Introduction z -Transform and DTFT Region of Convergence (RoC)
The z -Transform
Dr. Muhammad Sarwar Ehsan sarwar.ehsan@ee.uol.edu.pk
Department of Electrical Engineering, The University of Lahore
April 9, 2013
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Outline
Introduction
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Outline
Introduction z -Transform and DTFT
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Outline
Introduction z -Transform and DTFT
Region of Convergence (RoC)
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Introduction
z -transform of a sequence x[n] is dened as:
X (z ) =
n=
x[n]z n
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Introduction
z -transform of a sequence x[n] is dened as:
X (z ) =
n=
x[n]z n
z is complex i.e. z = rej
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Introduction
z -transform of a sequence x[n] is dened as:
X (z ) =
n=
x[n]z n
z is complex i.e. z = rej Powerful tool for analyzing & designing DT systems
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Introduction
z -transform of a sequence x[n] is dened as:
X (z ) =
n=
x[n]z n
z is complex i.e. z = rej Powerful tool for analyzing & designing DT systems Generalization of the DTFT
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
z -Transform and DTFT
X (z ) =
n=
x[n]z n
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
z -Transform and DTFT
X (z ) =
n=
x[n]z n x[n](rej )n
=
n=
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
z -Transform and DTFT
X (z ) =
n=
x[n]z n x[n](rej )n
=
n=
X (rej ) =
n=
x[n]rn ejn
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
z -Transform and DTFT
X (z ) =
n=
x[n]z n x[n](rej )n
=
n=
X (rej ) =
n=
x[n]rn ejn forr = 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
z -Transform and DTFT
X (z ) =
n=
x[n]z n x[n](rej )n
=
n=
X (rej ) =
n=
x[n]rn ejn forr = 1
X (ej ) =
n=
x[n](ejn )
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Region of Convergence (RoC)
Critical question: Does summation X (z ) = converge (to ne value)?
n n= x[n]z
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Region of Convergence (RoC)
Critical question: n Does summation X (z ) = n= x[n]z converge (to ne value)? In general, depends on the value of z
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
Region of Convergence (RoC)
Critical question: n Does summation X (z ) = n= x[n]z converge (to ne value)? In general, depends on the value of z Region of Convergence: Portion of complex z-plane for which a particular X (z ) will converge.
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC Example
Example
Let x[n] = n u[n]
X (z ) =
n=0
n z n =
1 1 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC Example
Example
Let x[n] = n u[n]
X (z ) =
n=0
n z n =
1 1 z 1
converges for |z 1 | i.e. RoC is |z | > ||
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC Example
Example
Let x[n] = n u[n]
X (z ) =
n=0
n z n =
1 1 z 1
converges for |z 1 | i.e. RoC is |z | > || || < 1 (e.g. 0.8)- nite energy sequence
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC Example
Example
Let x[n] = n u[n]
X (z ) =
n=0
n z n =
1 1 z 1
converges for |z 1 | i.e. RoC is |z | > || || < 1 (e.g. 0.8)- nite energy sequence || > 1 (e.g. 1.2) - Divergent sequence, innite energy, DTFT does not exist but still has ZT when |z | > 1.2 (in RoC)
Dr. M. Sarwar Ehsan The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
About ROCs
ROCs always dened in terms of |z | circular regions on z-plane (inside circles/outside circles/rings)
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
About ROCs
ROCs always dened in terms of |z | circular regions on z-plane (inside circles/outside circles/rings) If ROC includes unit circle (|z | = 1), x[n] has a DTFT
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC Another Example
Example
Let x[n] = n u[n 1] an anti-causal (Left-sided) sequence
1
X (z ) =
n=
()n z n =
1 1 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC Another Example
Example
Let x[n] = n u[n 1] an anti-causal (Left-sided) sequence
1
X (z ) =
n=
()n z n =
1 1 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC Another Example
Example
Let x[n] = n u[n 1] an anti-causal (Left-sided) sequence
1
X (z ) =
n=
()n z n = =
1 1 z 1
n z n
m=1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC Another Example
Example
Let x[n] = n u[n 1] an anti-causal (Left-sided) sequence
1
X (z ) =
n=
()n z n = =
1 1 z 1
n z n
m=1
1 z 1 1 z
1 1 z 1
Same ZT as n u[n], dierent sequence?
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
RoC is Necessary!
To completely dene a ZT, you must specify the ROC
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
RoC is Necessary!
To completely dene a ZT, you must specify the ROC
n u[n]
1 1z 1
RoC is |z | > ||
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
RoC is Necessary!
To completely dene a ZT, you must specify the ROC
n u[n] n u[n]
1 1z 1 1 1z 1
RoC is |z | > || RoC is |z | < ||
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
RoC is Necessary!
