0% found this document useful (0 votes)
113 views11 pages

10 Subsystems of PA

The document discusses subsystems of Peano arithmetic (PA) defined by formulas of certain complexity levels. It shows that these subsystems form a hierarchy, with higher-level subsystems containing all elements definable in lower levels. However, PA is not finitely axiomatizable, as any finite axiomatization could not capture all elements of a non-standard model.

Uploaded by

godwsky
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
113 views11 pages

10 Subsystems of PA

The document discusses subsystems of Peano arithmetic (PA) defined by formulas of certain complexity levels. It shows that these subsystems form a hierarchy, with higher-level subsystems containing all elements definable in lower levels. However, PA is not finitely axiomatizable, as any finite axiomatization could not capture all elements of a non-standard model.

Uploaded by

godwsky
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

10

Subsystems of PA
I cannot bringa world quite round, Although I patchit as I can. I s i n g a h e r o ' sh e a d , l a r g e e y e A n d b e a r d e db r o n z e , b u t n o t a m a n , Although I patchhim as I can A n d r e a c h t h r o u g h h i m a l m o s tt o m a n . If to serenadealmost to man I s t o m i s s ,b y t h a t , t h i n g sa s t h e y a r e , Saythat it is the serenade O f a m a n t h a t p l a y sa b l u e g u i t a r .

From : Tlter,", *,,Y'),)r':;i rr:.'i:i,2i


In this chapterwe return to considering the subsystems 12,, 82,, of PA d e fi n e d i n S e cti o n 7 .1 . (The r eadershouldconsult the diagr amin Exer c i s e 7 .3 a sa g u i d eto th e va r ious implications between these theor ies.) The t w o main resultsof this chaptershow that thesesubsystems form a hierarchy, and thereforePA is not finitelv axiomatized.

10.1 :,-DEFINABLEELEMENTS Le t MF P A - a n d ,u q l M. W e shallconsider the substr uctur es K"( M;A) of M, which are definedin a similarway to K(M; A) of.Chapter8, exceptthat only elements definedby ),, formulasare in I((M;A). D E p t l t r r o r vL . et MEPA-, let n>I and let Ac:M. K"(M;A\ su b stru ctu re o f M co n sistins of all b e M suchthat ME 0( b, d) AVx( 0( x,a) - - > x: b) forsome ee A . ( S u c h baresaidtobe),,-definablein 0 ( x , y ) e^ I , , a n d s o ma M o v e rA . \ of NI: for exampl e i f It i s cl e a r th a t K " (M ; A) is a substr ttctur e w , here b , c e K " ( M ; A ) a r e d e f i n e db y n 0 , a ) a n d [ ( 2 , 1 7 )r e s p e c t i v e l y 130 in the

2,,-clefi nable ele ments rl,Ee-I,, a n d n 2 I , t h e nb * c i s c l e f i n e b c ly t h e ^ I , , forrnula a y , z ( , ? ( ya , ) A g ( 2 ,a ) A x : y + z ) .

l3l

J u s tas i n C h a p te r8 w e d e noteK"( lvl;{ a} ) and K"( M;A) mor esim plyby K "( NI; rz)a n d K ^ (M) re sp e ctively. The n e xt th e o re m i s th e analosueof Theor em 8.1 for the str uctur es I ( "( M ; A ) . T l t e o t r e u 1 0 . 1 .L e t n > k > 1 A c- I("(lvl: A) <,rM. a n d s u p p o s eA = M F l Z k - , . Then

P r o of. A c. I(" (M;.4 ) si n ceeachae A is definedby the for m ulax:a. ( x , , . . . , x 1 )h a v eA 1 g R e c a l lt h a t , f o r e a c h/ > 2 t h e f u n c t i o n s , r a p ha n d are one-to-one correspondences betweenMI and M for all modelsMF ILt). T h u s , r f x , y e M a n d x : ( y r , . . . , l t l e I ( ( M ; A ) , t h e n e a c hl i i s i n K " ( M ; A ) , s i n c ei f x i s d e f i n e c bl y 6 ( r , r i ) w i t h e e 2 , , a n da e . 4 , t h e n y , i s definedby a x ,y r ,
,li-1, !i+t,

xa )A x : ( t t , , y , ( E (,

) J

lr.
I t

,f))

which is ),,. T h i s r e d u c e s t h e p r o b l e mo f s h o w i n gK " ( M ; A ) < z o M t o th a t s h o wi n g if b e K " (M; A) and E@, b) e [I*- 1 then

