UCRL-52186
769:
FLO W-REGIME CHARACTERIZATION FOR HORIZONTAL TWO-PHASE STEAM FLOW
Clarence A. Calder
October 5 , 1976
Prepared for U S Energy Research & Development .. Administration under contract No. W-7405-Eng-48
DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
NOTICE
This report was prepared as an account of work
sponsored by the United StatesGovernment.Neither the United States nor the United States Energy Research & Development Administration, nor any of their employees, nor any of their contracton, subcontractors, or their employees, makes any warranty, express a implied, or assumes any legal liability 01 responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process dmlosed, or represeats that ita u e would not i n f r i i s privately-owned rights.
NOTICE Reference to a company or product name does not imply approval o recommendation of the product by r the University of California or the US. Energy Research & Development Administration to the exclusion of others that may be suitable.
Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 5 ; Microfiche 53.00
Domestic
Page Range
Price
3n1-775
_". --f
151-175 176-200
226-250 251-275 276-300 301-325
7
6.75 7.50 7.75 8.00 9.00 9-25 9.75
326-350 351-375 376-400 401-4425. 426-450 451-475 476-500 501-525 526-550 55 1-575 576-600 601-up
10.00
10.50
10.75
11.00 11.75 12.00 12.50 12.75 13.00 13.50 13.7 5
*
b
*Add $2.50 for each a d d i t b d 100 page increment from 601 to I add $4.50 for each additional 100 page increment over 1,oOO pagu.
N pages;
Distribution Category UC-66
IAWRENCE UVERMORE LABORATORY
llniversityof C M m a / L k r m , Caifod~#94550
UCRL-52186
FLOW-REGIME CHARACTERIZATION FOR HORIZONTAL TWO-PHASE STEAM FLOW
Clarence A. Calder
MS. date: October 5 , 1976
FLOW-REGIME CHARACTERIZATION FOR HORIZONTAL TWO-PHASE STEAM FLOW Abstract
The r e l i a b l e c h a r a c t e r i z a t i o n of t h e flow regime, given t h e f l u i d p r o p e r t i e s , flow rate, and piping c o n f i g u r a t i o n , would be a s i g n i f i c a n t h e l p i n t h e d e s i g n of instrumentation, energy-conversion machinery, and piping f o r two-phase geothermal flow. A r e l a t i v e l y s i m p l e model, using Baker parameters, is described and applied t o flow-regime d a t a generated by high speed photography of two-phase steam flow.
The experiments were conducted
a t t h e Geothermal Test F a c i l i t y (GTF) a t Lawrence Livermore Laboratory. Although r e s u l t s depend somewhat on t h e personal judgment and i n t e r p r e t a t i o n of t h e observer, t h e model was found t o g i v e a reasonable p r e d i c t i o n of t h e flow regime f o r t h e flow ranges a v a i l a b l e a t t h e GTF i n 1 and 2-in.-diam pipes.
r
Introduction
The r e l i a b l e p r e d i c t i o n of flow regimes i n h o r i z o n t a l two-phase flow
is v e r y d i f f i c u l t .
flow condition.
However, some i n d i c a t i o n of t h e expected type of flow
would be of c o n s i d e r a b l e v a l u e i n designing p i p e dimensions f o r a d e s i r e d For example, a sampling probe i n t h e flow should provide a reasonably good r e p r e s e n t a t i v e f l u i d sample f o r a homogeneous bubbly o r d r o p l e t flow, b u t it would g i v e u n r e l i a b l e information f o r a s t r a t i f i e d o r annular flow. Many models of varying complexity have been proposed and then compared t o experimental data f o r a s p e c i f i c l i m i t e d range of flow conditions. The technique u s u a l l y i n c o r p o r a t e s a two-dimensional map w i t h dimensioned o r dimensionless parameters as coordinates, which may o r may n o t be chosen on a r i g o r o u s t h e o r e t i c a l o r l o g i c a l b a s i s . The maps d e f i n e r e g i o n s o r zones The t r a n s i t i o n l i n e s are by t r a n s i t i o n l i n e s s e p a r a t i n g t h e flow regimes.
i n f a c t broad bands because of t h e d i f f i c u l t y i n c l a s s i f y i n g t h e flow near
a transition.
