M D Method
M D Method
SECOND TERM
CHAPTER 1
Prepared
By
&
CHAPTER 1
Moment Distribution Method
Moment Distribution is a numerical method of analysis of statically indeterminate structures in which the
joints are temporarily held against rotation and translation, and then through a relaxation process, rotations
of the joints are allowed. Corrections for joint translations (Side-Sway) are made in general through a
separate consideration, or by another process of relaxation. The method is very convenient for analysis of
highly statically indeterminate structures because it avoids the solution of simultaneous equations which
result in the analysis by other methods.
1- Definitions
A. Fixed End Moments, abbreviated by (F.E.M), are the moments at the fixed ends of a beam. Figure
1 shows the F.E.M for prismatic beams subjected to several cases of loading.
B. Sign convention: The sign of the end moments of a beam is positive, when anticlockwise and
negative when clockwise, see Figure 2.
C. Stiffness (S) and Carry-Over-Factor (C.O.F), see Figure 3.
a. Rotation
For fixed-fixed prismatic beam element (AB), the end moments due to rotation a are:
4 EI
2 EI
Ma =
a , M b =
a
L
L
C.O.F =
Mb
= 0.5
Ma
if a = 1 , then M a =
4 EI
= S ab
L
For fixed-hinged prismatic beam element (AB), the end moments due to rotation a are:
3EI
Ma =
a , M b = 0
L
C.O.F =
Mb
=0
Ma
if a = 1 , then M a =
3EI
= S ab
L
b. Translation
For fixed-fixed prismatic beam element (AB), the end moments due to translation ;
located at A or B; are:
6 EI
6 EI
Ma = 2 , Mb = 2
L
L
C.O.F =
Mb
=1
Ma
6 EI
= S ab
L2
For fixed-hinged prismatic beam element (AB), the end moments due to translation ;
located at A or B; are:
3EI
Ma = 2 , Mb = 0
L
if = 1 , then M a =
C.O.F =
Mb
=0
Ma
3EI
= S ab
L2
To prove the above relations, the following methods may be used; (as yielding of supports)
1- Conjugate beam (Elastic weight) method,
2- Virtual work method,
3- Three-moments equation method,
4- Column analogy method, and
5- Slope deflection method.
if = 1 , then M a =
2- Distribution of moment (M) at a joint among the members meeting at this joint
Figure 4, shows a three members; (a, b, and c); with stiffness S12 , S13 , and S14 , and subjected to
moment (M) at joint 1. This moment is distributed among these three members as follows:
M = M 12 + M 13 + M 14 = S12 + S13 + S14
4
or, =
, then
1i
i =2
M 12 = S12
1i
i =2
M 13 = S13
S13
M = D13 M
1i
i =2
i =2
1i
1i
i =2
M 14 = S14
M = D12 M
i =2
S12
4
1i
S14
M = D14 M
1i
i =2
M 13 = S13 + M 13F 2
M 14 = S14 + M 14F
Substitute from equation 2 in equation 1
Substitute in equation 2
M
S
M 12 = S12 4 u + M 12F = 4 12 M u + M 12F = D12 M u + M 12F
S1i
S1i
i =2
M 13 = S13
i =2
Mu
+ M 13F =
1i
i =2
M 14 = S14
Mu
i =2
1i
i =2
+ M 14F =
S13
4
1i
S14
1i
i =2
Where D1i is the distribution factor for members 1i, i=2, 3, and 4.
at the joints. This cycle of moment distribution and carry-over-moment is repeated a number
of times until the C.O.M. become negligible at all the joints. The final moments are obtained
by adding up the accumulated moments at every joint.
In this case, the joints are given an arbitrary side-sway without rotations. The resulting
fixed end moments (F.E.M.) are related to . The arbitrary side-sway is chosen with
suitable value. The joints are now allowed to rotate. The unbalanced moments are
distributed in a table and the bending moment diagram, for case 1, which is denoted by
M1-Diagram, is obtained. The necessary holding force F11 is then calculated by satisfying
the statical condition x = 0, or y = 0 according to the direction of side-sway.
To satisfy the statical condition, the following equation is applied:
F10 + F11 = 0, or = - F10 / F11, and the final bending moments (Mf) are given by
Mf = M0 + M1
2. Frames with two degrees of freedom of side-sway
a. Case 0 (prevent side-sway)
In this case, the joints are prevented from translation by introducing a Holding Forces F10
and F20 (or a supports) at two of the joints. In this case, the bending moment diagram which
is denoted by M0-Diagram can be readily determined by the moment distribution as usual.
The magnitude of the necessary holding forces F10 and F20 are then found by satisfying the
statical condition x = 0, or y = 0 according to the direction of side-sway.
b. Case 1 (allow side-sway in level 1, and prevent side-sway in level 2)
In this case, the joints in level 1 are given an arbitrary side-sway without rotations. The
resulting fixed end moments (F.E.M.) are related to . The arbitrary side-sway is
chosen with suitable value. The joints are now allowed to rotate. The unbalanced moments
are distributed in a table and the bending moment diagram, for case 1, which is denoted
by M1-Diagram, is obtained. The necessary holding forces F11 and F21 are then calculated
by satisfying the statical condition x = 0, or y = 0 according to the direction of sidesway.
c. Case 2 (allow side-sway in level 2, and prevent side-sway in level 1)
In this case, the joints in level 2 are given an arbitrary side-sway without rotations. The
resulting fixed end moments (F.E.M.) are related to . The arbitrary side-sway is
chosen with suitable value. The joints are now allowed to rotate. The unbalanced moments
are distributed in a table and the bending moment diagram, for case 2, which is denoted
by M2-Diagram, is obtained. The necessary holding forces F12 and F22 are then calculated
by satisfying the statical condition x = 0, or y = 0 according to the direction of sidesway.
To satisfy the statical condition, the following equations are applied:
F10 + 1 F11 + 2 F 12 = 0
F20 + 1 F21 + 2 F 22 = 0
By solving the above two equations, one can get the correction factors 1 and 2, and the final
bending moments (Mf) are given by:
Mf = M0 + 1 M1 + 2 M2
3. General case, Frames with n degrees of freedom of side-sway
a. Case 0 (prevent side-sway)
In this case, the joints are prevented from translation by introducing a Holding Forces F10 ,
F20 , ., and Fn0 (or a supports) at n joints. In this case, the bending moment diagram
which is denoted by M0-Diagram can be readily determined by the moment distribution as
usual. The magnitude of the necessary holding forces F10 , F20 , ., and Fn0 are then
+ 1 F11
+ 1 F21
M
M
+ 1 Fn1
+ 2 F12
+ 2 F22
M
M
+ 2 Fn 2
+ L L + n F1n
+ L L + n F2 n
O L
M
L O
M
+ L L + n Fnn
= 0 1
= 0 2
M
M
=0 n
By solving the above equations, one can get the correction factors 1, 2, ..,n and the final
bending moments (Mf) are given by:
Mf = M0 + 1 M1 + 2 M2 ++ nM n
pL2 /12
-pL2 /12
p
pL/2
pL/2
Pab /L2
-Pa2 b/L2
pL/4
pL2 /20
-pL2 /30
L
Pa 2 (a+3b)/L3
Pb (3a+b)/L
pL2 /32
-pL2 /32
7pL/20
3pL/20
-M2
M1
p
d/2
R1
pL/4
d/2
L
M.a.(2b-a)/L2
R2
pL/4
M.b.(2a-b) /L2
-5pL2 /96
pL/4
a
2
5pL2 /96
L
6Mab/L3
6Mab/L
M
P1
P2
M1
P1
a
a
P2
R2
R2
P1
P2
P1
M'2
P3
M2
P1
R1
R1
P1
M'1
P3
P2
A m0
L
M = M'1 + M'2 / 2
We can calculate R1 and R2
from equilibrium equations
Figure 1
M1= A m 0 / L = - M2
R1= P1 + 0.5 P2 + pc = R2
Where:
A m 0 = area of moment diagram of simple beam
-pLL'/12
or
p
p(
pLL'/12
L'
h.p
pL /12
.)
2 2
' /1
L
p
pL/2
L'
pL'/2
' /2
pL
L'
' /2
pL
pL'/2
2 2
' /1
-p L
-pL2 /12
pL/2
Figure 1 ( continued )
( +ve )
P1
P2
( -ve )
P3
Sign Convention
Figure 2
Ma = 4EI/L = S
Mb = 2EI/L
a =1
Ma = 3EI/L = S
a =1
L , EI
B
L , EI
Ma = 3EI/L/L
Ma = 6EI/L/L
A
Mb = 2EI/L/L
B
L , EI
=1
A
=1
L , EI
Ma = 3EI/L/L
Figure 3
=1
B
L , EI
a
b
Figure 4
a
b
Figure 5
Examples
Example 1
For the shown beam, Determine the Internal Straining Actions ( N.F.D, S.F.D, & B.M.D ) ,
Using the Method of Moment Distribution.