M F a x E @ ,6 ) ) a c e K " ( M ; A ) s . t .M F E @ ,6 ) by the Tarski-Vaughttest(Exercise 7.4) usingthe function(t) to replacea : f l p - , fo rmu l a E (i .6 ; w i tfrV y < x( x ( t) - - q( t , b) ) . Now suppose f u l F a x c p (6 x) , , r pe I 7 r - , , 6 e K " ( M ; A ) a n d6 : ( b , , . . . , b , ) M F I Z k - 1a n d w i t h e a c hb , d e f i n e d () aeA). Since b y t h e) , , - f o r m u l ^ r l i ( u i , a for E(x,6) b,y t h e l e a s tn u m b e rp r i n c i p l e IZ*-t Lnk-' (Exercise7.3) <r z - t E @ ,b ) ) . MFa,.rlq(r,6)AVr n. 2 ) s o N o w l c p ( u , 6 ) i s I * - , a n d , i f k > z , I Z k - i B Z k ' , ( P r o p o s i t i o7 V t t l z - 1 c p ( u , 6 )i s e q u i v a l e n it n l v l t o a 2 t - 1 f o r m u l ab y P r o p o s i t i o7 n. 1 . I f

r r : 1 t h e n Y u { z 1 E ( u , 6 ;i s A , , r pi s .T h u s i n b o t hc a s e s since
M F a t z 1 u , ,. . . , r i p ( \ 1 = a 14i(ui , ) A q ( 2 , D ) A V a < z - 1 E @ ,D ) l of - I,,,ilr - ,, a n d th e fo rmL rl a i n si cl e sq u ar e br ackets her e is a conjunction t h i sf o r m u l at h e n u r : b i f o r a l l i a n d I o - , f o r m u l a s ,s o i s t , . I f D ,z s a t i s f y

132

Subsystem.r of PA

a n d s o t h e u n i c l l r e z s a t i s f y i n g i r , , . , oj l f A l = 1 r y 1 ( u u;),A c p ( 2A , ) A Y u { z - l c p ( u ,u ) ] i s i t t K " ( M ; , 4 ) a n d M E c p ( 2 , 6 ; , a s r e q u i r e c l .E N o t i c et h a t , e v e n i f t l : A a n c f ll:1, I('(fu|:A) may be nonstandard. Th i s r,vi l h l a p p e nfo r e xar nple when M FPA+ axy@) , wher e X is A,, a nd N F V T IX (x). (S u ch ful exist by the incompleteness r heor em.) Th en K t ( A 4 ) : " N a n dc o n t a i nts h e l e a sx t eM such t h a tM F y ( x ) . B u t a sN { o , , M we cannot h a v ex : n e N , s i n c e otherwise N FX(n). N o w i f l (" (fu |;A ) i s n onstandar d, n77, ancl A is finite( A: { c1} say) ,then th e n K " (M;,4 ) w i l l fa i l to satisfy P,4. This is because for all cel( ( M ;A ) th e ree xi sts e e N su chthat M FS a rr,,( e c) )A Vy( Sat, y) ) - , y : c) . ,ld, , fct, ,,( e
Since this formula is the conjr-rnction of a I,, formula and a I1,, formula, T h e o r e m 1 0 . 1g i v e s u s

I(" (M ;A ) FS at' ,,( e, ld,c])AVy( Sat;,,( e, [a,y]) - + y : c) . Th u s fo r a n y n o n sta n dar d cle K"( M; A) I ( ' ( M ; A ) F V c a e< d [ S a t ' , e , (, l a , c ] ) A V y ( S a r,,, ( r , l d ,y l ) - y : . ) ] . Ho w e ve r i f K " (M; A )F PA ther ewouldbe a least suchd e K"( M ; A) , d1 1s,ay sa ti sfyi n th g e a b o vefo rmula.But this would im ply d,,eN, sinceit n- r usbe t le ssth a n o r e q u a l to any nonstandar d de I( ' ( M;,zl) , and so I( ' ( M;A ) wo r.rl o d n l y h a vefi n i te l ymany elements, which is im possible. Thus T n e o n e vr1 0 .2 . N o co nsistent extension of PA is finitelyaxiomatized . Proof. If Zr PA is finitely axiomatized, then for sornen e N all axiomsof T a re II,,. C o n si d e ra ny nonstandar d MFZ and take a> N in M . L et I(:K " (fu [;a )<2 ,,M. -l hen KFT sinceM ET and each axiom of ?" is I I,,, Ire n ce K F P A , w h i ch i s i mpossible sinceK is nonstandar d. t- J T h e o re m1 0 .2i s d u e ( essentially) ( 1952) .W e sh al l to Ryll- Nar dzewski no w d i scu ss, i n ra th e rmor e detail,whichinduction axiomshold and wh i c h f a i li n t h e m o d e l s I("(M;A\. P n o p o s t r r o1 N 0.3. I f N l F I Z k ,A c . M a n dn > k > 0 . T h e n I ( " ( f u | ; A ) E I Z k .