The v a r i o u s published maps are n o t i n good agreement. Apparently, t h i s
i s l a r g e l y due both t o the l a c k of a s t a n d a r d d e f i n i t i o n of t h e p o s s i b l e flow
-1-
regimes and t o t h e experimenters' d i f f i c u l t y i n d e s c r i b i n g t h e flow regime observed. Some methods are more g e n e r a l i n that t h e i r e x t r a p o l a t i o n t o flow Reference 1 c o n d i t i o n s o t h e r than those used i n t h e i r development i s p o s s i b l e .
in use today.
gives a c u r r e n t d e s c r i p t i o n of many o f t h e proposed flow-mapping techniques
One flow-mapping technique, developed by 0 .
in t h e e a r l y 1950s
This method i s
f o r two-phase gas-liquid flow i n t h e petroleum i n d u s t r y , w i l l be described
i n d e t a i l as t o i t s a p p l i c a t i o n i n two-phase steam flow.
simplest, most d i r e c t l y a p p l i c a b l e mapping techniques. 1-in.and 2-in.-diam-pipe
s t i l l widely used today f o r designing petroleum p i p e l i n e s and i s one of t h e P r e d i c t i o n s of t h e Baker method w i l l be compared w i t h experimental r e s u l t s from observation of h o r i z o n t a l flow of low q u a l i t y steam simulating
a geothermal source.
The d a t a presented are photographs from high speed
photography a t several framing rates w i t h image enhancement techniques employed t o b e t t e r d e f i n e t h e flow-density d i s t r i b u t i o n .
Flow Regimes
Flow p a t t e r n s are defined by t h e p o s s i b l e c h a r a c t e r i s t i c c o n f i g u r a t i o n s t h a t t h e two phases may assume under t h e v a r i o u s flow and piping c o n d i t i o n s of i n t e r e s t . There are no u n i v e r s a l l y accepted d e f i n i t i o n s of flow regimes Gravitational effects
To be
o r flow p a t t e r n s ; some a u t h o r s p r e f e r t o use a few b a s i c p a t t e r n s , while o t h e r s use much more d e t a i l e d regimes and subregimes t h a t occur.
are evident i n t h e h o r i z o n t a l flow p a t t e r n s , with t h e l i q u i d phase (tending t o
the lower l e v e l ) producing an asymmetric d i s t r i b u t i o n of t h e phases. used. 3'4
0
c o n s i s t e n t with t h e Baker c h a r t s , t h e flow regimes shown i n Fig. 1 w i l l be The seven flow p a t t e r n s o r regimes are defined as follows: I n bubbly flow, t h e l i q u i d phase i s continuous, w i t h t h e g a s phase d i s t r i b u t e d
in s m a l l , d i s c r e t e bubbles t h a t tend t o occur
Bubbly flow
toward t h e upper p a r t of t h e pipe.
0
Plug flow
Plug flow occurs when some gas bubbles approach dimensions of t h e o r d e r of t h e p i p e diameter and are elongated i n t h e axial d i r e c t i o n .
S t r a t i f i e d flow
I n t h i s p a t t e r n , t h e gas and l i q u i d phases are completely s e p a r a t e d ; t h e l i q u i d phase i s a t t h e bottom of t h e pipe and the gas a t t h e top. -2-
4
Bubble flow Slug flow
Plug flow
f I I f f I f
Annular f 1ow
I f
f f f
Iff
f I f f f
S t r a t i f i e d flow
D i spersed (mi st)
F1 ow
Wavy flow
Fig. 1. Flow p a t t e r n i n h o r i z o n t a l two-phase l i q u i d - g a s flow.
0
Wavy flow
Wavy flow i s a n extension of s t r a t i f i e d flow i n which a l a r g e r gas v e l o c i t y produces s u r f a c e waves i n t h e l i q u i d .
Slug f l o w
This p a t t e r n is an extension of the wavy flow
p a t t e r n i n which t h e gas v e l o c i t y i s g r e a t enough t o c a u s e s u r f a c e waves i n the l i q u i d t o reach t h e top of t h e pipe. Annular flow This produces flow segments t h a t are completely l i q u i d .
0
This regime i s defined by a l i q u i d annulus
(with an i n n e r gas c o r e ) a t t h e p i p e w a l l ; t h e annulus i s t h i c k e r a t t h e bottom of t h e
Dispersed d r o p l e t flow
Pipe This p a t t e r n o c c u r s when t h e gas phase i s continuous w i t h l i q u i d d r o p l e t s , dispersed throughout t h e flow ( a l s o c a l l e d fog o r m i s t flow).
-3-
Flow Regime Mapping
Most flow-regime maps are developed e m p i r i c a l l y by p l o t t i n g experimental observations of flow p a t t e r n s on a graph w i t h s u i t a b l y chosen axes, although r e c e n t e f f o r t s have been d i r e c t e d toward d e f i n i n g t h e regime boundaries on
a more r i g o r o u s t h e o r e t i c a l basis.'
rate t h e p o s s i b l e regimes.
o r dimensionless q u a n t i t i e s .