Solution
Step 1: Stiffnesses and Distribution Factors
Joint B
Stiffnesse s
4 EI
S ba =
= 0 .5 EI
8
4 EI
2 EI
S bc =
=
6
3
Sb
7 EI
6
D .F .
3
0 .43
7
4
M
0 .57
7
M ab = M ba
2 (8) 2
=
= 10 23 10.667 t.m
12
Member BC
bc
= M
cb
8 6
= 6 t .m
8
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
B.M.
Joint A
AB
0
10.667
0.000
1.003
0.000
11.670
Joint B
BA
BC
0.43
0.57
-10.667 6.000
2.007
2.660
0.000
0.000
0.000
0.000
-8.660
8.660
Joint C
CB
0
-6.000
Cycle 1
0.000
1.330
Cycle 2
0.000
-4.670
Example 1
8t
2 t/m
A
B
8.0 m
3.0 m
3.0 m
Constant EI
10.667 t.m
-10.667 t.m
2 t/m
8t
6 t.m
-6 t.m
C
8.0 m
3.0 m
3.0 m
11.67 t.m
8.66 t.m
B
8.376 t
8t
8.66 t.m
7.624 t
4.67 t.m
4.665 t
3.335 t
Free-body-diagram
8.376
4.605
+
S.F.D.
3.335
Units in ton
7.624
11.67
8.66
4.67
16
+
12
5.335
B.M.D.
Units in t.m
Example 2
For the sketched continuous beam with variable moment of inertia,
Determine the Internal Straining Actions , Using the Method of Moment Distribution.
Solution
Step 1: Stiffnesses and Distribution Factors
Joint B
D. F .
Stiffnesses
4 (5 EI )
S ba =
= 2 EI
10
3 ( 4 EI )
S bc =
= EI
12
2
0 .667
3
1
M 0.333
3
Sb
= 3 EI
ab
= M
ba
2 . 4 (10 ) 2
=
= 20 t .m
12
Member BC
bc
1 . 5 8 12
= 18 t . m
8
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
B.M.
Joint A
AB
0
20.000
0.000
0.667
0.000
20.667
Joint B
BA
BC
0.667
0.333
-20.000 18.000
1.334
0.666
0.000
0.000
0.000
0.000
-18.666 18.666
Cycle 1
Cycle 2
D .F .
Stiffnesse s
4 ( 5 EI )
= 2 EI
10
4 ( 4 EI )
4 EI
=
=
12
3
S ba =
S bc
3
= 0 .6
5
2
M
= 0 .4
5
M
10 EI
3
2 . 4 (10 ) 2
= 20 t .m
12
Sb
ab
= M
ba
Member BC
bc
= Mcb =
8 12
= 12 t .m
8
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
B.M.
Joint A
AB
0
20.000
0.000
2.400
0.000
-1.800
0.000
0.240
0.000
-0.180
0.000
20.660
Joint B
BA
BC
0.6
0.4
-20.000 12.000
4.800
3.200
0.000
6.000
-3.600 -2.400
0.000
-0.800
0.480
0.320
0.000
0.600
-0.360 -0.240
0.000
-0.080
0.048
0.032
-18.632 18.632
Joint C
CB
1
-12.000
12.000
1.600
-1.600
-1.200
1.200
0.160
-0.160
-0.120
0.120
0.000
Cycle 1
Cycle 2
Cycle3
Cycle 4
Cycle 5
Example 2
8t
2.4 t/m
A
B
10 m
6m
6m
5EI
4EI
8t
12 t.m
-12 t.m
C
20 t.m
6m
-20 t.m
2.4 t/m
6m
8t
18 t.m
B
A
10 m
B
6m
6m
20.667 t.m
18.666 t.m
B
12.2 t
8t
18.666 t.m
11.8 t
5.556 t
2.444 t
Free-body-diagram
12.2
5.556
+
S.F.D.
2.444
Units in ton
11.8
20.667
M = 30 t.m
18.666
M = 24 t.m
4.67
B.M.D.
+
14.667
Units in t.m
Example 3
For the sketched continuous beam with constant moment of inertia,
Determine the Internal Straining Actions , Using the Method of Moment Distribution.
Solution
Step 1: Stiffnesses and Distribution Factors
Joint B
Stiffnesse s
3 ( EI )
S ba =
= 0.5 EI
6
4 ( EI )
S bc =
= 0 .5 EI
8
Sb
= EI
D .F .
M
0 .5
0.5
M ba
Member BC
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
B.M.
Joint A
AD
AB
0
1
-3.000
0.000
0.000
3.000
-3.000
3.000
Joint B
BA
BC
0.5
0.5
-13.500 6.000
3.750
3.750
1.500
0.000
-0.750 -0.750
0.000
0.000
0.000
0.000
-9.000
9.000
Joint C
CB
0
-6.000
0.000
1.875
0.000
-0.375
0.000
-4.500
Cycle 1
Cycle 2
Cycle 3
Example 3
2t
A
1.5 m
9 t.m
3m
3m
3m
2m
A
3m
3m
3.2 t
6 t.m
1.5 m
3.2 t
-6 t.m
-13.5 t.m
4.8 t/m
3m
-9 t.m
4.8 t/m
2 t -3 t.m
3.2 t
3.2 t
4.8 t/m
A
B
3m
3m
2m
3m
3m
2t
14.4 t
3 t.m
9 t.m
B
3.2 t
4.5 t.m
C
8.2 t
6.2 t
3.2 t
9 t.m
3.7625 t
2.6375 t
Free-body-diagram
6.2
3.7625
S.F.D.
Units in ton 2
0.5625
2.6375
8.2
M = 14.4 t.m
9
4.5
B.M.D.
Units in t.m
9.6
6.7875
9.6
+
7.9125
Example 4
The sketched Frame with variable moment of inertia, carries loads as shown;
Determine the Internal Straining Actions , Using the Method of Moment Distribution.
Solution
Step 1: Relative Stiffnesses and Distribution Factors
Assume EI = 1
Joint D
Joint E
Stiffnesses
S dc
=0
4(1)
2
S da =
=
6
3
4( 2) 2
S de =
=
12
3
4
Sd =
3
D.F .
0
0.5
0.5
1
Stiffnesse s
4(2)
2
S ed =
=
12
3
3 (1 )
1
S eb =
=
9
3
4(2)
2
S ef =
=
12
3
5
Se =
3
D .F .
0 .4
0 .2
0 .4
1
M dc = 5 ( 2) = 10
Member DE
M de = M ed
5 4 (12 ) 2
=
= 30 t .m
96
Member EF
M ef = M fe
9 4 (8) 2 9 8 (4) 2
=
+
= 16 + 8 = 24 t.m
(12) 2
(12) 2
Member EB
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
B.M.
Joint A
AD
0
0.000
0.000
-5.000
0.000
-0.500
0.000
-0.250
0.000
-0.025
0.000
-5.775
Joint D
DA
DC
DE
0.5
0
0.5
0.000 -10.000 30.000
-10.000 0.000 -10.000
0.000
0.000
2.000
-1.000
0.000
-1.000
0.000
0.000
1.000
-0.500
0.000
-0.500
0.000
0.000
0.100
-0.050
0.000
-0.050
0.000
0.000
0.050
-0.025
0.000
-0.025
-11.575 -10.000 21.575
Joint E
ED
EB
0.4
0.2
-30.000 -4.000
4.000
2.000
-5.000
0.000
2.000
1.000
-0.500
0.000
0.200
0.100
-0.250
0.000
0.100
0.050
-0.025
0.000
0.010
0.005
-29.465 -0.845
EF
0.4
24.000
4.000
0.000
2.000
0.000
0.200
0.000
0.100
0.000
0.010
30.310
Joint F
FE
0
-24.000
0.000
2.000
0.000
1.000
0.000
0.100
0.000
0.050
0.000
-20.850
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Example 4
5t
9t
4 t/m
D
9t
F
( 2EI )
6m
3m
( 2EI )
2.4 t
( EI )
( EI )
6m
6m
2m
30 t.m
6m
4m
4m
9t
4 t/m
4m
9t
-24 t.m
E
D
E
( 2EI )
( 2EI )
5t
6m
-10 t.m
-4 t.m
21.575 t.m
24 t
B
B
16.3425 t
11.3425
5t
11.575 t.m
30.31 t.m 9 t
29.465 t.m
2.892 t
6m
( EI )
6m
( EI )
1.6 t.m
4.586 t
2.892 t
12.6575 t
2.892 t
10 t.m
4m
2.4 t
2.4 t
2m
4m
3m
-3.2 t.m
4m
3m
6m
9t
20.85 t.m
4.586 t
22.4455 t
9.788 t
0.845 t.m
2.4 t
8.212 t
1.694 t
2.892 t
5t
5.775 t.m
16.3425 t
Free-body-diagram
0.706 t
22.4455 t
Example 4 ( Continued )
2.892
4.586
N.F.D.