Proof . Let b e K"(M;A) andconsider a 11 formula 9(x,D. rc

-, , g(x K " ( t uA | ;) F0 Q , 6 ) A V . v ( Ob () x + 1 ,6 ) )
thetr, s i n c et h i s i s e q u i v a l e ntto a I { * 1 f o r m u l az r n cK l "(M;A)<r*,,M by

E,,definuble element,s Theorem l0.I, l vlF0 (0 ,1 i ) A vx( 0(x , 6) - .- 0( x + I , 6) ) ,

1 1 a I J-)

lretrce Mrvx7(x, b_) sincc lvlFI z:t,, zrnclyxT(x, b) is also Ir,,*, hence K"( f u|;A )E V x7 (x, 6 ), b y T h eor em10.I again,as r equir ed. tr T h e n e xt re su l t sh o l vs that in gener al pr opositon 10.3 cannot be i m p r o ve ciIt . h a sth e co n se cluence that 1r ,,- ft Bz,,forall nz r , a r esultclue t o P a rso n s (1 9 7 0 ). T h e p ro o f we giveher eis due to Par isancl l( ir by ( 1978) . T r r E o r r g1 v0 r . 4 .L e t M F P A , A c . M a f i n i t e s u b s e o tf M . a n d l e tn > I w i t h K "( M ;,4 ) n o n sta n d a rdT . h en I( ( A4; A) V B 2,,. Proof. Using the pairingfunction,everyb e I("(M; A) is clefinable in ful by a f o n nu l a o f th e fo rm ayy( *, y , a) , w h e r e), i s [r,,-t, A : {a } a n cly is a singlevar iable.( For if b is clefined by --aZd(x,2 , u) then b is alsoclefinecl : by Ay(VZ(y <Z> d(x, Z, c1)) which is of t l r e a p p ro p ri a te fo rm.) T h u s for all beK"( M;,4) ther e is ee N ( nar nely e : ' y ( u u , u , , D ) ,f o r a s u i t a b l e y) sLrct hh a t , Aux: bA Satn,, M l a u f3 u r, u ,(u : (L to u,) u,, af) ,( e, fu,,, -1Satn,, AV z I uYz 11, z, < z (z : (Z o,z) ---> _,(r, ft u,2,, al)Dl -lSatr7,,_, Since Satr,,,_, is I1,,-,, is -I,,_1, &Dd),,_, is closedunder bonclecl q u a n ti fi ca ti oin n P A , th efo rmulain squar e br ackets aboveis equivalent ( in PA) to a ),, formula A(a,b, e, u). Thus, if t e I((M; ,4) is nonstandard, for all b e K"(M; A) we have MF Je < tatt) ,( a, b, e, u) a n d h en ce(si n ceth i s fo rmu l ais I,,) by Theor em 10.1we have
I ( " ( f u ( ;A ) E l e 1 t A u A ( a , b , e , u ) . But b here was arbitrarry (as long as it was a member of I("(M;A)) cleducethat so we

K " ( M ; A ) F V b < t * I A e < t S u A ( ab , , e,u).

''')

Bu t t he fo rmu l a o n th e ri ght- hand side of ( "' ) is a ) ,, for mula with a b o r . r n cl eu cl n i ve rsa l q u a n ti fier pr ececling it, so if I?( M ; A) F BZ,, this fornrula woulcl LreeqLrivalent in both K"(&1;A ) ancl M to a .I,, fonnula

134

Snbsystems of PA
would have

tl- r en we But P ro p o sition 7.L by X Q,a ), , ) b y T h e o r e m1 0 . 1 ,h e n c e K " ( M ; A ) F y ( t ,a ) ) n t E X Q a , , e,u). l v lF Vb < I * 1 f e < t S u A ( ab

5.12) ,sinc e pr inciplcin M ( Exer cise th e pigeonhole T h i s w o u l d co n tra d i ct gu L @ , b , e , u ) ,b b e i n g d e t e r m i n eb d y ^ n y e s a t i s f y i na clearly b isuniquely u, where u:(uu,u,) and u is the least elementof M satisfying n S a t;7 ,(t,l ,, u u ,u r, a l ). Exercises for Sectionl0.I thatN < t,,Miff K"( M ): N. n >I. Show 10 .1 L e t MFP A a n d 1,0 .2L e t n >-L . of sets of II,,+:Sentences (a) Showthat both1.X,, and 82,, canbe axiomatizedby
Q

