1 by 2.25 by 2.5 in.) 1010 0.38-0.45 15-18 855 1575 2
1
/ 2h Oil
Cup, 13g (0.46 oz) 1015 0.08-0.13 3-5 790 1450 Y2 h Oil
Distributor drive shaft, 125nun OD by 127 rnrn(5 by 5 in.) 1015 0.15-0.25 6-10 815 and 745 1500 and 1375 108 min Gas(a)
Gear, 44.5 nun diarn by 3.2 nun (1.75 by 0.12S in.) 1213(b) 0.30-0.38 12-15 855 1575 l%h Oil(c)
Hex nut, 60.3 by 9.5 nun (2.4 by 0.37 in.) 1030 0.15-0.25 6-10 815 and 745 1500 and 1375 64 min Oil
Hood-latch bracket, 6.4 rnrndiarn (0.25 in.) 1015 0.05-0.15 2-6 775 and 745 1425 and 1375 64 min Oil
Link, 2 by 38 by 38 rnrn(0.079 by 1.5by 1.5 in.) 1022 0.30-0.38 12-15 855 1575 1
1
/2h Oil
Mandrel, 40 g (1.41 oz) 1117 0.20-0.30 8-12 845 1550 lY2h Oil
Paper-cutting tool, 410 rnrn long 1117 -0.75 -30
Segment, 2.3 by 44.5 by 44.5 mrn(0.09 by 1.75by 1.75 in.) 1010 0.38-0.45 15-18 855 1575 2
1
/ 2h Oil
Shaft, 4.7 nun diam by 159 nun (0.19 by 6.25 in.) 1213(b) 0.30-0.38 12-15 815 1500 2Y2h Gas(a)(d)
Shift collar, 59 g (2.1 oz) 1118 0.30-0.36 12-14 775 1430 SI/
2
h Oil(e)
Sliding spur gear, 66.7 rnrnOD (2.625 in.) 1018 0.38-0.50 15-20 870 1600 2h(0 Oil(g)
Springpin, 14.3mrnODby 114mm (0.56 by 4.5 in.) 1030 0.25-0.50 10-20 815 and 745 1500 and 1375 144min Oil
Spur pinion shaft, 41.3 mm OD (1.625 in.) 1018 0.38-0.50 15-20 870 1600 2h(0 0i1(h)
Transmission shift fork, 127 by 76 mrn(5 by 3 in.) 1040 0.25-0.50 10-20 815 and 745 1500 and 1375 162 min Gas(a)
(a) Modified carbonitriding atmosphere. (b) Leaded. (c) Tempered at 190C(375 "F), (d) Tempered at 150 C (300 "F), (e) Tempered at 165C (325 "F), (0 Time at temperature.
(g) Oil at 150 C (300 oF): tempered at 150C (300 OF); for 1h. (h) Oil at 150C(300 oF); tempered at 260 C (500 oF) for 1h
Applications for Boride Carbon Steels
Substrate material
AISI BSI
1020
1043
1138
1042
DIN
S137
C15 (CkI5)
C45
S150-1
45S20
Ck45
Application
Bushes. bolts, nozzles, conveyer tubes, base
plates, runners, blades, thread guides
Gear drives, pump shafts
Pins, guide rings. grinding disks. bolts
Casting inserts, nozzles, handles
Shaft protection sleeves, mandrels
Swirl elements, nozzles (for oil burners),
rollers, bolts, gate plates
Next Page