Units in ton
16.3425
22.4455
11.3425
9.788
1.694
0.788
8.212
2.892
S.F.D.
12.6575
Units in ton
0.706
M = 48 t.m
21.575
10
-
30.31
20.85
29.465
-
0.845
11.575
36
36
8.846
4.8
11.998
4.236
+ 5.775
B.M.D.
Units in t.m
Example 5
The sketched Symmetrical Frame with variable moment of inertia,
carries loads as shown; Determine the Internal Straining Actions,
Using the Moment Distribution Method.
Solution
Use the equivalent Structure; as shown in figure
Step 1: Relative Stiffnesses and Distribution Factors
Joint C
D .F .
Stiffnesse s
3 (2 )
=1
6
=
0
S ca =
S ce
S cd =
0 . 375
0
4 (5)
5
=
12
3
0 . 625
8
3
Sb
cd
= M
dc
2 (12 ) 2
=
= 24 t .m
12
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
B.M.
CE
0
-6.000
0.000
0.000
0.000
-6.000
Joint C
CA
CD
0.375
0.625
0.000 24.000
-6.750 -11.250
0.000
0.000
0.000
0.000
-6.750 12.750
Joint D
DC
0
-24.000
0.000
-5.625
0.000
-29.625
Cycle 1
Cycle 2
4t
Example 5
4t
2 t/m
6m
( EI )
6m
A'
12 m
4 t -6 t.m
2 t/m
D
( 5EI )
E'
( 2EI )
12 m
4t
C'
( 5EI )
( 2EI )
1.5
( 5EI )
24 t.m
1.5
-24 t.m
2 t/m
1.5
12 m
( 2EI )
1.5
12 m
C.L.
4 t 6 t.m
24 t
12.75 t.m
29.625 t.m
1.125 t
1.125 t
E
4t
1.125
10.59375 t
6.75 t.m
1.125 t
13.40625 t
14.59375
N.F.D.
Units in ton
1.125 t
Free-body-diagram
14.59375 t
C.L.
M = 36 t.m 29.625
1.125
13.40625
S.F.D.
10.59375
Units in ton
1.125
6
6.75
-
4
+
12.75
13.40625
10.59375
Units in t.m
B.M.D.
C.L.
F
p t/m
p t/m
B
L1
C'
L3
L2
A'
B'
L2
L1
C.L.
C.L.
2EI/L
2EI/L
a
p t/m
B
a=-
b
b=1
L , EI
B
L1
L2
0.5L3
Considered Structure
C.L.
F1
F1
P1 t/m
C'
D'
F2
H2
P2 t/m
B
L1
L2
A'
H2
F2
H1
H3
H1
H3
P2 t/m
B'
L3
L2
L1
C.L.
C.L.
F1
P1 t/m
C
H1
H3
F2
Considered Structure
H2
P2 t/m
B
L1
0.5L3
L2
C.L.
F
p t/m
A
p t/m
C
B
L1
L3
L2
L3
L2
C.L.
B
L1
L2
Equivalent Structure
L3
A'
B'
L1
C.L.
F1
F1
P1 t/m
P1 t/m
C'
F2
H2
P2 t/m
B
L1
L2
L3
L3
L2
F1
P1 t/m
C
H1
H3
F2
Equivalent Structure
H2
P2 t/m
B
L1
L2
L3
P2 t/m
B'
C.L.
A'
H2
F2
H1
H1
H3
H3
D'
L1
C.L.
F
p t/m
B'
C'
A'
B
L1
p t/m
L3
L2
L2
L1
C.L.
6EI/L
6EI/L
a
b
B
a=
b=1
L , EI
OR
3EI/(L/2) = 6EI/L
a
a=1
L/2 , EI
C.L.
p t/m
p t/m
B
L1
L2
0.5L3
Considered Structure
L1
0.5L3
L2
Equivalent Structure
OR
C.L.
F1
P1 t/m
C
C'
H3
H3
H1
F2
H2
P2 t/m
H2
F2
L1
L2
H1
D'
F1
A'
P2 t/m
B'
L3
L2
L1
C.L.
C.L.
F1
F1
P1 t/m
P1 t/m
F2
H2
P2 t/m
F2
A
H2
H3
H1
H1
H3
P2 t/m
L1
L2
0.5L3
L1
OR
Considered Structure
L2
0.5L3
Equivalent Structure
C.L.
F
p t/m
A
B'
L1
A'
p t/m
L3
L2
L3
L2
C.L.
B
L1
L2
Equivalent Structure
L3
L1
C.L.
F1
P1 t/m
C
C'
D'
F3
F2
H2
( EI )
P2 t/m
H2
F2
H3
H1
H3
P1 t/m
L1
L2
L3
L3
L2
F1
P1 t/m
C
E
H3
H1
F2
0.5F3
( 0.5EI )
H2
P2 t/m
B
L1
L2
L3
Equivalent Structure
A'
P2 t/m
B'
C.L.
F1
H1
L1
Example 6
The sketched Symmetrical Frame with variable moment of inertia,
carries loads as shown; Determine the Internal Straining Actions,
Using the Moment Distribution Method.
Solution
The load may be divided into two cases as follows:
Case 1; is a symmetrical case, and case 2 is an antisymmetrical case.
By solving these two cases, and using superposition of two cases, one can obtain
the final solution.
Case 1: Symmetrical Case
Step 1: Relative Stiffnesses and Distribution Factors
Joint B
Stiffnesse
D .F .
3 (1 )
1
=
9
3
2 (2)
1
=
=
12
3
4 (1 )
2
=
=
6
3
S ba =
S bc
S be
Sb
4
3
0 . 25
0 . 25
0 .5
Mba =
1.569
= 10..125 t.m
8
BE
0.5
0.000
5.063
0.000
0.000
5.063
Joint E
EB
0
0.000
0.000
2.531
0.000
2.531
Cycle 1
Cycle 2
D.F .
Stiffnesse s
3 (1) 1
=
9
3
3 ( 2)
=
=1
6
4 (1) 2
=
=
6
3
S ba =
S bc
S be
Sb
=2
M
M
1
0.167
6
0.5
1
0.333
3
1
Mba =
1.569
= 10..125 t.m
8
BE
0.333
0.0000
3.3716
0.0000
0.0000
3.3716
Joint E
EB
0
0.0000
0.0000
1.6858
0.0000
1.686
Cycle 1
Cycle 2
F.B.M
CB
2.531
Joint C
CD
-0.840
BE
8.434
Joint E
EB
4.217
L.H.S.
CF
-1.691
Joint F
FC
-0.845
R.H.S.
( EI )
6m
4.5 m
( EI )
( EI )
4.5 m
6t
12 m
9m
6t
( EI )
D
( EI )
( 2EI )
6m
4.5 m
D
( EI )
( 2EI )
Example 6
12 t
( EI )
( EI )
4.5 m
12 m
4.5 m
4.5 m
Symmetrical Case
6t
B
A
( EI )
( 2EI )
6m
4.5 m
( EI )
4.5 m
( EI )
( EI )
6t
4.5 m
12 m
4.5 m
Anti-symmetrical Case
C.L.
6t
6t
A
( EI )
( EI )
( 2EI )
6m
6m
( 2EI )
( EI )
( EI )
4.5 m
4.5 m
6m
Symmetrical Case
4.5 m
4.5 m
6m
Example 6 ( Continued )
Symmetrical Case
6t
Anti-symmetrical Case
6t
-10.125 t.m
B
4.5 m
-10.125 t.m
B
4.5 m
4.5 m
4.5 m
12 t
1.687 t
A
4.2187 t
0.421 t
0.421 t
0.8435 t
8.6248 t
B
2.108 t
4.212 t.m
8.437 t.m
2.108 t
0.8435 t
7.7813 t
0.842 t.m
2.527 t.m
0.0936 t
0.9371 t
1.685 t.m
0.421 t
0.421 t
8.6248 t
Free-body-diagram
0.842 t.m
0.9371 t
0.0936 t
Example 6 ( Continued )
0.421
1.687
0.9371
8.6248
N.F.D.
Units in ton
4.2187
0.8435
0.0936
-
0.421
7.7813
2.108
S.F.D.
Units in ton
16.032
M = 27 t.m
7.595
-
1.685
+
2.527 0.842
+
+
-
18.984
+ 8.437
4.212
0.842
B.M.D.
Units in t.m
Joint C
Stiffnesse s
3 (1 )
S ba =
=
9
4 (1)
S be =
=
6
4 (2)
S bc =
=
12
5
Sd =
3
Stiffnesse s
3 (1)
1
S cd =
=
9
3
4 (1)
2
=
S cf =
6
3
4 (2)
2
=
S cb =
12
3
5
Sd =
3
D .F .