(Uj Snowthat neither/.X, nor 82,, areaxiomatized by a set of t,+2 sentences. (Hint: Take MFTh(N) nonstandard with a ) N in lvl and show K " ( l v l; a ) F2 u* 2 - T h ( N ) .) with by 1A1y together 10.3 Let 82" denotethe theoryaxiomatized aYtazVx < tay< z9(x,y, a) YaVxay?@,y, d) --->Y for all 0(r, y , a) in 2,,. (a) Show that BI, | 12,,-1. by a set of I,,n2sentences. (b) Showthat BE^ is axiomatized ( c ) L e t M F P A - . S h o wt h a t K " ( M ) F B > , , i t t K ^ ( M ) F B I ; . ( d ) D e d u c et h a t 1 I , , ' t V B > ; f o r a l l n > 1 ' . in Chapter 9 are I0,4 Assume that all the propertiesof Sats*(x,y)described and B),,*r are finitely provable in I.Xy (see Exercise9.10). Show that 1.X,, for all n>7. axiomatizable (Hint: Considerthe sentence b)) Va, b[Sat;,,(n, [0, b])AV.r(Sat2,,Qt,lx, --+Sat:,,(4, * 1, b]))-+VxSat2,,(a, [t, b])] [x or B)1 are linitely similarfor BI,,*,. It is unknown whether1A11 and something axiomatizable.)

I O . 2 ' , , - E L E M E N T A R YI N I T I A L S E G M E N T S We n o w tu rn o u r a tte ntionto the im plication12,,+ 8t,,. Our aim is to show that this does not reverse,that is we will constructa model of BE,, th a t d o e s n o t sa ti sfy I2,,.The idea is to constr uct a suita bl e of a model of PA. initial segment .X,,-,-elementary

2,,-eLemerttury initial segnrcnts

135

PnoposrrroN 1 0 . 5 .L e t n 7 l , N I F I Z , , _ ; ,z t r c l l e t I c , . M b e e l p r o p e r I , , - 1 - e l e me n ta ry i n i ti a lse g ment of M closecl uncler* anc'.. l Then IEBZ,,. P r o o f. N o te th a t .fF 1 A 0 ( See si n ccI - - o,,lll and 1A,, is fI,- axior natizccl. F1A,, Exercise 6 . 5( b ) ) . S L r p p o s rr e e l ancI l F Y x l a a S l Q ( ; , y )w i t h 0 e I I , , - , .T h e n for every x e M w i t h x { u , x i s a n e l e m e no t f , I( s i n c e I c " M ) a n cs l o t h e r ei s y e l s u chth a t 0 (x,l ) i s tru e i n /, anclhence0( x,y) is alsotr tr ein lz1( since 0 ( * , y ) i s I I , , - , a n d / ( r , _ , M ) . T h e r e f o r ef o r a l l b e l v l \ 1 , M F V - r < u 3 y < b 0 ( x , y ). T h i s fo rmu l ai s e q u i valent ( in IE,,- ,) to a [1,,- ,for m ula,sinceit is f o r r n edb y a p p l yi n g b o u n d e dquantifier s to a II,,- ,for m r - r la. Thus wc may u s et h e l e a st n u mb e rp ri n ci p le, LII,,- ,, to cleduce tliat ther eis a leiistlt in M s u c ht h z titV I F Y x < c t 3 t < b 0 ( x , l ) .C l c a r l y t h i sl e e r s stu c h b i s i n 1 ,s o f o r a n y x l a t h e r ei s , y < b s u c ht h a tM F 0 ( x , y ) . B u t t h i s y i s i r r/ s i n c eb e l c " M , a n c la s 1 1 r , , - t M ,I F 0 ( * , ! ) , h e n c el F V x < a a t < b ) ( x , y ) , a s r e q u i r e d . n W e n e e cla w a y o f co n structing segm ents of zr ) ,,- ,- eler nentar initial y m o d el M. DenNrrroNL . e t M F P A - w i t h A c . M a n c ln > 1 . I " ( M ; , 4 ) i s t h e i n i t i a l segment { x e M l M r x < b f o r s o m eb e K " ( M ; A ) } o f M . I" (*) a n d I" (M; c? )d enote I"( M ,A) anclI"( M;{ r ;} ) r cspectivcly. N o t i c e th a t l " (M;A ) i s a n 9 o- str uctur e, uncler- F ancl.. sinceit is closed For example i f x < b e K " ( M ; A ) a n dy { c K " ( I V I ; . zt h e nx + - y < b + c . l) . < b y c a n dh + c e K " ( M ; A ) . x" ' i W e w i l l p r o v et h a t i f M F I 2 , , - 1 ,t h e n I " ( M ; A ) ( r , ,, M . T h e s u r p r i s i n g t h i n g a b o u tth i si s th a t u reo n l y needMFIZ,,- 1for thisto wor k. Essentially, t h e r e a so n i s i n th e fo l l o w i n glemm a. L e u r u rn 1 0 .6 . L e t n 7 l . II,,-col lectionscheme 12,, pr oves the following instancesof the

c p ( x , l ,a ) V a Z l s c p ( x , 2 , a ) ) V a ,r i s V x < / ( V t - T f o r a l l cp ff,,-r. by consiclering Proof. The aboveinstances are provablein ll,,-collection