Then l i n e s o r bands are drawn t o sepa-
The c o o r d i n a t e s are u s u a l l y r e l a t e d t o t h e flow For h o r i z o n t a l flow, one of t h e b e s t known and Although
rates of t h e two phases o r t o flow r a t e and q u a l i t y , and may be dimensioned
s t i l l most widely used flow maps w a s developed by Baker i n 1954. 2s5
the Baker c h a r t i s not t h e most a c c u r a t e of t h e c u r r e n t l y used flow-regime mapping techniques, i t has gained wide acceptance because of i t s relative s i m p l i c i t y and ease of a p p l i c a t i o n . which are defined as follows5: The Baker c h a r t f o r h o r i z o n t a l flow i s
a log-log graph of two parameters c a l l e d t h e Baker parameters, Bx and B
0.333
Bx =
Y*
( p ; 7 u1 1 ; : ) t
)
i
B = 2.16 Y
wV
1/2 A(P1PV)
The s u b s c r i p t s 1 and v r e p r e s e n t t h e l i q u i d and gas phases, W i s mass flow 3 rate i n l b / h r , p i s d e n s i t y i n l b / f t , v is v i s c o s i t y i n c e n t i p o i s e , u is t h e s u r f a c e t e n s i o n i n dynes/cm, and A i s t h e p i p e c r o s s - s e c t i o n a l area i n 2 I f X = Wv/(Wv W) i s t h e q u a l i t y and Q = Wv 1 W1 t h e t o t a l flow rate ft
f o r t h e two-phase flow, Eqs. 1 and 2 can b e more conveniently w r i t t e n f o r t h e p r e s e n t a p p l i c a t i o n as
B = 2.16 Y
Q X
112
(4)
The Baker c h a r t i s shown i n Fig. 2.
The two-phase flow h a s been assumed
isothermal, t u r b u l e n t i n both t h e l i q u i d and vapor phases, and steady ( i n
-4-
Bubble or froth
a J
CC aJ
fu
Y
Stratified
5 L
fu
b lo3P
t
1O21 lo-'
I
1 I 1
1o2 Baker parameter, B X
10
I o3
Fig. 2. B a k e r c h a r t f o r flow-regime p r e d i c t i o n . flow c o n d i t i o n s f o r tests reported.)
( I n d i c a t e d d a t a p o i n t s are
t h a t t h e r e i s no s l i p ) ; p r e s s u r e l o s s i s assumed i n s i g n i f i c a n t . of temperature are r e q u i r e d .
To apply
t h e Baker c h a r t , t h e v i s c o s i t y and s u r f a c e t e n s i o n of water as a f u n c t i o n P l o t s of t h e s e q u a n t i t i e s are shown i n Figs. 3 and 4, where t h e d a t a f o r t h e temperature range from 300 t o 500F h a s been e x t r a c t e d from p l o t s over an extended temperature range given i n Ref. 6 .
n V
30 -
20300
b
350 400 450 Temperature - O F
f 1
Temperature
- "F
Fig. 3. Dynamic v i s c o s i t y vs temperature f o r w a t e r a t 300-500F.
Fig. 4. Surface t e n s i o n vs temperat u r e f o r water a t 300-500'F.
-5-
Flow-Visualization Experiments
The Geothermal T e s t F a c i l i t y (GTF) w a s employed t o provide a steam source f o r flow-visualization experiments. described i n d e t a i l . 7
The f a c i l i t y w a s constructed t o
support development of t h e geothermal t o t a l flow concept'
and has been
B a s i c a l l y , i t i s a hot-water g e n e r a t o r from which t h e The q u a l i t y of t h e mixture is
p r e s s u r i z e d w a t e r i s f l a s h e d t o a d e s i r e d two-phase p r e s s u r e (or temperature) low q u a l i t y c o n d i t i o n f o r test purposes. c o n t r o l l e d by t h e s e l e c t i o n of t h e p r e s s u r i z e d water temperature where a c o n s t a n t enthalpy expansion t o t h e two-phase f l u i d s t a t e is assumed. c o n d i t i o n s f o r t h e hot-water generator are 50F 5' flow rates of about 2.5 l b / s p o s s i b l e . The flow rate t o t h e test s p o o l i s a c c u r a t e l y determined by using an orifice-meter measurement taken b e f o r e f l a s h i n g t h e p r e s s u r i z e d water. Temperature and p r e s s u r e of t h e water are a l s o recorded using conventional strain-gage p r e s s u r e transducers and thermocouples. Temperature of the f l a s h e d two-phase steam i s measured a t t h e inlet and o u t l e t of t h e test spool by using thermocouples i n t r i n s i c a l l y mounted on t h e o u t e r w a l l s u r f a c e of t h e s t a i n l e s s - s t e e l p i p e w i t h a l a y e r of i n s u l a t i o n over t h e thermocouple. Pressure, although dependent on t h e two-phase temperature, w a s a l s o recorded
Maximum
and 1000 p s i a w i t h long term
as a check n e a r t h e i n l e t and o u t l e t of t h e spool by using p r e s s u r e t a p s on
t h e top of t h e pipe. system.