1
3
2
3
2
3
0 .2
0 .4
0 .4
1
D .F .
0.2
0.4
0.4
1
M ba =
1 .5 12 (9 )
= 20 .25 t .m
8
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
B.M.
Joint E
EB
0
0.000
0.000
4.050
0.000
0.000
0.000
0.162
0.000
0.000
0.000
4.212
BE
0.4
0.000
8.100
0.000
0.000
0.000
0.324
0.000
0.000
0.000
0.013
8.437
Joint B
BA
0.2
-20.250
4.050
0.000
0.000
0.000
0.162
0.000
0.000
0.000
0.006
-16.032
BC
0.4
0.000
8.100
0.000
0.000
-0.810
0.324
0.000
0.000
-0.032
0.013
7.595
CB
0.4
0.000
0.000
4.050
-1.620
0.000
0.000
0.162
-0.065
0.000
0.000
2.527
Joint C
CD
0.2
0.000
0.000
0.000
-0.810
0.000
0.000
0.000
-0.032
0.000
0.000
-0.842
CF
0.4
0.000
0.000
0.000
-1.620
0.000
0.000
0.000
-0.065
0.000
0.000
-1.685
Joint F
FC
0
0.000
0.000
0.000
0.000
-0.810
0.000
0.000
0.000
-0.032
0.000
-0.842
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Deformed Shape
One Degree of Side-Sway (Horizontally)
Deformed Shape
Two Degrees of Side-Sway (Horizontally)
Deformed Shape
Example 7
For the shown frame, determine the Internal Straining Actions ;
Using the moment distribution method, taking into consideration joint translation ( sidesway )
Solution
Step 1: Relative Stiffnesses and Distribution Factor ( General Calculation )
Assume EI = 1
Joint
B
Stiffnesses
Sce =
Sca = 3(3) / 9 =
Scd = 4(5) / 10 =
Sb =
Sdf =
Sdc = 4(5) / 10 =
Sdb = 4(1.5) / 6 =
Sb =
0
1
2
3
0
2
1
3
D.F.
0
0.333
0.667
1
0
0.667
0.333
1
M ce = 5 ( 2) = 10 t.m
Member CD
M cd = M dc =
Member DF
Member DB
M db = M bd =
df
3 (10) 2
= 25 t.m
12
= 2 ( 2 ) = 4 t .m
4 (6)
= 3 t .m
8
CE
D.F.
0
F.E.M. -10.000
D.M.
0.000
C.O.M. 0.000
D.M.
0.000
C.O.M. 0.000
D.M.
0.000
C.O.M. 0.000
D.M.
0.000
C.O.M. 0.000
D.M.
0.000
M0
-10.000
Joint C
CA
0.333
0.000
-4.995
0.000
-1.999
0.000
-0.556
0.000
-0.222
0.000
-0.062
-7.834
CD
0.667
25.000
-10.005
6.003
-4.004
1.668
-1.113
0.668
-0.445
0.186
-0.124
17.834
Joint D
DC
DF
0.667
0
-25.000 4.000
12.006 0.000
-5.003
0.000
3.337
0.000
-2.002
0.000
1.335
0.000
-0.556
0.000
0.371
0.000
-0.223
0.000
0.149
0.000
-15.586 4.000
DB
0.333
3.000
5.994
0.000
1.666
0.000
0.667
0.000
0.185
0.000
0.074
11.586
Joint B
BD
0
-3.000
0.000
2.997
0.000
0.833
0.000
0.333
0.000
0.093
0.000
1.256
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
F10 =
ca
db
= M
bd
3(3)
1
6 (1 . 5 )
1
M
=
=
2
2
9
4
(9 )
(6 )
M ca
4
400
or
=
=
M db
9
900
Mca = -400
Mdb = Mbd = -900
Step 3: Moment Distribution Table
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M1
F11 =
=
M0
M1
F.B.M
CE
0
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Joint C
CA
0.333
-400.00
133.20
0.00
-99.95
0.00
14.81
0.00
-11.12
0.00
1.65
-361.40
CD
0.667
0.00
266.80
300.15
-200.20
-44.49
29.67
33.38
-22.27
-4.95
3.30
361.40
Joint D
DC
DF
0.667
0
0.00
0.00
600.30
0.00
133.40
0.00
-88.98
0.00
-100.10
0.00
66.77
0.00
14.84
0.00
-9.90
0.00
-11.13
0.00
7.43
0.00
612.62
0.00
DB
0.333
-900.00
299.70
0.00
-44.42
0.00
33.33
0.00
-4.94
0.00
3.71
-612.62
Joint B
BD
0
-900.00
0.00
149.85
0.00
-22.21
0.00
16.67
0.00
-2.47
0.00
-758.16
DB
11.586
-7.457
4.129
Joint B
BD
1.256
-9.229
-7.97318
-268.62
0.0122
(-F10/F11)=
In which is the correction factor
The final moment is equal to ( M0 + 1 )
CE
-10
0
-10
Joint C
CA
-7.834
-4.399
-12.233
CD
17.834
4.3993
22.233
DC
-15.586
7.4574
-8.129
Joint D
DF
4
0
4
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Example 7
5t
2t
3 t/m
3m
( 5EI )
4t
3m
9m
( 1.5EI )
( 3EI )
B
10 m
2m
2m
2t
3 t/m
F10
C
( 5EI )
3m
4t
3m
9m
( 1.5EI )
( 3EI )
B
2m
5t
-10 t.m
C
2m
10 m
25 t.m
3 t/m
2m
-25 t.m
4 t.m
10 m
2m
D
3m
3 t.m
4t
3m
2t
Example 7 ( Continued )
5t
11.586 t.m
C
0.87044 t
4.14033 t
F10 =3.26989 t
4t
4t
( 3EI )
3m
9m
( 1.5EI )
0.14033 t
0.14033 t
0.87044 t
( 5EI )
3m
7.834 t.m
2t
3 t/m
1.256 t.m
0.87044 t
2m
10 m
2m
F11
-400
9m
6m
-900
-900
10 m
2m
361.4
2m
612.62
40.156
228.463
F11 = 268.62
228.463
228.463
40.156
758.16
A
40.156
758.16
A
Example 7 ( Continued )
10 t.m
30 t
22.233 t.m
1.359 t
4 t.m
8.129 t.m
1.359 t
2t
21.4104 t
13.5896 t
16.4104 t
15.5896 t
5t
12.233 t.m
2t
1.359 t
1.359 t
4.129 t.m
4t
1.359 t
2.641
Free-body-diagram
21.4104 t
7.97318 t.m
15.5896 t
16.4104
2
+
1.359
1.359
13.5896
S.F.D.
15.5896
N.F.D.
2.641
Units in ton
Units in ton
22.233
M = 37.5 t.m
8.129
4
4.129
10
12.233
21.4104
1.359
0.0511 6
-
5t
7.97318
B.M.D.
Units in t.m
Example 8
For the shown frame, determine the Internal Straining Actions ;
Using the moment distribution method, taking into consideration joint translation ( sidesway )
Solution
Step 1: Relative Stiffnesses and Distribution Factor ( General Calculation )
Assume EI = 1
Joint
D
Stiffnesses
Sda = 4(3) / 6 =
Sde = 4(4) / 8 =
Sd =
Sed = 4(4) / 8 =
Seb = 4(3) / 6 =
Sef = 4(3) / 3 =
Se =
Sfe = 4(3) / 3 =
Sfg = 4(6) / 12 =
Sf =
Sgf = 4(6) / 12 =
Sgc = 4(4.5) / 9 =
Sg =
D.F.
0.5
0.5
1
0.25
0.25
0.5
1
0.667
0.333
1
0.5
0.5
1
2
2
4
2
2
4
8
4
2
6
2
2
4
Member FG
M fg = M gf =
Member DE
M de = M ed =
4 (12) 2
= 48 t.m
12
12 (8)
= 12 t.m
8
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M0
Joint D
DA
DE
0.5
0.5
0.000 12.000
-6.000 -6.000
0.000
1.500
-0.750 -0.750
0.000
2.376
-1.188 -1.188
0.000
0.672
-0.336 -0.336
0.000
0.356
-0.178 -0.178
-8.452 8.452
D.F.
F.E.M.
D.M.
C.O.M.