Vx < EzlYy-t E(*,t, a)VE(x,2, r1)1, prove it in 1),,. l1,,.We must theformula brackets being insicle square
[ I , , - , . L e t c \ ( w , x )b e t h e I n a m o d e lM E I Z , , , l e t a e M a n c c l p(x,y,d)e Ar(PA) formula

3 y ,u < w ( y< 2 ' A w : y + 2 ' + 2 ' * ' ' u ) ,

136

of PA Sultsy.stems

'th e of n, is l' . All the of the lr inar y expar r sion x) e xp re sse s xth cligit s o r)(r,r,, he ecltrivai n / I , , i n c l t r c l i ntg sf r)(w,x)are provable o b v i o L rp sr o p e r t i e o l , f o r m s( s o r ) ( w , x )i s i n f a c tA , ( 1 I ' ) ) a n c la l l t h e o t h e r lence o f i t s f l l a n cI nrr a y c h c c k . B y c o l t s i c l c l ' i n g w c w i l l n c e t lh e r c , a s t h c r e z r c l e propertics cclLra to l l)wc havc ha sa l l i t s b i n a r yc l i g i t s w : 2 ' - I ( r , v h i ch -+ d ( r'r,, < t (a z rp(x,2, t7) x) ) ] . wIE1 1a.'[V;i so usingL[l,,ir t M ther e is a her e is I1,,, b rackets i naS cl u a re T he 1 'rrrn tL rl sa y y.F o r this leastsucht' v,we hetve l e a stsu chw , t'v1 2, d) - ' r ) ( w,,, x) ) M F Yx < t( lZcp( x, t h e n w o : ! + 7 ' + 2 ' + t ' u f o r s o m ey < 2 ' ' s i n c ei f d ( w , , , x ) A l a i c p ( x , i , c l ) l ilso satisfy , o u l cz zrnc sfo r n e u{vt, andwi:y+2t+t. Lt1w,w

2, d) ---> 61*;, *11. Yx < r(aZcp(x,


o L r rc h o i c e o f w , , . contraclicting 2 , d ) ) , s o b y a p p l y i n g t h e 1 1 , ,'B t r t t h e r r M F V x < t l | ( - l r ) ( w , y ,x ) y c p ( x , to this. there is s e M suchthat c o l l e c t i o ns c h e r n e

x) y gr(x,2, A)) tVI FYx < tAZ<,t(-l r)(u,,,, M F Y x < r ( A Z 1 , s q ( x . 2 , d ) f V y l c p ( x , i , A ) ) ,a s r e c l t t i r e c l . a r i ds c r D

i l r c lA q M . T h e n I " ( M ; A ) < r , , , l v l . TneorrEu 1 0 . 7 .L e t n 7 I . M F I 2 , , - 1 , l n c l e r* , ' , I " ( M ; A ) < o , , M . P r o o f . S i n c eI " ( M ; A ) g " M a n c li s c l o s e cu to test, it is sufficient n >- 2. By the Tar ski- Vaught T h trsw e ma y a ssu me is ther e Eai7( t,1i) 1 ie I"( [V, A) , 0( i, 61en,,- . ancltVl s ho wth a t w h e n cve r f u n c t i o n( x , y l : z t h a t t V 1 t 0 G l,) 7 .S y u s i n gt h e p a i r i n g Cel"(lvl;A)sLrch if , ((il):xA(u):bn}(il,0)) tg h e l I , , - , f o r m u l t iV r 7 D a n c lb y c o n s i c l e r i n in 0( x,b) . vi' r r iables thztt e x, b ar esingle w e mzl yzl ssLlm n e ce ssa ry, 1c wher e c i s b b) and lvlFax?( x, fI,,., 0 (x, b ) e N o rv sL rp p o se i n N l b y th e for mr - r la ) ,,-d e fi n e cl r y@,d)( aeA) . By Lemr na 10.6tlier e i s
cleM strchthat

l v lF Y y< c ( a x < d ) ( x , y ) y V z - t ) ( t , y ) ) . in M to a I1,,- 2 Tl ri s fo rmu l a i s i l ,,-t, s ince ax< d?( x,- y) is eqr - r ivalent l orrn u l a ,a n clso th e rei s a leastsuchr / in M. whichsatisfies