A l l d a t a are recorded on a Kaye d i g i t a l d a t a - a c q u i s i t i o n
The thermocouple temperatures are given d i r e c t l y i n degrees c e n t i The 5O-in.-spool s e c t i o n is designed
grade, b u t t h e p r e s s u r e output i n v o l t s must be converted t o p s i a by using the appropriate s e n s i t i v i t y factor. t o permit t h e t e s t i n g of a v a r i e t y of p o s s i b l e two-phase i n s t r u m e n t a t i o n 9 techniques; flow v i s u a l i z a t i o n is one.
The two-phase thermodynamic state p r o p e r t i e s i n t h e spool t e s t - s e c t i o n
are evaluated w i t h t h e use of an i n t e r a c t i v e computer program c a l l e d "SPOOL."
This program u s e s a l a r g e set of s u b r o u t i n e s f o r t h e c a l c u l a t i o n of s t e a m p r o p e r t i e s based on an i n t e r n a t i o n a l l y agreed-upon set of equations c a l l e d t h e "1967 IFC Formulation f o r I n d u s t r i a l Use"." The program assumes a c o n s t a n t enthalpy expansion from t h e compressed water state t o t h e two-phase
steam state, and r e q u i r e s an i n p u t of t h e measurements of t h e water p r e s s u r e
and temperature, t h e orifice-meter zero flow and t h e test-flow d e l t a press u r e , and t h e test-spool temperature and pressure. The o u t p u t provides t h e two-phase c o n d i t i o n s of enthalpy, flow rate, q u a l i t y , s p e c i f i c volume, and
-6-
average flow v e l o c i t y , as w e l l as r e p e a t i n g t h e measured spool temperature and comparing t h e corresponding s a t u r a t e d p r e s s u r e w i t h t h e measured pressure. Flow-visualization experiments w e r e conducted using t r a n s p a r e n t g l a s s
s e c t i o n s of both 1 and 2411.
i.d.
sandwiched between Schedule 80 304 Figure 5 shows t h e g l a s s s e c t i o n , 24 i n . long, i n place. A high speed 16-mm camera, e i t h e r a Hycam
stainless-steel p i p e o f t h e same corresponding diameter.
test-spool s e c t i o n w i t h t h e 1-in. t e f l o n s h e e t served as a d i f f u s e r . 7242, was used i n a l l runs.
I n a l l cases, t h e g l a s s s e c t i o n w a s l i g h t e d from t h e back and top; a o r a Milliken, was p o s i t i o n e d as shown; high speed Ektachrome f i l m , EF type A mirror below t h e g l a s s p i p e w a s positioned
i n some r u n s t o g i v e a bottom view of t h e flow, while i n o t h e r cases i t w a s
simply angled t o r e f l e c t t h e top f l o o d l i g h t f o r bottom l i g h t i n g and f o r a
more uniform l i g h t i n t e n s i t y .
A closeup view of t h e 5-in.-long, spacer p i p e appears i n Fig. 6. Invar t i e r o d s shown. 2.0-in. i . d . by 2.7-in. 0.d. glass The spacer p i p e w a s held i n place by t h e A similar arrangement 0.d. g l a s s
The a n g l e i r o n used f o r alignment and s t i f f e n i n g mini1.0-in. i . d . by 1.3-in.
mized t h e bending moment c a r r i e d by t h e g l a s s s e c t i o n .
is shown i n Fig. 7 f o r t h e 24-in.-long,
process pipe. rods were n o t necessary. number on t h e f i l m .
This p i p e has c o n i c a l ends f o r mounting t o t h e f l a n g e , so t i e The d i g i t a l i n d i c a t o r w a s used t o provide a run
The i n d i c a t o r , flood l i g h t s , and high speed motion
camera were remotely a c t u a t e d so t h a t a test series could be conducted witho u t personnel in t h e area when t h e g l a s s s e c t i o n was pressurized. o p e r a t i n g p r e s s u r e before t h e i r use i n the experiments. I n a d d i t i o n t o t h e black-and-white i n t e n s i f i c a t i o n schemes. photographs taken from s e l e c t e d frames of t h e 1 6 mm f i l m , t h e d a t a w a s a l s o analyzed w i t h t h e use of two imageThe f i r s t produces a three-dimensional photograph The from t h e n e g a t i v e o r photograph i n which t h e t h i r d dimension is p r o p o r t i o n a l t o the d e n s i t y of t h e f i l m d a t a a t any p a r t i c u l a r l o c a t i o n on t h e film. ranges. second method is similar, but v a r i o u s c o l o r s r e p r e s e n t c e r t a i n f i l m d e n s i t y Both glasss e c t i o n designs were t e s t e d a t o p e r a t i n g temperature and t h r e e times
In most cases, flow p a t t e r n s were found t o be more e a s i l y defined
An example of t h e
using t h e s e methods over t h e conventional photograph.