Joint A
AD
0
0.000
0.000
-3.000
Joint E
ED
EB
0.25
0.25
-12.000 0.000
3.000
3.000
-3.000 0.000
4.752
4.752
-0.375 0.000
1.344
1.344
-0.594 0.000
0.711
0.711
-0.168 0.000
0.206
0.206
-6.123 10.014
Joint B
BE
0
0.000
0.000
1.500
EF
0.5
0.000
6.000
-16.008
9.504
-5.003
2.689
-2.251
1.423
-0.657
0.412
-3.891
Joint F
FE
FG
0.667
0.333
0.000
48.000
-32.016 -15.984
3.000
12.000
-10.005 -4.995
4.752
1.998
-4.502
-2.248
1.344
0.624
-1.313
-0.656
0.711
0.281
-0.662
-0.330
-38.691 38.691
Joint G
GF
GC
0.5
0.5
-48.000 0.000
24.000 24.000
-7.992 0.000
3.996
3.996
-2.498 0.000
1.249
1.249
-1.124 0.000
0.562
0.562
-0.328 0.000
0.164
0.164
-29.971 29.971
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Joint C
CG
0
0.000
Cycle 1
0.000
12.000
Cycle 2
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M0
F10 =
F20 =
0.000
-0.375
0.000
-0.594
0.000
-0.168
0.000
-4.137
Cycle 2
0.000
1.998
Cycle 3
0.000
0.624
Cycle 4
0.000
0.281
Cycle 5
0.000
14.903
0.000
2.376
0.000
0.672
0.000
0.356
0.000
4.904
Meb = Mbe
6(3)/36
0.5
50
Mef = Mfe
6(3)/9
2
200
Meb = Mbe = -50
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M1
Joint D
DA
DE
0.5
0.5
-50.000 0.000
25.000 25.000
0.000 -18.750
9.375
9.375
0.000
6.775
-3.388 -3.388
0.000 -2.149
1.075
1.075
0.000
1.124
-0.562 -0.562
-18.500 18.500
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M1
Joint A
AD
0
-50.000
0.000
12.500
0.000
4.688
0.000
-1.694
0.000
0.537
0.000
-33.969
F11 =
F21 =
ED
0.25
0.000
-37.500
12.500
13.550
4.688
-4.298
-1.694
2.247
0.537
-0.623
-10.593
Joint E
EB
EF
0.25
0.5
-50.000 200.000
-37.500 -75.000
0.000 -66.700
13.550 27.100
0.000
12.506
-4.298
-8.597
0.000
-7.295
2.247
4.495
0.000
1.954
-0.623
-1.246
-76.624 87.217
Joint B
BE
0
-50.000
0.000
-18.750
0.000
6.775
0.000
-2.149
0.000
1.124
0.000
-63.001
Case 2:
Step 1: the relative fixed end moment due to sidesway
Joint F
FE
FG
0.667
0.333
200.000 0.000
-133.40 -66.600
-37.500 0.000
25.013 12.488
13.550
8.325
-14.591 -7.284
-4.298
-1.561
3.908
1.951
2.247
0.911
-2.106
-1.052
52.823 -52.823
Joint G
GF
GC
0.5
0.5
0.000
0.000
0.000
0.000
-33.300 0.000
16.650 16.650
6.244
0.000
-3.122 -3.122
-3.642 0.000
1.821
1.821
0.976
0.000
-0.488 -0.488
-14.861 14.861
Joint C
CG
0
0.000
0.000
0.000
0.000
8.325
0.000
-1.561
0.000
0.911
0.000
7.675
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Mef = Mfe
6(3)/9
2
180
Mgc = Mcg
6(1.5)/81
0.111
10
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M2
Joint D
DA
DE
0.5
0.5
0.000
0.000
0.000
0.000
0.000 22.500
-11.250 -11.250
0.000 -7.504
3.752
3.752
0.000
2.683
-1.342 -1.342
0.000 -1.172
0.586
0.586
-8.254 8.254
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M2
Joint A
AD
0
0.000
0.000
0.000
0.000
-5.625
0.000
1.876
0.000
-0.671
0.000
-4.420
F12 =
F22 =
Joint E
ED
EB
EF
0.25
0.25
0.5
0.000
0.000 -180.000
45.000 45.000 90.000
0.000
0.000
60.030
-15.008 -15.008 -30.015
-5.625 0.000 -15.841
5.367
5.367
10.733
1.876
0.000
7.504
-2.345 -2.345
-4.690
-0.671 0.000
-2.449
0.780
0.780
1.560
29.374 33.794 -63.168
Joint F
FE
FG
0.667
0.333
-180.000 0.000
120.06 59.940
45.000
2.500
-31.683 -15.818
-15.008 -7.493
15.008
7.493
5.367
1.977
-4.898
-2.445
-2.345
-0.937
2.189
1.093
-46.310 46.310
Joint G
GF
GC
0.5
0.5
0.000 -10.000
5.000
5.000
29.970 0.000
-14.985 -14.985
-7.909 0.000
3.954
3.954
3.746
0.000
-1.873 -1.873
-1.223 0.000
0.611
0.611
17.292 -17.292
Joint B
BE
0
0.000
0.000
22.500
0.000
-7.504
0.000
2.683
0.000
-1.172
0.000
16.507
Joint C
CG
0
-10.000
0.000
2.500
0.000
-7.493
0.000
1.977
0.000
-0.937
0.000
-13.952
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
0.181427
-0.007118
M f = M 0 + 1M 1 + 2 M 2
M0
1.1
2.2
F.B.M.
Joint D
DA
DE
-8.452 8.452
ED
-6.123
Joint E
EB
10.014
EF
-3.891
Joint F
FE
FG
-38.691 38.691
Joint G
GF
GC
-29.971 29.971
-3.356
3.356
-1.922
-13.902
15.824
9.583
-9.583
-2.696
2.696
0.059
-0.059
-0.209
-0.241
0.450
0.330
-0.330
-0.123
0.123
-11.749
11.749
-8.254
-4.128
12.383
-28.777
28.777
-32.790
32.790
Joint A
AD
Joint B
BE
Joint C
CG
M0
1.1
2.2
-4.137
-6.163
4.904
-11.430
14.903
1.392
0.031
-0.118
0.099
F.B.M.
-10.268
-6.644
16.395
4 t/m
Example 8
3m
12 t
F
E
G
( 6EI )
( 3EI )
6m
( 4EI )
( 4.5EI )
( 3EI )
( 3EI )
4m
4m
12 m
4 t/m
3m
12 t
F10
6m
12 t
12 t.m
( 4.5EI )
( 3EI )
( 3EI )
-12 t.m
4m
12 m
48 t.m
-48 t.m
4 t/m
G
F
D
4m
( 6EI )
( 3EI )
( 4EI )
4m
F20
12 m
4m
3m
F10
14.194 t
3.891 t.m
8.452 t.m
2.098 t
4m
A
4.137 t.m
F10 = 14.582 t
4m
B
10.014 t.m
2.486 t
6m
6m
3m
12 t
4 t/m
14.194 t
F20
G
38.691 t.m
29.971 t.m
3.891 t.m
758.16
4.986 t
14.903 t.m
4.904 t.m
12 m
F20 = -9.208 t
Example 8 ( Continued )
Case 1 ( Allow Sidesway ) at Level DE
3m
F11
F21
200
200
G
E
-50
6m
-50
-50
4m
-50
4m
12 m
F21
46.68
87.217
F11
3m
18.5
76.624
8.7448
33.969
23.2708
52.823
6m
6m
3m
52.823
G
46.68
87.217
2.504
7.675
63.001
F11 = -78.6956
14.861
12 m
F21 = 49.184
Example 8 ( Continued )
Case 2 ( Allow Sidesway ) at Level FG
F22
-180
3m
-10
F12
-180
6m
4m
-10
4m
12 m
F12
36.493
63.168
D
E
8.254
2.1123
4.42
33.794
A
F22
46.31
36.493
17.292
63.168
8.3835
16.507
F12 = 42.7642
6m
6m
3m
3m
46.31
3.472
13.952
12 m
F22 = -39.965
Example 8 ( Continued )
48 t
28.777 t.m
23.666 t
28.777 t.m
5.465 t
12 t
11.749 t.m
8.254 t.m
E
3.67 t
3.67 t
5.465 t
24.334 t
12.383 t.m
32.79 t.m
6.437 t
23.666 t
5.563 t
29.229 t
4.128 t.m
6.437 t
11.749 t.m
5.465 t
3.67 t
1.795 t
16.395 t.m
3.67 t
24.334 t
23.666 t
5.465 t
5.465 t
32.79 t.m
1.795 t
10.268 t.m
5.465 t
6.644 t.m
24.334 t
6.437 t
29.229 t
Free-body-diagram
23.666
29.229
N.F.D.
1.795
24.334
Units in ton
S.F.D.
Units in ton
M = 72 t.m
32.79
28.777
+
10.268
32.79
12.383
28.777 M = 24 t.m
11.749
8.254
4.128
+
13.9985
+
6.644
24.334
3.67
6.437
5.465
5.563
3.67
6.437
+
23.666
5.465
-
+
16.395
B.M.D.