-1 (:, ri) A Vy < c(ax < d0(x, y) V Vz 0(2, y )) M Ea r'1ry _1 ( r.r 0(x,Y)A3z0(z, Y\l AVl, < day < c:(Vx

2,,-e lertentary initial seg men t.s

131

T h i s ' l ast fo rmr" rl a i s a I,, clefir r ition of d in fu|, so de l ( " ( N l ;A ) . B u t MFax<d1(x,b), so there is xe I"(M;A) satisfying N I F 0 ( x ,b ) , a s r e qu i r e cl . T T h e fo l l o w i n grcsu l tzi b o u tthe sr .r bstr uctur I"( es A4;A) is alsouseful. T t t e o n p .rvt 1 0 .8 . L e t n > l , MF BZ,,ancl,4 q &1.Then I" (fuI ; A) En,,* | - Th(tvl,0) uu,t, t h e s e t o f a l l 1 1 ,,n fo , rmu l a sd ( r i)with par am eteraeA s tl' tat ar e tr ue in M. P r o o f . L e t 0 ( a ) b e V i A y t p ( i , r , r 7 ) w i t h t p f 1 , , _ , ,l e t b e l ( ' ( M ; A ) b e a r b i t r ary, a n cl cl e fi n e cl b y the 2,, for mula e@,A) . W e show that I "( M ; A)F V x < b a ytp (x, A) s,yl"( M ; A) . since IK"( M; t, a ), whichsr .r ffices S i n ceMF B Z ,, th e re i s ce 11 such that IVI and FVi< bat< ct1,t( i,y,17) , s i n c eVi <b l t<ctp i s e q u i valentinltl to a I1,,- ,for m ula,ther e is a least suchc. This c is clefined in M by a ),, formr"rla equivalentto a b [q (b ,a ) A V i < b A t < ct1,t(j, x, a) AVu <cai < bVt 1u*]tl.t( i,y, a) l T h u s c e l " ( M ; , 4 ) . B u t V i < b a t < a p ( i , y , r i ) i s e q u i v a l e ntto t h e s a m e I / , , - , f o r m u l ai n b o t h M a n d I " ( M ; , 4 ) , s i n c eI " ( M ; A ) F B Z , , b y T h e o r e r n 1 0 . 7a n c lP r o p o s i t i o 1 n 0 . 5 .h e n c e I " ( M ; A ) F Vi < b a y I c t p ( i ,y , d ) , a sI " ( M ; A ) 1 r , - , l v l , a s r e q u i r e d . n

A v ery u se fu lco ro l l a ryth at can be dr awn fr om Theor em 10.7 is the f o l l o w i n gre su l t,d u e (i n d e p endently) to Jeff Par isand Har vey Fr iedman. C o n o rl n n v 1 0 .9 (P a ri s, F ri edm an) .For all n70, s e r v a ti ve o ve r 1 2 ,,; th a t i s, fo r all II,,*2sentences o, 82,,*1 is ll,,*2- con-

1 2 , , 1 o iff

B2,,n r Fo .

P r o o J'. L e ft-to -ri g h its o b vi o Lr s, as BZu*tl12,. For the conver se, suppose t h a t o isY *a ytp (t,t) w i th Q e II,,andII,,#o. W e mustshow that 8Z,,nfto. L e t t re M F 1 2 , , + V y - l ! t ( d , y ) a n d l e t l v l ' > M b e s u c ht h a t , " + t ( M ' ; c i ) * M ' . T o d o th i s, l e t & 1 'sa ti sfy

e ME0(6),0 a n9 ^ - f o r m u l a } {0(6)lb U{ 3 l , r r 7 (c x) ,- 3 x 1 c y ( x ,a ) l n e I , , , , }