image i n t e n s i f i c a t i o n r e s u l t is demonstrated i n Fig. 8 f o r 2-in.
p i p e flow
with the average q u a l i t y and v e l o c i t y of 18.2% and 18.7 ft/s, r e s p e c t i v e l y .
The black-and-white
photograph, three-dimensional image i n t e n s i f i c a t i o n , and c o l o r image i n t e n s i f i c a t i o n can be compared f o r t h e same 16-mttt frame. -7-
The
I 03 I
Fig. 5. Two-phase instrumentation-development test spool showing 1-in.-diam glass section for flow visualization.
Teflon d i f f u s e r
...
,..
Fig. 6 . Glass s p a c e r p i p e (2-in.-diam) f o r flow v i s u a l i z a t i o n . about two-thirds f u l l of water a t t i m e of photograph.)
(Pipe w a s
numbers on the c o l o r chart i n Fig. 8c g i v e t h e relative d e n s i t y ranges f o r each c o l o r band, black being t h e most dense. The f i e l d of view of t h e blackand-white photograph i s s l i g h t l y shortened on t h e r i g h t s i d e .
-9-
. . . .l."C.- - -
Fig. 7 .
Glass process p i p e (1-in.-diam)
f o r flow v i s u a l i z a t i o n .
Results
Table 1 g i v e s a summary of t h e 1-in.and 2-in.-diam tests f o r which With t h e exception
flow-visualization d a t a are t o b e presented.
The l o c a t i o n on t h e Baker c h a r t
f o r t h e flow c o n d i t i o n of each run i s shown i n Fig. 2.
of runs 1 and 2, a l l d a t a are f o r approximate f i e l d conditions of 200 p s i a ,
18%q u a l i t y , and varying flow rates.
The d a t a f o r t h e 2-in.-diam
p i p e were
taken b e f o r e t h e i n s t a l l a t i o n of a higher c a p a c i t y pump, s o t h a t maximum flow
rate on a continuous b a s i s w a s about 1.6 l b / s .
t e s t i n g i n 2-in. spools a t over 2.0 l b / s .
The new pump should permit
The 1-in.-diam
pipe r u n s w e r e
taken with t h e high c a p a c i t y pump i n s t a l l e d , b u t t h e flow choked a t about
1.8 l b / s .
-10-
F1 ow
Side view
Bottom view
0 0
Relative density range
(c)
Fig. 8. Two-phase flow visualization. Comparison of a regular photograph with three-dimensional and color image-intensification results taken from the same 16-mm frame. Flow was 18.2%quality at average velocity of 18.7 ft/s i n the 2-in.-dim pipe. (a) black-and-white photograph; (b) three-dimensional image intensification; (c) color image intensification. -11-
Table 1. Framing r a t e/ s h u t t e r speed 1000/ 1000/
Summary of flow-visualization d a t a . Average velocity (ft/s) 60.4 6.3 9.2 30.0 39.5 129 42.7 143
.
Run
Pipe diameter (in.) 2a 2b 2b 2b
lb lb
Temp. (OF) 334 434
38 9
&%A)
109 361 218
Flow rate (lb/s) 1.59 11 . 1 0.48 1.51 0.51 1.55 0.53 1.78
Quality
(%I
18.7 7.6 17.9 18.5 18 .O 18.7
2500 1
1 2500
1 loo/ 4000
loo/ 4ooo
389 388 38 6 37 9 382
218
215 210 193 201
1 250/ 12,000 1 250/ 12,000 1000/ 3000/
1 2500
la
la
18 .O
18.5
1 7500
Side v i e w only.
bSide and bottom view.
Flow-visualization results f o r t h e 2-in. f o r l-in. flow i n Figs. 13-16.
flow appear i n Figs. 9-12 and
The 2-in. runs i n c l u d e t h e image enhancement A s w i t h Fig. 8,
r e s u l t s f o r t h r e e dimensional and c o l o r image i n t e n s i f i c a t i o n and g i v e a d i r e c t comparison w i t h t h e conventional flow photograph.
the black-and-white
photograph on Figs. 9, 10, and 12 h a s a shorted f i e l d Although image enhancement w a s done f o r t h e runs, Flow v e l o c i t i e s were s u f f i c i e n t l y high
of view on t h e r i g h t s i d e .
t h e s e r e s u l t s are n o t included s i n c e they d i d n o t s i g n i f i c a n t l y improve t h e i n t e r p r e t a t i o n from t h e photograph.
i n t h e l-in.
cases t o g i v e well-mixed flow and small d e n s i t y v a r i a t i o n s .