To completely dene a ZT, you must specify the ROC
n u[n] n u[n]
1 1z 1 1 1z 1
RoC is |z | > || RoC is |z | < ||
A single X (z ) can describe several sequences with dierent RoCs
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
RoC is Necessary!
To completely dene a ZT, you must specify the ROC
n u[n] n u[n]
1 1z 1 1 1z 1
RoC is |z | > || RoC is |z | < ||
A single X (z ) can describe several sequences with dierent RoCs
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
RoC is Necessary!
To completely dene a ZT, you must specify the ROC
n u[n] n u[n]
1 1z 1 1 1z 1
RoC is |z | > || RoC is |z | < ||
A single X (z ) can describe several sequences with dierent RoCs
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
RoCs and Sidedness
Two sequences have X (z ) = 1 1 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections
Consider X (z ) = with |1 | < 1 and |2 | > 1 1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections
Consider X (z ) = 1 1 + 1 1 1 z 1 2 z 1
with |1 | < 1 and |2 | > 1 Two possible sequences for 1 term ...
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections
Consider X (z ) = 1 1 + 1 1 1 z 1 2 z 1
with |1 | < 1 and |2 | > 1 Two possible sequences for 1 term ...
Similarly for 2 ...
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections
Consider X (z ) = 1 1 + 1 1 1 z 1 2 z 1
with |1 | < 1 and |2 | > 1 Two possible sequences for 1 term ...
Similarly for 2 ...
4 possible x[n] sequences and RoCs
Dr. M. Sarwar Ehsan The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections
Consider X (z ) = 1 1 + 1 1 1 z 1 2 z 1
with |1 | < 1 and |2 | > 1 Two possible sequences for 1 term ...
Similarly for 2 ...
4 possible x[n] sequences and RoCs
Dr. M. Sarwar Ehsan The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections
Consider X (z ) = 1 1 + 1 1 1 z 1 2 z 1
with |1 | < 1 and |2 | > 1 Two possible sequences for 1 term ...
Similarly for 2 ...
4 possible x[n] sequences and RoCs
Dr. M. Sarwar Ehsan The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 1
X (z ) = 1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 1
X (z ) = Right-sided sequences 1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 1
X (z ) = Right-sided sequences
n x[n] = n 1 u[n] + 2 u[n]
1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 1
X (z ) = Right-sided sequences
n x[n] = n 1 u[n] + 2 u[n]
1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 1
X (z ) = Right-sided sequences
n x[n] = n 1 u[n] + 2 u[n]
1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 2
X (z ) = 1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 2
X (z ) = Left-sided sequences 1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 2
X (z ) = Left-sided sequences
n x[n] = n 1 u[n 1] 2 u[n 1]
1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 2
X (z ) = Left-sided sequences
n x[n] = n 1 u[n 1] 2 u[n 1]
1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 2
X (z ) = Left-sided sequences
n x[n] = n 1 u[n 1] 2 u[n 1]
1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 3
X (z ) = 1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 3
X (z ) = Two-sided sequence 1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 3
X (z ) = Two-sided sequence
n x[n] = n 1 u[n] 2 u[n 1]
1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 3
X (z ) = Two-sided sequence
n x[n] = n 1 u[n] 2 u[n 1]
1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 3
X (z ) = Two-sided sequence
n x[n] = n 1 u[n] 2 u[n 1]
1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 4
X (z ) = 1 1 + 1 1 1 z 1 2 z 1
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 4
1 1 + 1 1 1 z 1 2 z 1 Two-sided sequences with no overlap X (z ) =
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 4
1 1 + 1 1 1 z 1 2 z 1 Two-sided sequences with no overlap X (z ) =
n x[n] = n 1 u[n 1] + 2 u[n]
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 4
1 1 + 1 1 1 z 1 2 z 1 Two-sided sequences with no overlap X (z ) =
n x[n] = n 1 u[n 1] + 2 u[n]
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections: Case 4
1 1 + 1 1 1 z 1 2 z 1 Two-sided sequences with no overlap X (z ) =
n x[n] = n 1 u[n 1] + 2 u[n]
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections
Two-sided exponential sequences x[n] = n < n < = n u[n] + n u[n 1]
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections
Two-sided exponential sequences x[n] = n < n < = n u[n] + n u[n 1] No overlap in RoCs
Dr. M. Sarwar Ehsan
The z -Transform
Introduction z -Transform and DTFT Region of Convergence (RoC)
ROC intersections
Two-sided exponential sequences x[n] = n < n < = n u[n] + n u[n 1] No overlap in RoCs ZT does not exist
Dr. M. Sarwar Ehsan
The z -Transform