138

of PA StLbsystems

b for each be M anclzl in the languagegoexpanded by addingconstants further new constantc. The reduct of.M' to 9a clearly has the requirecl c is in M' but not i n the constant th e e l e me ntof A4' r ealizing pro ' 1 " *p le 7 rty, M ' ,a as7 .1 Then by Theorem 10.7, del"*t(M';d)1r,,M', so by BZ,,*1. B ut P ro p o si ti o n 1 0 .5 a n d our choice of Ivl', ,"*t( lvl' ; cl) F , ) for all b e I"*'(M' ; n), so M' Fvt-1!)(cy l ,) , s o M ' F - 1 q ( a6 -l4t is 8,,' Thus I'*'(M'; a)FVy1V@,y) as I"n'(M'; a) 12,,M' ancl n B\,,n1Vo. hence , lo ancl s X , , n* , " + r ( M ' ;a ) s a t i s f i eB one together'than are'closer thatI2,,and 82,,+, 1 0 . 9s h o w s Corollary r esultbetween82,,*,a nd conser vation mi g h tth i n k. T h e rei s n o non- tr ivial but 82,,* tV fo r e xa mp l eit can be shownthat - f) ,,*lFcon( 1) ,,) I Z ,,*rsi n ce '1),, is con(1),,), where con(.{I,,) is a natural [I1 sentenceexpressing consistent'. theoremthat BZ,,#1I,,.This this chapterwith the promised We conclucle theoremwas first proved by Paris ancll(irby (1978)and, indeperrdently, (1978).The proof here is Lessan's' Lessan T H e o n E v r1 0 . 1 0 .L e t M F P A , A c M f i n i t e , n 7 I , a n d s u p p o s et h a t Then I"( M ; A) F BZ,,but I"( M ; A) fl 8,,. I" (M;A ) i s n o n -sta n d ar d. Proof. We havealreadyseenthat I"(M; A)F 82,,. Let A: {A}and suppose ( b and a is to finclw e M with r,v Our strategy b e I"(M;,rt) is nonstandard. I,, fo rmu l a0 (x, w ) su chthat, for all xe I"( M;A) , x e N I"(M; A)F 0(x,w) f o r t h e nI " ( M ; A ) t l - 0 , a sI " ( M ; A ) + N . The followingis obviouslytrue for allx e N: We find w by usingoverspill. ( ) > x A l w ] n : [ ( u u :0 ) ] M F A w< b { l e nw - 0) 1,l) Aly Sat,r ,,- ,( [r ],, a ]) ) n V i < l e n (w)( [r ],< max( l( v,, [y' : lwf,- ' A ( l 3z Satr 7,,- ,( i, al) A V I < l e n (w)( l > 0 - ' ( [ur ], lz, y V y ( S a t o , - , ( [ r ] ,, -, \ y , a ] ) - > 3 2 { y S z r t r ,,,(,i , f z ,, i ] ) ) ) ) V([r]r: i A a z S a t , r ,, ,( i . [ 2 ,a ) ) { z S a t p , , - , ( [ r ] , -[1 A V z ( S a t r , , , - , ( i , [o r] ,) - - > a y 2,, r i ] ) ) ) ) ] , [' ]' .- | such that (In w o rd s, w co d e s the sequence[,],,, [t]r : only eitherlwf,:l andthishappens i r ] , , : t ( u u = 0 ) r a n d f o r e a c h0 < l < x , V) such that the least wtrenI is the Godel number of a fI,,-, formula 0(v,1' MF 0 (tt,a) existsand is gr eaterthan the least1e &1s uc h tte l vl sa ti sfyi n g ar) )l w l , : l w l , - , ( w h e n i d o e s n o t h a v e t h e t h a t M F S a i r , , , - , 1 ; w ) , , l t t ,o a b ove) . p ro p e rtyd e scri b e d

2,,-elementury initiul .tegments

139

. e rei s n;( b in fulsuchthat the for mulaaboveinsic' le b y o ve rsp i l lth T l r u s,. a c u r l y bra cke ts is tliat r v now t ) b o vei s tr ue for som ex> N. The iclea o f II,,-1fo rmulas a se q L l e n ce in [4, the leasty cocles r ,vhich ar e all satisfied s a t i s f yi n g Iru ];b e i n ga t l e a sta s lar geas the leasty satisfying Ir ],- ,, and all stagei. I1 ,,-,fo rmu l a s a re consicler ed at som e ( stanclar d) s t a n c l a rd s agr aph,zr ncl W e cl a i m th a t, w i th w chosen as in the pr evior .rpar c e N h oldsiff c e I "( M; a ) a rb i tra ry, I " ( l v l ;A ) F A y S a t , , ,,,( [ r ] , . ,[ y , a ) ) . T o p r o veth i s, su p p o se fi rstth at ce N. Then M F a y S a t n , , , ( [ r ] ,l,y , a ) ) . I v v ]:, k ' i s t ( V , , : 0 ) l ) ,s o I r 1 , . : / ce N , a t t da st h e f o r m r , r l' a B u t I w ] , . <m a x ( c , A , uI," ( l v l ;A ) F l w l , : k . A l s o M Fay Satp,,.. ,(k, ly , cll) Theorem 1 0 . 8 I " ( M ; A ) F a y S a t p ,,,( k , f y , c 7 ] ) by so if 1 , , ( MA ; ) FS a t n , , _ , ( [ r ] , , al). Conversely, ly, hence