Units in t.m
5.465
P1 t/m
P2 t/m
S1
S2
b
a
0.5L1
0.5L1
EI1
L2
L3
EI2
EI3
P1 t/m
P2 t/m
B
F20
F10
M ab
M ba
P1 t/m
B
0.5L1
0.5L1
M bc
M cb
P2 t/m
C
B
L2
M dc
D
C
b
a
L3
M cd
=1
B
A
F21
F11
S1
F12
1
F22
S2
Example 9
For the shown beam, Determine the Internal Straining Actions ,
Using the Method of Moment Distribution.
Solution
Step 1: Relative Stiffnesses and Distribution Factor ( General Calculation )
Assume EI = 1
Joint
B
D.F.
0.5
0.5
1
Stiffnesses
Sba=4(1.5)/6=
1
1
Sde=2(4)/8=
Sd =
2
Member AB
ab
= M
ba
12 6
= 9 t .m
8
Member BC
bc
= M
cb
3 (8 ) 2
=
= 16 t . m
12
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
M0
Joint A
AB
0
9.000
0.000
-1.750
0.000
7.250
F10 =
18.875
Joint B
BA
0.5
-9.000
-3.500
0.000
0.000
-12.500
BC
0.5
16.000
-3.500
0.000
0.000
12.500
Cycle 1
Cycle 2
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
M1
Joint A
AB
0
2700.00
0.00
-675.00
0.00
2025.00
Joint B
BA
0.5
2700.00
-1350.00
0.00
0.00
1350.00
BC
0.5
0.00
-1350.00
0.00
0.00
-1350.00
Cycle 1
Cycle 2
F11 =
=
(-F10/F11)=
M0
M1
F.B.M.
Joint A
AD
7.250
14.916
22.166
Joint B
DA
-12.500
9.944
-2.556
DE
12.500
-9.944
2.556
Example 10
For the shown frame, determine the Internal Straining Actions ;
Using the moment distribution method,
Taking into consideration joint translation ( sidesway )
Solution
Step 1: Relative Stiffnesses and Distribution Factor ( General Calculation )
Assume EI = 1
Joint
D
Stiffnesses
Sda=4(1.5)/6=
1
Sde=4(3)/12=
1
Sd =
2
Sed=4(3)/12=
1
Seb=3(2)/6=
1
Sec=3(8/3)/4=
2
Se =
4
D.F.
0.5
0.5
1
0.25
0.25
0.5
1
5 6 (12) 2
=
= 45 t.m
96
Member DE
M de = M ed
Member DA
M ad = M da =
8 ( 6)
= 6 t .m
8
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M0
F10 =
Joint A
AD
0
6.000
0.000
-9.750
0.000
-1.406
0.000
-0.305
0.000
-0.044
0.000
-5.505
Joint D
DA
0.5
-6.000
-19.500
0.000
-2.813
0.000
-0.609
0.000
-0.088
0.000
-0.019
-29.029
DE
0.5
45.000
-19.500
5.625
-2.813
1.219
-0.609
0.176
-0.088
0.038
-0.019
29.029
ED
0.25
-45.000
11.250
-9.750
2.438
-1.406
0.352
-0.305
0.076
-0.044
0.011
-42.379
Joint E
EB
0.25
0.000
11.250
0.000
2.438
0.000
0.352
0.000
0.076
0.000
0.011
14.126
EC
0.5
0.000
22.500
0.000
4.875
0.000
0.703
0.000
0.152
0.000
0.022
28.252
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M1
Joint A
AD
0
6000.00
0.00
-1500.00
0.00
-250.00
0.00
-46.88
0.00
-7.81
0.00
4195.31
Joint D
DA
0.5
6000.00
-3000.00
0.00
-500.00
0.00
-93.75
0.00
-15.63
0.00
-2.93
2387.70
DE
0.5
0.00
-3000.00
1000.00
-500.00
187.50
-93.75
31.25
-15.63
5.86
-2.93
-2387.70
ED
0.25
0.00
2000.00
-1500.00
375.00
-250.00
62.50
-46.88
11.72
-7.81
1.95
646.48
Joint E
EB
0.25
4000.00
2000.00
0.00
375.00
0.00
62.50
0.00
11.72
0.00
1.95
6451.17
EC
0.5
-12000.00
4000.00
0.00
750.00
0.00
125.00
0.00
23.44
0.00
3.91
-7097.66
F11 =
=
EC
28.252
-19.947
8.305
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Example 9
12 t
12 t
3 t/m
A
3m
8m
1.5EI
3m
3m
1.5EI
4EI
EI = 10800 t.m2
F10
12 t
9 t.m
-9 t.m
16 t.m
A
3.0 m
3 t/m
3.0 m
-16 t.m
8.0 m
7.25 t.m
A
5.125 t
12 t
12.5 t.m
24 t
12.5 t.m
12 t
6.875 t
F10 = 18.875 t
12.5 t.m
C
12 t
Example 9 ( Continued )
Case 1 ( Allow Sidesway ) at B
Deformed shape due to sidesway at B
without joint rotation and corresponding
relative fixed end moments
C.L.
=1
2700
=1
-2700
-2700
F11
1
2700 F11
2025 t.m
A
562.5 t
1350 t.m
1350 t.m
562.5 t
F11
F11 = 2562.5 t
1350 t.m
C
Example 9 ( Continued )
22.166 t.m
12 t
2.556 t.m
B
9.268 t
24 t
2.556 t.m
2.556 t.m
C
12 t
2.732 t
12 t
Free-body-diagram
12
9.268
2.732
2.732
S.F.D.
Units in ton
M = 18 t.m
22.166
+
5.639
C.L.
2.556
-
M = 24 t.m
+
21.444
B.M.D.
Units in t.m
12
9.268
Example 10
4m
C
( 8/3 EI )
6 t/m
S
D
8t
( 1.5EI )
6m
3m
( 3EI )
( 2EI )
3m
EI = 24000 t.m
S = 12 t/cm = 1200 t/m
6m
6m
6m
6 t/m
F10
D
8t
( 1.5EI )
( 2EI )
3m
3m
( 3EI )
3m
8t
6 t.m
( 8/3 EI )
6m
3m
-6 t.m
4m
6 t/m
6m
45 t.m
6m
6m
F10 = 14.4644 t
29.029
28.252
F10
42.379
29.029
14.126
M0 and Reactions
8t
5.505
1.7557
Units in ton-meter
A
2.3543
Example 10 ( Continued )
Case 1 ( Allow Sidesway ) at Level DE
Deformed shape due to sidesway at level DE
without joint rotation and corresponding
relative fixed end moments
-12000
F11
D
6000
6000
4000
1774.415
C
7097.66
2387.7
F11 = 5146.778
646.48
F11
E
2387.7
6451.17
1097.1683
4195.31
A
M1 and Reactions
1075.195
2.076 t
Example 10 ( Continued )
22.318 t.m
36 t
8.305 t.m
40.562 t.m
6.672 t
16.48 t
3.372 t
6.672 t
16.48 t
2.076 t
19.52 t
3.372 t
19.52 t
32.256 t.m
22.318 t.m
6.672 t
5.376 t
8t
6.286 t.m
1.328 t
5.376 t
Free-body-diagram
19.52 t
16.48 t
2.076
16.48
+
+
-
6.672
19.52
16.48
1.328
N.F.D.
19.52
S.F.D.
Units in ton
5.376
M = 72 t.m
Units in ton
40.562
-
22.318
22.318
-
+
2.302
M = 12 t.m
8.305
6.286
B.M.D.
Units in t.m
32.256
-
6.672
4 t/m
4.5EI
3.0 m
2.5EI
6t
4.0 m
12 t
2EI
3.0 m
1.5EI
A
2.0 m
2.0 m
6.0 m
12 t
6t
F10
F20
B
-6 t.m
12 t.m
12 t
D
6 t.m
6.0 m
2.0 m
-12 t.m
4 t/m
2.0 m
/tan
/sin
E
D
1 = 1.333
2
30
80
= 1.667
-80
80
F21
2
/tan
/sin
= 1.333
-80 F11
100
-100
2 = 1.667
F12
E
D
-100
F22
100
100
100
Example 11
For the shown frame, determine the Internal Straining Actions ;
Using the moment distribution method, taking into consideration joint translation ( sidesway )
Solution
Assume EI = 1
8
4
8
20
4
5 1/3
9 1/3
D.F.
