Matrices
• An m x n matrix is written as
          a11       a12      a1j   a1n    
                                          
          a 21      a 22           a 2n   
                                          
                                          
•A=                                       
          ai1     ithrow →   aij          
                                          
                                          
         am1       am2            amn     mxn
     Properties of Matrices
• If A,B and C are matrices of same order
  then
  A + B = B + A Matrix addition is
   commutative
  (A+B) + C = A+ (B+C) Associative
  A + O = A = O + A Property of null matrix
  A +(-A) = O = -A + A Inverse Property
    Properties of Matrices
• If A = [aij]nxm then scalar multiplication of A
  and α is defined as [α .aij]nxm and denoted
  as αA
• (α + β).A = α.A + β.B
∀ α.( A + B) = α.A + α.B
• (-1).A = -A
• (α • β).A = α .( β.A)
          Types of matrices
• : A square matrix is
• Upper triangular if aij=0 if i > j
• Lower triangular if aij=0 if i < j
• Diagonal if is upper ∧ lower ∆ ie aij = 0 if i ≠ j
• Scalar matrix if diagonal and aij = λ if i = j
• Unit matrix if is scalar and λ = 1
• Null matrix if aij = 0
• Idempotent Matrix if A2 = A
•   Periodic with period k if Ak+1 = A
•   Nilpotent of order k if Ak = O
•   Involutory matrix A2 = I
•   Symmetric if AT = A’ = A ie aij = aji
•   Skew symmetric AT = A’ = –A ie
                        aij = –aji
• Orthogonal if AT = A–1 ie AAT = I
• Singular |A| = 0
• Non singular |A| ≠ 0
          Points to remember
• A = diag(a1 , a2, a3, - - an) then
• A–1 = diag(1/a1 , 1/a2, 1/a3, - - 1/an)
• A.B = 0 does not mean either A = 0 or
  B=0
• A.B may not be equal to B.A
• If A and B are orthogonal then A.B is
  orthogonal
• A + AT is symmetric
• A – AT is skew symmetric
• (AB)–1 = B–1A–1
• (AB)T = B TA T
•   If B is symmetric then
• (A.B.A T) is symmetric.
•   If A a c  then A–1 =    1 d              − c
                                                
          b d            ad − bc  − b         a 
             adj(A)
• A –1
         =                  ,adj(A)=[Aij]T,
               A
• Aij = Cofactor of aij = (-1)i+j Mij
• Mij = Minor of aij       = determinant by
                                      k= p
  deleting i row and j column.
              th            th
• [aij]mxp. [bij]pxn =[cij]mxn cij =
                                         ∑
                                      k =1
                                           aik bkj