c ,y e I " ( M ; A ) F S a t r r,,(,[ t " ] , l,y , a ) ) , 2 t h e nM F S a t o , - , ( [ r ]l,y , , o l ) s i n c e' 1 1 4 r , , , _ , I " ( M ; AB ) .u t y e I " ( M ; A ) , s o y < d for some by a formulaf D1(d, 0, d) (0 e [1,, d e M thatis ^X,,-defined - r). : 0(r,S,V)) and let i : V) be the II,,-, formulaVr, J((r,5) v,,--+ Let r/(v,,, tr!(vu, if u e M satisfies r/(u,c) thenu>d>y. Thus,by inducV)r.Clearly
tion on j in M, we have

t,,,,(l*li,lu.a))-n u> y)) )+ V r ( S ar M F Vj > i ( j < l e n ( w ce N. t h a tc { i , a n dh e n c e w h i c hs h o w s Exercises for Section10.2


o such that E x e r c i s e1 0 . 3s h o w t h a t t l i e r e i s L r2 , , r 2 s e t r t e n c e 10.5 By considering alteredto b e c a n n o t 1 0 . 9 , n c lh e n c e l h e ' I I , , a 2 ' i n C o r o l l a r y I 2 , , V o b u t B X , , * 1 1 - oa ' 2 , , + 2 ' o f' [ , , * . r ' . 1 0 . 6 P r o v e t h a t t h e w e a k f o r m o f t h e I I , , c o l l e c t i o n s c h e m ei n L e n r t n a 1 0 . 6 , to /-X,,. together with 1A,,,is actually eqr"rivalent ( l - l i n t : I f l b 1 i c p ( b , x ) h o l d s , r , v i t he e i l , , - 1 , i n s o m e m o d e l , u s e t h e c o l l e c t i o n schemeto fincl c such that

tr

V r r< b ( 3 x { c E ( u , . r ) ! V x - l c p ( ui,) )

140

Subsystems of PA

ys s u m i ntg a n d ( i n d u c t i v e la Z , , - , )c o n s i d etrh e l e a s t - n u m b e r h a t t h e m o d e ls a t i s f i eIs principle applied t o 3 ; < c c p ( ui,) . ) , o r m u l a0 ( x ) w i t h 1 0 . 7 L e t M F T h ( N ) w i t h a > N i n M . S h o wt h a t t h e r ei s n o . X , f o n l y o n e f r e e - v a r i a b ls e u c ht h a t x eN iff l " ( t u | ;a ) F 0 ( x )

w in the proof of f o r a l l x e l " ( M ; a ) . F l e n c ec l e c l u cte he useof the parameter T h e o r e m1 0 . i 0 c a n n o tb e a v o i d e d . 1 0 . 8 * P r o v e I Z , n * t c o n ( 1 I , , )f o r a l l n 7 0 , a s f o l l o w s :i n t h e n a t u r a ld e d u c t i o n I,,E (whereg is an 9o-formula) the induction axioms system of Exercise 9.6 replace by the inductionrule + 1.) l , - 1 c p ( u )c , p(u
f , -T9(0),9(s)

(u any variable not occurring free in f, s any ?a-term, E any X,, formula of 9). (a) Show that each induction axiom I.,E of /X,, is provable in this system. Hence is a provability deduce that the correspondingprovability predicate provableTa,(x) predicatef.or 12,, in Exercise 3.8. defined as (b) The cut eliminaton theorem for this system says that if p is a proof of the sequentf then there is a second proof, r7,of I such that in any instanceof the cut rule A,, cp A,,1cp

A in q, the formulzr E is eitheran axiomof P,{ or a formulain one of the equality in the inductionaxiom above.State and axiomsor a 2,, formula g(s) occurring provethis theoremin 1.I1. 1977.) {Hint: Modify the proof in Schwichtenberg ( i n 1 X , ) t h a t i f t h e r ei s a p r o o fo f 0 : 1 f r o m t h i ss y s t e mt,h e n t h e r ei s a Deduce proof of 0: 1 such that all the formulas occurring in it are 2,, or f1,,. (c) Let q be a proof of 0: I, all formulasin q being I,, or 7,,. Using II,,*r induction showthat Vx Sat4, ,,(V/ f , .r) equivalent to f in q, where \(/ f is some il,+ r formula for all Seqlrents --1provable,r,,(0 = l) is the disjunction of all formulas in f . Deduce that provable in /I,,n1.

You might also like