Top Careers & You
_________________________________________________________________________________________________
Trigonometry
Angles and their relationship
Angles are measured in many units viz. degrees, minutes, seconds, radians, gradients.
Where 1 degree = 60 minutes, 1 minute = 60 seconds,
 radians = 180 = 200
 1 radian = 180/ and 1 degree = / 180 radians.
The angle at the centre is of 1 radian
rr
Do you know?
1 radian is the angle
made at the centre by
the
arc
of
length
equal to the radius of
the circle.
Basic Trigonometric Ratios
In a right triangle ABC, if  be the angle between AC & BC.
A
If  is one of the angle other then right angle, then the side opposite to the angle is perpendicular (P) and the
sides containing the angle are taken as Base ( B) and the hypotenuse (H). In this type of triangles, we can
have six types of ratios. These ratios are called trigonometric ratios.
Sin  =
P
B
, Cos  =
H
H
Cosec  =
H
,
P
Tan  =
Sec  =
P
B
H
B
, Cot  =
B
P
Important Formulae
For any angle :
1.
sin2 + cos2 = 1
2.
1 + tan2  = sec2
3.
1 + cot  = cosec 
[Note sin2 = (sin )2 and not (sin 2)]
2
_________________________________________________________________________________________________
Page : 1
www.TCYonline.com
Top Careers & You
_________________________________________________________________________________________________
Range of Values of Ratios
If 0    360o, then the values for different trigonometric ratios will be as follows.
1.
 1  Sin   1
2.
 1  cos   1
Maximum and
3.
   tan   
Minimum values of sin
4.
   cot   
5.
   Sec   -1
&
1  Sec   
6.
   Cosec    1
&
1  Cosec   
TIP
 or cos  are + 1 and
1 respectively.
Sign of Trigonometric ratios
We divide the angle at a point (i.e. 360) into 4 parts called quadrants. In the first quadrant all the
trigonometric ratios are positive
II
90  180
180  270
0  90
270  360
III
IV
SOME MORE RESULTS:
TIP
T. Ratios
Angles
Sin
Cos
Tan
Cot
Sec
Cosec
90 - 
Cos 
Sin 
Cot 
Tan 
Cosec 
Sec 
Sugar: Sin positive
90 +
Cos 
 Sin 
 Cot 
 Tan 
 Cosec 
Sec 
To: Tan positive
180 - 
Sin 
 Cos 
 Tan 
 Cot 
 Sec
Cosec
180 + 
 Sin 
 Cos 
Tan 
Cot 
 Sec
 Cosec
270 - 
 Cos 
 Sin 
Cot 
Tan 
 Cosec 
 Sec 
270 + 
 Cos 
Sin 
 Cot 
 Tan 
Cosec 
 Sec 
360 - 
 Sin 
Cos 
 Tan 
 Cot 
Sec
 Cosec
360 + 
Sin 
Cos 
Tan 
Cot 
Sec
Cosec
Add: All positive
Ex.1 Simplify
Sol.
Coffee : Cos positive
tan( 90 o +  ) sin( 180 o +  ) sec( 270 o +  )
.
cos( 270 o   ) cos ec (180 o   ) cot( 360 o   )
tan (90o + ) =  cot  ,
sin ( 180o + ) =  sin 
sec (270o + ) = cosec ,
cos (270o  ) =  sin 
cosec (180o  ) = cosec ,
cot (360o  ) =  cot 
 Given expression =
(  cot  )(  sin  )(cos ec  )
= 1.
(  sin  )(cos ec  )(  cot  )
_________________________________________________________________________________________________
Page : 2
www.TCYonline.com
Top Careers & You
_________________________________________________________________________________________________
Ex.2 If cot A =
Sol.
cot A =
3
4
 tan A =
3
, find the value of 3 cos A + 4 sin A, where A is in the first quadrant.
4
4
3
Perpendicular 4
=
base
3
Draw a right PQR in which Q = A,
PR = 4, QR = 3
 PQ = (PR ) 2 + (QR ) 2
=
( 4 ) 2 + (3 ) 2 =
16 + 9 =
25
 PQ = 5 units
 cos A =
cos A =
base
Hypotenuse
PR 4
3
=
and sin A =
5
PQ 5
3 cos A + 4 sin A = 3 
3 cos A + 4 sin A =
3
4
9 16
+ 4 = +
5
5
5
5
25
= 5.
5
 sin 35 o
Ex.3 Find the value of 
o
 cos 55
Sol.
 sin 35 o
 cos 55 o
 +  cos 55
o
 sin 35
 +  cos 55
 sin 35 o
  2 cos 60 o
  2 cos 60 o
 sin(90o  55o ) 
 cos(90o  35o ) 
1
=
 +
  2
o
sin 35
2
 cos 55
o
 cos 55o 
 +  sin 35   1
= 
 cos 55o 
 sin 35o 
Q sin (90 o  ) = cos 
 cos ( 90 o  ) = sin 
=1+11=1
_________________________________________________________________________________________________
Page : 3
www.TCYonline.com
Top Careers & You
_________________________________________________________________________________________________
Values of trigonometric Ratio for some special angles:
30
45
60
90
1
sin 
1/2
1/2
3/2
cos 
3/2
1/2
1/2
tan 
1/3
 (Not defined)
Properties of triangle
Sine Rule
In any triangle ABC if AB, BC, AC be represented by c, a, b respectively
a
b
c
=
=
= 2R
then we have
sin A
sin B
sin C
c
Where R is circum  radius =
b
R
abc
4  Area of triangle
Cosine Rule
In a triangle ABC of having sides of any size, we have the following rule;
Cos A =
b2 + c 2  a2
2bc
Cos B =
c 2 + a2  b2
2ac
Cos C =
a2 + b2  c 2
2ab
Area of triangle
Area  =
=
1
1
1
bc sin A = ac sin B = ab sin C
2
2
2
S (S  a ) (S  b ) (S  c )
where S = semi perimeter
Ex.4 Solve the equation sec2x  2 tan x = 0
Sol. sec2x  2 tan x = 0
1 + tan2x  2 tan x = 0
tan2x  2 tan x + 1 = 0
(tan x  1)2 = 0
tan x = 1
x = 45o.
{ Q sec2  tan2 = 1}
_________________________________________________________________________________________________
Page : 4
www.TCYonline.com