0% found this document useful (0 votes)
87 views15 pages

COMS3100/7100 Itdti T Introduction To Communications Communications

This document summarizes key topics from a lecture on generating and detecting frequency modulation (FM) and phase modulation (PM). It discusses: 1) Direct FM using voltage-controlled oscillators whose frequency varies linearly with an input voltage. For optical carriers, laser current can directly modulate frequency. 2) Phase modulators that integrate an input signal to produce FM as an output. A narrowband phase modulator approximates this using sine/cosine terms. 3) Frequency detection methods like FM-to-AM conversion using a limiter, phase-shift discrimination, zero-crossing detection, and frequency feedback circuits.

Uploaded by

Samu Ridd
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
87 views15 pages

COMS3100/7100 Itdti T Introduction To Communications Communications

This document summarizes key topics from a lecture on generating and detecting frequency modulation (FM) and phase modulation (PM). It discusses: 1) Direct FM using voltage-controlled oscillators whose frequency varies linearly with an input voltage. For optical carriers, laser current can directly modulate frequency. 2) Phase modulators that integrate an input signal to produce FM as an output. A narrowband phase modulator approximates this using sine/cosine terms. 3) Frequency detection methods like FM-to-AM conversion using a limiter, phase-shift discrimination, zero-crossing detection, and frequency feedback circuits.

Uploaded by

Samu Ridd
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

COMS3100/7100 I t d ti to Introduction t Communications

Lecture12: GenerationandDetectionofFMandPM
Thislecture: DirectFMandVCO PhaseModulatorsandIndirectFM OpticalPhaseModulatorsandindirectAM FrequencyDetection
Ref: Carlson,Chapter5;Haykin,Chapter2.7

PhaseModulation(PM)
c (t ) = c t + (t )

PMdefined:Phasemodulationis thatformofanglemodulationin (t ) = x(t ); 180o whichtheanglec(t)isvaried linearlywiththemessagesignalx(t) I Instantaneous phase h varies i directly di l withthemodulatingsignal Ph modulation Phase d l ti index i d orphase h deviation isthemaximumphase x (t ) = A cos[ t + x(t )] c c c shiftproducedbyx(t) 180o < <180o

COMS3100

Lecture 12

FrequencyModulation (FM)

Totalphaseangleconsistsofthe constantrotationaltermct and(t)

c (t ) = c t + (t )

COMS3100

Instantaneousrateofrotation 1 d c (t ) 1 d (t ) orinstantaneousfrequency f(t) f (t ) = = fc + 2 dt 2 dt isgivenby FMdefined:Frequency f c + f x(t ), f < f c modulationisthatformofangle f (t ) = modulationinwhichthe instantaneousfrequencyf(t)is variedlinearlywiththemessage signalx(t) NB:instantaneousfrequency f isfrequencydeviation or f(t) isnotthespectral maximumshiftfromcarrierfc frequencyf

Lecture 12

GenerationandDetectionof fFMandPM

Todaywewilldiscussthebasicmethodsforgenerationanddetection ofFMandPM Communicationsystemsareelectrical(RFandMicrowave)and optical.Differentenablingtechnologyisinvolvedforangle modulationinthesetwofields. fields However,operationprinciplesareexactlythesame. Inbothcasesweneedtoestablishamethodforlinearchangeofthe instantaneousphase(PM)orfrequency(FM)withthemessagesignal Thisrequiresdevicesthatwillproducephaseorfrequency deviationinalinearfashion. fashion Suchdevicesaretypicallyhardtoobtaininpractice,especiallyover awideoperatingrange(freq.). However,constantamplitudepropertyisadvantagetohardware implementation Constantpowerinputsignal Canuselimiters/zerocrossingdetection

COMS3100

Lecture 12

FMProcessing gwithhardlimiter
5

(a) ( )Signal g (b) ( )Signal g +noise(c) ( )output p oflimiter(d) ( )output p ofLPF