0.333
0.667
0
1
0.4
0.2
0.4
1
0.6
0.4
1
Joint
D
Sed =
Seb =
Sef =
Se =
Stiffnesses
Sda =
4
Sde =
8
Sdg =
0
Sd =
12
Sfe =
Sfg =
Sf =
Mdg = -6 t.m
3 (8) 2
= 16 t .m
12
Member DG
Member DE
M de = M ed =
Member EF
Mef = M fe =
5 4.5 (8)2
= 15 t.m
96
DE
0.667
16.000
-6.670
0.200
-0.133
-0.233
0.155
0.025
-0.017
-0.030
0.020
9.318
Joint A
AD
0
0.000
0.000
-1.665
0.000
-0.033
0.000
0.039
0.000
-0.004
0.000
-1.664
DA
0.333
0.000
-3.330
0.000
-0.067
0.000
0.078
0.000
-0.008
0.000
0.010
-3.318
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M0
-13.361 Which prevent joints translation at level GDEF
Meb
3(8.944)(1.118)/45
2/3
200
Joint E
EB
0.2
0.000
0.200
0.000
-0.233
0.000
0.025
0.000
-0.030
0.000
0.003
-0.034
EF
0.4
15.000
0.400
4.500
-0.466
-0.060
0.051
0.070
-0.059
-0.008
0.006
19.434
Mef = Mfe
6(16)(5/6)/64
1.25
375
3 = 0.333
F10 =
Mde = Med
6(16)(0.5)/64
0.75
225
2 = 1.118
Joint F
FE
FC
0.6
0.4
-15.000
0.000
9.000
6.000
0.200
0.000
-0.120
-0.080
-0.233
0.000
0.140
0.093
0.025
0.000
-0.015
-0.010
-0.030
0.000
0.018
0.012
-6.015
6.015
4 = 1.054
Mfc = Mcf
6(8.433)(1.054)/40
1 1/3
400
Joint C
CF
0
0.000
0.000
3.000
0.000
-0.040
0.000
0.047
0.000
-0.005
0.000
3.002
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
5 = 1+3 = 5/6
x300
DE
0.667
225.00
-350.18
-10.00
6.67
36.52
-24.36
-1.27
0.85
4.63
-3.09
-115.23
EF
0.4
-375.00
-20.00
-7.50
73.04
3.00
-2.53
-10.96
9.25
0.38
-0.32
-330.64
Joint F
FE
FC
0.6
0.4
-6.015
6.015
-17.231 17.231
-23.246 23.246
Joint F
FE
FC
0.6
0.4
-375.00 400.00
-15.00
-10.00
-10.00
0.00
6.00
4.00
36.52
0.00
-21.91
-14.61
-1.27
0.00
0.76
0.51
4.63
0.00
-2.78
-1.85
-378.05 378.05
Joint C
CF
0
3.002
17.773
20.775
Joint C
CF
0
400.00
0.00
-5.00
0.00
2.00
0.00
-7.30
0.00
0.25
0.00
389.95
Joint E
EB
0.2
200.00
-10.00
0.00
36.52
0.00
-1.27
0.00
4.63
0.00
-0.16
229.72
EF
0.4
19.434
-15.070
4.364
Joint E
EB
0.2
-0.034
10.470
10.436
Meb = 200
ED
0.4
225.00
-20.00
-175.09
73.04
3.34
-2.53
-12.18
9.25
0.42
-0.32
100.92
Joint A
AD
0
300.00
0.00
-87.41
0.00
1.67
0.00
-6.08
0.00
0.21
0.00
208.38
DA
0.333
300.00
-174.83
0.00
3.33
0.00
-12.16
0.00
0.42
0.00
-1.54
115.23
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M1
ED
0.4
-19.400
4.600
-14.800
DE
0.667
9.318
-5.252
4.066
F11 =
0.04558
DA
0.333
-3.318
5.252
1.934
Joint D
DG
0
-6.000
0.000
-6.000
(-F10/F11)=
Joint A
AD
0
-1.664
9.498
7.834
M0
M1
F.B.M.
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Example 11
12 t
4.5 t/m
3 t/m
D
6m
( 6 EI )
( 16 EI )
( 8.944 EI )
( 8.433 EI )
2m
( 16 EI )
5m
3m
8m
2m
4.5 t/m
3 t/m
F10
6m
( 6 EI )
-6 t.m
3 t/m
G
2m
16 t.m
( 16 EI )
( 8.944 EI )
( 8.433 EI )
2m
( 16 EI )
5m
3 t/m
3m
-16 t.m
8m
15 t.m
8m
2m
4.5 t/m
-15 t.m
F
8m
Example 11 ( Continued )
9t
9.318 t.m
19.434 t.m
19.4 t.m
3 t/m
6.015 t.m
3.9138 t
4.5 t/m
12.5604 t
12.5604 t
3.9138 t
13.26 t
10.74 t
6 t.m
3 t/m
10.677 t
7.323 t
13.3907 t
F10 = 13.3907 t
6t
16.74 t
3.318 t.m
32.937 t
0.034 t.m
7.323 t
F
E
D
0.8303 t
16.4742 t
16.4742 t
0.8303 t
1.664 t.m
3.002 t.m
3.9138 t
M0 and Reactions
32.937 t
16.74 t
6.015 t.m
3.9138 t
7.233 t
Units in ton-meter
F11
G
225
300
225
-375
4
1
300
A
400
-375
200
2
400
2
Example 11 ( Continued )
115.23
100.92
330.64
378.05
157.529
239.214
239.214
157.529
88.586
88.586
1.789
1.789
293.149
G
F11 = 293.149 t
1.789
115.23
389.95
24 t
M1 and Reactions
9t
14.8 t.m
4.364 t.m
11.12 t
10.66 t
18 t
23.246 t.m
11.12 t
6.64 t
11.36 t
13.34 t
6 t 6 t.m
D
6t
6t
1.63 t
A
16.66 t
1 .5
12.75 t
11.12 t
95 t
14.2
F 23.246 t.m
t
6.96
12.75 t
B
28.98 t
20.775 t.m
6t
7.834 t.m
Free-body-diagram
11.12 t
1 .5
1.63 t
11.36 t
F
23.246 t.m
6t
6t
1.934 t.m
28.98 t
10.436 t.m
10.436 t.m
31.
16.66 t
31.
88.586
1.63 t
1.63 t
157.529
86.797
1.789
378.05
157.529
81.685
4.066 t.m
81.685
53.935
208.38
88.586
53.935
86.797
229.72
20.775 t.m
6.96
11.36 t
95 t
14.2
Example 11 ( Continued )
1.63
+
11.12
31.
6
95
14.2
16.66
N.F.D.
Units in ton
10.66
6.64
+
6.286
+
-
13.34
11.36
1 .5
6
S.F.D.
1.63
6.96
Units in ton
23.246
M = 24 t.m
4.066
- 1.934
4.364
- +
46
23.2
7.834
14.8
10.
436
M = 24 t.m
B.M.D.
Units in t.m
75
20.7
Example 12
For the shown frame, and using the moment distribution method;
Determine the internal straining actions, due to:
1- an outwared sliding of 1 cm of support B,
2- a downwared settlement of 1.5 cm of support A, and
3- a clockwise rotation of 0.003 radians of support B.
Given: E=2000000 t/sq.m.
N.B. the C.S. of the frame elements is rectangular.
Solution
Step 1: Stiffnesses and Distribution Factors
Joint C
D.F .
Stiffnesses
0.3 (0.6) 3
E
12
= 0.0036 E
S ca = S db =
6
0.3 (1) 3
E
4
12
S cd = S dc =
= 0.01E
10
S c = S d
= 0.0136 E
4
M cd = M dc = 45 t.m
Member BD
M db = 28.8 t.m
M bd = 39.6 t.m
M 0.265
M 0.735
M 1
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M0
F10 =
Joint A
AC
0
0.000
0.000
5.963
0.000
-3.594
0.000
0.805
0.000
-0.485
0.000
2.689
Joint C
CA
0.265
0.000
11.925
0.000
-7.187
0.000
1.611
0.000
-0.971
0.000
0.218
5.595
CD
0.735
-45.000
33.075
27.122
-19.934
-6.078
4.467
3.663
-2.692
-0.821
0.603
-5.595
Joint D
DC
DB
0.735
0.265
-45.000 -28.800
54.243 19.557
16.538
0.000
-12.155 -4.382
-9.967
0.000
7.326
2.641
2.233
0.000
-1.642
-0.592
-1.346
0.000
0.989
0.357
11.219 -11.219
Joint B
BD
0
-39.600
0.000
9.779
0.000
-2.191
0.000
1.321
0.000
-0.296
0.000
-30.988
Cycle 1
Cycle 2
Cycle3
Cycle 4
Cycle 5
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M1
F11 =
=
M0
M1
F.B.M.