The p r e d i c t e d flow state i s i n d i c a t e d i n each case on an expanded s e c t i o n of t h e Baker c h a r t . -12-
Run 1
P
Q
= 109 psia = 1.59 lb/s
X = 18.7 %
Vave = 60.4 f t / s
Baker c h a r t
F1 ow
Fig. 9. Flow visualization (%in. pipe), run 1. (a) photograph of typical frame, s i d e view; (b) three-dimensional enhancement; (c) color enhancement.
-1 3-
Run 2
P = 361 psia
Q = 1.11 lb/s
X = 7.6 %
,V ,
= 6.3 f t / s
I
I
I I I \ I
I I
F1ow
Baker chart
T i e roid image
Fig. 10. Flow visualization (2-in. pipe), run 2. (a) photograph of typical frame, s i d e view; (b) three-dimensional enhancement; (e) color enhancement.
-14-
Dispersed
Run 3
P = 218 psia
Q = 0.48 l b / s
Bubble
X = 17.9 % Vave = 9.2 f t / s
Baker c h a r t T i e rod image Side view
F1ow
Bottom view
.
Fig. 11. Flow visualization (2-in. pipe), run 3. (a) photograph of typical frame; (b) three-dimensional enhancement; (c) color enhancement. -15-
Run 4
P = 218 psia
Q = 1.51 lb/s
X = 18.5 %
\Iave = 30.0 f t / s
Baker c h a r t
F1 ow
Side view
Bottom view
Fig. 12. Flow visualization (2-in. pipe) run 4. (a) photograph of typical frame; (b) three-dimensional enhancement; (c) color enhancement. -16-
Run 5 P = 215 psia
Q = 0.51 lb/s
Dispersed Bubble
X = 18.0 %
v,,
= 39.5 f t / s
Baker c h a r t
F1ow
Photograph o f t y p i c a l frame
Side view Bottom view
Fig. 13.
Flow visualization (1-in. pipe), run 5.
-17-
Run 6
P = 210 psia
Q = 1.55 l b / s
.Dispersed Bubble Annular
X = 18.7 %
Vave = 129.0 f t / s
Baker chart
___t
F1ow
Side view
Bottom view
Photograph o f t y p i c a l frame
Fig. 14.
Flow visualization (1-in. pipe), run 6 .
-18-
Run 7
P = 193 p s i a Q = 0.53 l b / s
X = 18.0 % Vave = 42.7 f t / s
Baker c h a r t
Photograph o f t y p i c a l frame
'\
- side
view
Fig. 15.
Flow visualization (1-in. pipe), run 7.
-19-
Run 8
P = 201 p s i a
Dispersed Bubble
Q = 1.78 l b / s
X = 18.5 % V ,,
= 143.0 f t / s
Baker c h a r t
Photograph o f t y p i c a l frame - s i d e view Fig. 16.
. Flow visualization (1-in. pipe), run 8
-20-
Discussion
Typical f i e l d two-phase c o n d i t i o n s a t flow rates o b t a i n a b l e i n t h e GTF l e a d t o flow regimes concentrated i n t h e annular region of t h e Baker c h a r t f o r 2-in. f o r l-in. pipe flow. p i p e flow. The upper annular and dispersed r e g i o n s were obtained Although a b s o l u t e flow p a t t e r n s w e r e not e a s i l y i n t e r -
preted from t h e 16-mm f i l m o r t h e corresponding s i n g l e frame photographs, t h e general flow n a t u r e w a s approximately defined by t h e Baker c h a r t prediction. I n a l l cases, some l i q u i d flow a t t h e i n n e r w a l l boundary w a s noted, w i t h a g r e a t e r c o n c e n t r a t i o n of l i q u i d flow near t h e pipe bottom. Some runs a c t u a l l y showed reverse flow f o r t h e o u t e r l i q u i d annulus, while o t h e r s i n d i c a t e d a churning o r screw motion of t h e f l u i d . uniformly fog o r m i s t flow. Figures 9 and 1 0 show s i d e views of flow p r e d i c t e d by t h e Baker c h a r t t o be i n t h e annular regime but tending towards dispersed flow. w a l l e v i d e n t i n both cases. the l i g h t i n g configuration. This i s a reasonable d e s c r i p t i o n of t h e flow p a t t e r n found, w i t h l i q u i d flow near t h e The flow d e n s i t y i s noted t o be g r e a t e r near These r u n s used a r e f l e c t i n g m i r r o r a t t h e t h e bottom of t h e p i p e , as expected, b u t t h i s may be misleading because of underside of t h e p i p e t o achieve n e a r l y uniform l i g h t i n g , but t h i s arrangement s t i l l tends toward higher l i g h t i n g i n t e n s i t y near t h e top of t h e pipe. Thus, t h e g r e a t e r flow d e n s i t y i n d i c a t e d near t h e lower p a r t of t h e pipe may be somewhat influenced by t h e l i g h t i n g technique. evident. The flow i s s u f f i c i e n t l y t r a n s p a r e n t i n run 2, Fig. 10, f o r t h e image of a t i e rod t o be c l e a r l y I n no case w a s t h e flow considered i d e a l l y dispersed o r i n a s t a t e t h a t would be c a l l e d
As a g e n e r a l r u l e , t h e flow w a s noted t o be c l e a r e r a t t h e lower
flow rates and lower flow q u a l i t y . near t h e bottom.