Hardlimiter (0vcomparator)
COMS3100 Lecture 12

DirectFM voltage g andcurrentcontrolledoscillators

Optical

frequency eque cyof o the t equantum qua tu oscillator osc ato (laser) ( ase )ca canbechanged c a gedby changingthecurrentthroughthedevice.Thisfrequentlyoccursas asideeffectoftheAMcausingfrequencychirp. directFMmodulationisstraightforward;itrequiresonlyavoltage controlledoscillator(VCO) whoseoscillationfrequencyisalinear functionoftheappliedvoltage

RF&Mi Microwave

Theoutputvoltageneedstobeoftheform:

V0 (t ) = V0 cos(c t + K v Vmessage (t )dt )

Th i The instantaneousf frequencyis i then: h as f (t ) =

d (t ) = (c t + K v Vmessage (t )dt ) = c + K v Vmessage (t ) dt f (t ) = f c + f Vmessage (t )


COMS3100

1 dc (t ) 2 dt

Lecture 12

DirectFMandVCOs

InRF/microwaveregionthiscanbedoneusingavariable reactance elementasp partoftheLCresonantcircuit.

RFC=RFchoke(blockshighfrequencies) VB =VoltagebiassoCv(t) = Cx(t) - voltagecontrolledcapacitor

COMS3100

Lecture 12

DirectFMandVCOs
8

Thisisdirectfrequencymodulationwithf=(C/2C0)fc Theapproximationisgoodto1%when C/C0<0.013; <0 013;theattainable frequencydeviationis C i.e.,Cx(t) issmall f = f c 0.006 f c IfW <<fc then h 2C0 Cx(t) isslow COMS3100

Lecture 12

DirectFMandVCOs

TypicalvaractorVCcurve isfarfromlinearandcan beapproximatedby Below:aHartleyoscillator withtuningbetween74 and105MHz

COMS3100

Lecture 12

DirectFMof fasemiconductorlaser

Mostofthetimethisisexactlywhatyouwanttoavoid

Detrimentaltolonghaulopticalcommunications causeswavelength chirp hi

10

However,FMoflasercarrierfrequencycanbeefficientlyusedinlaser rangefinders

Lasercurrentmodulationis appliedtochangethelaserpower andatthesametimethe instantaneousfrequency Differentiatedpowerwaveform producesseriesofsharppeaks duetointerferencewithreflection Distanceisproportionaltothe averagetimeseparationbetween thepeaks Notabsolute(liketimeof flight)
Lecture 12

COMS3100

PhaseModulation/IndirectFMmodulation

Implementationisrelativelyeasy Carriercanbesuppliedbyafixedfrequencysource, source e e.g., g a microwavePLLsynthesiser/distributedfeedback(DFB)laser Integratingtheinputsignaltoaphasemodulatorproduces theFMoutput

11

fc = | |nf fc1 fLO|

f1 (t ) = f c1 + x(t ) 2 T

f 2 = nf1 = nf c1 + f x(t ),

f = n 2T

Theintegratorandthephasemodulatorconstitutea narrowband b dfrequency f modulator d l


Lecture 12

COMS3100

NarrowbandPhaseModulator
12

Basedonapproximation xc(t) Ac cos(wct) - Ac x(t) sin(wct) validif| x(t) | << 1 radian

COMS3100

Lecture 12

Switching gcircuitPM
13

FlipflopPMsquarewave BPFisPMoutput

COMS3100

Lecture 12

Frequency q yDetection

Frequencydetector(discriminator),producesanoutput voltagethatshouldvarylinearlywiththeinstantaneous frequencyoftheinput. Discriminatorcircuitscanbetypicallyclassifiedasoneofthe following


14

FMtoAMconversion Phaseshiftdiscrimination Zerocrossingdetection Frequencyfeedback

COMS3100

Lecture 12

FMtoAMconversion
15

AM

COMS3100

Lecture 12

You might also like