Joint A
AC
0
100.00
0.000
-13.250
0.000
4.869
0.000
-1.789
0.000
0.658
0.000
90.488
Joint C
CA
0.265
100.00
-26.500
0.000
9.739
0.000
-3.579
0.000
1.315
0.000
-0.483
80.492
CD
0.735
0.000
-73.500
-36.750
27.011
13.506
-9.927
-4.963
3.648
1.824
-1.341
-80.492
Joint D
DC
DB
0.735
0.265
0.000
100.00
-73.500 -26.500
-36.750 0.000
27.011
9.739
13.506
0.000
-9.927
-3.579
-4.963
0.000
3.648
1.315
1.824
0.000
-1.341
-0.483
-80.492 80.492
Joint B
BD
0
100.00
0.000
-13.250
0.000
4.869
0.000
-1.789
0.000
0.658
0.000
90.488
0.099203
Joint C
CA
5.595
7.985
13.580
CD
-5.595
-7.985
-13.580
Joint D
DC
DB
11.219 -11.219
-7.985
7.985
3.234
-3.234
Joint B
BD
-30.988
8.977
-22.011
Cycle 1
Cycle 2
Cycle3
Cycle 4
Cycle 5
30 x 60 cm
30 x 60 cm
6.0 m
Example 12 [ Yielding of Supports ], for the shown frame, and using the Moment Distribution Method;
Determine the internal straining actions, due to :
1- an outwared sliding of 1 cm of support B,
2- a downwared settlement of 1.5 cm of support A,and
3- a clockwise rotation of 0.003 radians of support B.
Given E=2000000.0 t/m 2
C
N.B. the C.S. of the frame elements is rectangular.
30 x 100 cm
B
10.0 m
M1=-45 t.m
1
F10
M2=-18 t.m
0.015 m
A
M2=-18 t.m
0.01 m
2
F10
M3/2 = -10.8 t.m
B
= 0.003 rad.
M3=-4EI(0.003)/L=-4(10800)(0.003)/6=-21.6 t.m
Example 12 ( Continued )
- 45 t.m
-45 t.m
F10
-28.8 t.m
A+B
-39.6 t.m
-28.8 t.m
- 45 t.m
-45 t.m
-39.6 t.m
5.595 t.m
11.219 t.m
F10 = 5.6539
F10
11.219 t.m
5.595 t.m
2.689 t.m
1.3806
30.988 t.m
7.0345
Example 12 ( Continued )
F11
C
100
6.0 m
100
100
100
A
B
10.0 m
F11
80.492
80.492
F11 = 56.993
90.488
90.488
28.4967
28.4967
13.58
3.234
4.21
4.21
1.035
1.035
1.035
4.21
1.035
4.21
13.58
3.234
11.665
4.21
1.035
22.011
4.21
1.035
Example 12 ( Continued )
4.21
1.035
1.035
N.F.D
( Units in ton )
4.21
4.21
1.035
S.F.D
( Units in ton )
13.58
3.234
3.234
13.58
11.665
B.M.D
( Units in t.m )
22.011
Example 13
For the shown frame, and using the moment distribution method;
Determine the internal straining actions, due to:
a rise of temperature of 30C of the outer side, and 10C of the inner side.
Given: E=2000000 t/sq.m., = 0.00005
N.B. the C.S. of the frame elements is rectangular.
Solution
Step 1: Stiffnesses and Distribution Factors
Joint C
D. F .
Stiffnesse s
0 .3 ( 0 .6 ) 3
E
3
12
S ca =
= 0 . 00324 E
5
0 .3 (1) 3
E
4
12
S cd =
= 0 .01666 E
6
Sc =
= 0 . 01990 E
M 0 .163
M 0 .837
M 1
Joint D
D. F .
Stiffnesse s
3
0 .3 ( 0 .8 )
E
12
S db =
= 0 .008533 E
6
0 . 3 (1) 3
4
E
12
S dc =
= 0 .01666 E
6
Sd =
= 0 .0252 E
4
Mcd
-2.0833
Mdc
18
Mdb
-6.4
Mbd
6.4
M 0 .339
M 0 .661
M 1
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M0
F10 =
Joint C
CA
CD
0.163
0.837
2.484
-2.083
-0.065
-0.335
0.000
-3.806
0.620
3.186
0.000
0.055
-0.009
-0.046
0.000
-0.526
0.086
0.441
0.000
0.008
-0.001
-0.006
3.115
-3.115
Joint D
DC
0.661
17.917
-7.613
-0.168
0.111
1.593
-1.053
-0.023
0.015
0.220
-0.146
10.854
DB
0.339
-6.400
-3.904
0.000
0.057
0.000
-0.540
0.000
0.008
0.000
-0.075
-10.854
EI ac = 2000000
EI cd
EI bd
3 10800
(1.25) = 1620
52
6 50000
= M dc =
(0.75 ) = 6250
62
6 25600
= M bd =
= 4266.667
62
M ca =
M cd
M db
Mca
Mcd=Mdc
Mcd=Mdc
486
-1875
1280
Joint B
BD
0
6.400
0.000
-1.952
0.000
0.028
0.000
-0.270
0.000
0.004
0.000
4.210
Cycle 1
Cycle 2
Cycle3
Cycle 4
Cycle 5
D.F.
F.E.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
C.O.M.
D.M.
M1
F11 =
=
M0
M1
F.B.M.
Joint C
CA
CD
0.163
0.837
486.000 -1875.000
226.407 1162.593
0.000
196.648
-32.054 -164.594
0.000
-192.118
31.315
160.803
0.000
27.199
-4.433
-22.766
0.000
-26.573
4.331
22.241
711.567 -711.567
Joint D
DC
DB
0.661
0.339
-1875.000 1280.000
393.295
201.705
581.297
0.000
-384.237 -197.060
-82.297
0.000
54.398
27.899
80.402
0.000
-53.145
-27.256
-11.383
0.000
7.524
3.859
-1289.147 1289.147
Joint B
BD
0
1280.000
0.000
100.853
0.000
-98.530
0.000
13.949
0.000
-13.628
0.000
1282.644
(-F10/F11)=
Joint C
CA
3.115
1.077
4.191
CD
-3.115
-1.077
-4.191
Joint D
DC
10.854
-1.951
8.904
DB
-10.854
1.951
-8.904
Joint B
BD
4.210
1.941
6.151
Cycle 1
Cycle 2
Cycle3
Cycle 4
Cycle 5
30 x 80 cm
30
4.0 m
x6
0c
m
Example 13 [ Temprature changes ], for the shown frame, and using the Moment Distribution Method;
Determine the internal straining actions,
o
due to a rise of temprature of 30 C of the outer side,
o
and 10 C of the inner side.
C
30 x 100 cm
2
Given Alpha ( ) = 0.00005 , E = 2000000.0 t/m
N.B. the C.S. of the frame elements is rectangular.
2.0 m
3.0 m
Solution
T2 = 10 c
30 c
6.0 m
T1 = 20 c
10 c
T2 = 10 c
T1 = 20 c
Cross section
T1 ( L )
= 0.00001(20)(5) = 0.001 m
= 0.00001(20)(6) = 0.0012 m
= 0.00001(20)(6) = 0.0012 m
= 0.00001(20)(5)(0.6) = 0.0006 m
= 0.00001(20)(5)(0.8) = 0.0008 m
= (0.0012+0.0006)(0.75)-0.0004 = 0.00095 m
M = 6EI (
M1
M
2
)/L/L
M1
cos = 0.6
sin = 0.8
F10
6t
.m
Example 13 ( Continued )
7.917 t.m
- 2.
91
7.917 t.m
A: Uniform temperature ( T1 )
T2( EI ) / h
M
+
-
M3 = -10 t.m
+
-
+
-
+
-
+
-
+
-
+
-
M3 = 10 t.m
+
-
+
-
+
-
+
-
1=
5. 4
+
+
-
+
-
- 3.
6t
.m
+
+
-
+
-
1=
+
-
t.m
+
-
1=
3. 6
t.m
M2 = -6.4 t.m
17.9167 t.m
-6.4 t.m
2.4
84
t.m
A+B
M2 = 6.4 t.m
+
-
Example 13 ( Continued )
1.2898
3.115 t.m
F10
1.2898
0.1886
D
t.m
1.2898
15
3.1
1.1073
10.854 t.m
1.2898
C
10.854 t.m
0.1886
0.1886
0.1886
F10 = 1.296
1.1073
M0 and Reactions
1.2898
4.21 t.m
1.2898
1280
-1875
486
1280
B
711.567
1289.147
333.4523
333.4523
427.981
D
333.4523
428.6318
67
1.5
427.981
C
427.981
A
333.4523
F11 = 856.613
M1 and Reactions
F11
1289.147
427.981
333.4523
71
=
2 =
1
F11
cos = 0.6
sin = 0.8
tan = 1.333
428.6318
1282.644
333.4523
Example 13 ( Continued )
0.7855
4.191
0.459
0.459
0.7855
0.7855
8.904
53
0.7855
0.3
0.459
4.1
91
0. 8
38
2
0.459
4.1
91
8.904
0.459
6.151
38
2
0.459
0. 8
0.3
53
0.7855
0.7855
0.7855
0.459
0. 8
38
2
0.3
53
S.F.D
N.F.D
( Units in ton )
( Units in ton )
0.7855
8.904
8.904
4.1
91
4.191
B.M.D
( Units in t.m )
6.151
0.459