As would be expected, run 2 shows t h e
g r e a t e s t d e n s i t y v a r i a t i o n , being t r a n s p a r e n t a t t h e top and h i g h l y opaque
1 Runs 3 and 4 i n Figs. 1 and 12 show f i e l d - c o n d i t i o n runs a t moderatly
low and moderately h i g h flow rates t h a t show up as an annular flow regime on t h e Baker c h a r t . These runs had t h e m i r r o r on t h e underside of t h e t r a n s parent p i p e s e c t i o n angled t o provide a simultaneous bottom view of t h e flow. This arrangement r e s u l t s i n a s l i g h t l y b r i g h t e r image a t t h e top p o r t i o n of t h e s i d e and bottom views; t h i s must be considered when analyzing d e n s i t y v a r i a t i o n s i n t h e flow f i e l d . The lower flow-rate condition of run 3 l e a d s -21-
t o a more t r a n s p a r e n t flow, and t h e tie-rod image from t h e curved g l a s s s e c t i o n i s c l e a r l y evident. lower p o r t i o n of t h e pipe. The flow i n run 3 appears t o be a combination The higher flow rate of run 4 l e a d s t o a more of s t r a t i f i e d and annular, as t h e r e i s a d e f i n i t e l a y e r of l i q u i d i n t h e uniform flow d i s t r i b u t i o n , as p r e d i c t e d by t h e Baker c h a r t . The corresponding three-dimensional and c o l o r enhancement photographs i n Figs. 9-12 provide a clear r e p r e s e n t a t i o n of t h e d e n s i t y v a r i a t i o n s i n t h e flow; t h e l i q u i d c o n c e n t r a t i o n s n e a r e r t h e bottom of t h e pipe are e v i d e n t
i n a l l runs.
These techniques, of course, are l i k e w i s e influenced by t h e They a l s o i n d i c a t e
s l i g h t l y uneven l i g h t i n g used f o r t h e flow photography. flood lamp i n t e n s i t y w a s not evenly d i s t r i b u t e d .
a b r i g h t e r l i g h t i n g area (hot s p o t ) near t h e c e n t e r of t h e flow because t h e
S i m i l a r flow-visualization d a t a f o r t h e 1-in. spool i s shown i n Figs. 13-16. I n t h e s e cases, much h i g h e r v e l o c i t i e s are obtained f o r t h e flow; t h e s e higher The flow
same flow rate when compared with t h e 2-in.-spool
v e l o c i t i e s result i n a more evenly d i s t r i b u t e d flow p a t t e r n .
regime i n d i c a t e d by t h e Baker c h a r t f o r runs 5 and 7 i n Figs. 13 and 1 5 i s annular, b u t very c l o s e t o t h e annular-dispersed flow-regime border. by t h e Baker c h a r t .
Runs
6 and 8 i n Figs. 14 and 16 l i e w e l l w i t h i n t h e d i s p e r s e d flow regime p r e d i c t e d
Both s i d e and bottom views were taken w i t h r u n s 5 and The same comments on
6, b u t only s i d e views w i t h r u n s 7 and 8 as shown.
s p o t i s even more evident.
l i g h t i n g - i n t e n s i t y d i s t r i b u t i o n apply f o r t h e 1-in. flow; t h e c e n t r a l h o t The two r u n s a t t h e lower v e l o c i t i e s show l i q u i d flow a t t h e w a l l i n an annular flow f a s h i o n p r e d i c t e d by t h e Baker chart. The high v e l o c i t y flow c o n d i t i o n s are much more dispersed, as expected.
Conclusions
Flow v i s u a l i z a t i o n provides an e x c e l l e n t method of e v a l u a t i n g t h e flow regimes p r e s e n t f o r v a r i o u s flow c o n d i t i o n s . The information i s e s p e c i a l l y Knowing t h e flow regime u s e f u l i n designing instrumentation and sampling techniques t h a t may be h i g h l y influenced by t h e d i s t r i b u t i o n of t h e flow. energy-conversion machinery. f o r given c o n d i t i o n s should a l s o be i n v a l u a b l e i n t h e design of nozzles and
The Baker c h a r t , based on t h e l i m i t e d flow
c o n d i t i o n s used i n t h i s study, appears t o g i v e a reasonable p r e d i c t i o n of
-22-
t h e flow p a t t e r n o r regime expected f o r any given flow conditions. a l s o a r e l a t i v e l y simple method t o apply.
It i s
I n p r e p a r a t i o n f o r p o s s i b l e f u t u r e flow-visualization s t u d i e s i n t h e l a b o r a t o r y and e s p e c i a l l y i n t h e f i e l d w i t h a c t u a l geothermal flow, several recommendations are made as a r e s u l t of t h i s work: e The Baker c h a r t provides a reasonable quick-look method of p r e d i c t i n g t h e flow regime f o r given c o n d i t i o n s .
o The u s e of c o l o r f i l m , a t least w i t h clean water, does n o t appear t o
have any advantages over black-and-white s p o t s i n t h e flood lamps. parent section. film. e Recorded flow d e n s i t i e s are influenced by t h e l i g h t i n g method and h o t This would be reduced by shadowgraph (back f i l m could be used t o l i g h t i n g only) and by l o c a t i n g t h e flood lamp f a r t h e r from t h e transHfgher speed black-and-white account f o r t h e decreased l i g h t i n g i n t e n s i t y .
0
Three-dimensional c o l o r image-enhancement techniques provide a u s e f u l a d d i t i o n t o conventional photography f o r t h e e v a l u a t i o n of flow p a t t e r n s and flow-density v a r i a t i o n s .
Glass process p i p e has a s u f f i c i e n t f a c t o r of s a f e t y f o r use a t
c o n d i t i o n s considerably above r a t e d o p e r a t i n g p r e s s u r e and temperature. Beaded g l a s s p i p e i s recommended f o r f u t u r e work, s i n c e alignment i s n o t c r i t i c a l , and t h e t i e r o d s used i n t h e 2-in. necessary s e c t i o n would n o t be
Although g l a s s i s s l i g h t l y s o l u b l e i n s t e a m , several hours o f o p e r a t i o n produced no v i s i b l e deter-ioration i n t h e o p t i c a l q u a l i t y of t h e g l a s s test-sections.
Acknowledgements
The a u t h o r would l i k e t o acknowledge t h e a s s i s t a n c e of J i m Kuhlman and
Leo Meisner i n t h e design, f a b r i c a t i o n , and t e s t i n g of t h e s p o o l s f o r t h e
flow-visualization studies. motion-picture coverage. Gary Carter provided t h e image-enhancement r e s u l t s , and Jm Caywood was t h e photographer f o r t h e s t i l l and high speed i
-23-
References
1.
Y. Taitel and A. E. Dukler, AIChE. J. 22, 47 (1976). 0. Baker, &Z Gus J. 53, 185 (1954). G. F. H e w i t t and N. S. Hall-Taylor,
2.
3.
4. 5. 6.
AnnuZar Two-Phase n o w (Permagon
P r e s s , New York, 1970).
G. W. Govier and K. Aziz,
The n o w of CompZex Mkctures i n Pipes (Van
Nostrand-Reinhold, New York, 1972).
R. Kern, Chem. Eng. (New York) 82, 145 (1975).
C. L. Yaws and H. S . N. S e t t y , Chem. Eng.
(New York) 8 l , 67 (1974).
7.
H. Weiss, GeothermaZ Two-Phase Flow Test FaoiZity, Lawrence Livermore
Laboratory, Rept. UCRL-76409, P r e p r i n t (1975).
8.
A. L. Austin, G. H. Higgins, and J. H. Howard, m e Totaz FZozd Concept
f o r Recovery of Energy from GeothermaZ Hot Brine Deposits, Lawrence
Livermore Laboratory, Rept. UCRL-51366 (1973).
9.
10.
C. A. Calder, Instrumentation for !Two-Phase GeothemnaZ Flow, Lawrence
Livermore Laboratory, Rept. UCID-16806 (1975).
R. B. McClintock and G. J. S i l v e s t r i , CaZcukztion o f Properties of Steam
(American Society of Mechanical Engineering, New York, 1968).
.
WTW/ c/ l a /mla s
GPO 789-038/8
-24-