45 Concrete Column
45 Concrete Column
fY 60 ksi area b1,1 1.00 b2,1 1.00 Y top b3,1 1.00 b4,1 1.00
f'C 4 ksi column c1→ 8.1 c2→ 12.0 column c3→ 15.9 c4→ 19.2 row 20
row r1 ↑ 21.4 r1 ↑ 22.1 row r1 ↑ 21.4 r1 ↑ 19.2
Bar Size# 9
1.00 in2 area of bar b1,2 1.00 b2,2 9.24 Composite b3,2 0.00 b4,2 1.00
Bar Qty 16 bars c1→ 4.8 c2→ 12.000 c3→ 12.000 c4→ 21.354
r2 ↑ 19.2 r2 ↑ 20.480 r2 ↑ 3.520 r2 ↑ 15.875
30.000
27.500
b1,3 1.00 b2,3 0.00 b3,3 9.24 b4,3 1.00
25.000 c1→ 2.6 c2→ 10.6 c3→ 20.48 c4→ 22.1
22.500 r3 ↑ 15.9 r3 ↑ 5.1 r3 ↑ 12.00 r3 ↑ 12.0
20.000 X left X right
17.500
b1,4 1.00 b2,4 9.24 b3,4 0.00 b4,4 1.00
15.000
c1→ 1.9 c2→ 3.52 c3→ 6.000 c4→ 21.354
12.500
10.000
r4 ↑ 12.0 r4 ↑ 12.0 r4 ↑ 0.00 r4 ↑ 8.125
7.500
row 70
XX COLUMN LENGTHS and LOADS for BENDING ABOUT the X-AXIS Page
Circular, β =45 -2
90.00º
Lx 30.000
14 ft center-to-center beam-column joints
kx 1.0 unitless X bending 27.500
Lu x 13.25 ft unsupported length of column 25.000
22.500
FACTORED LOADS 20.000
Pu 465 k ult factored axial load 17.500
M2ux 1176 k-ft ult factored largest moment, always positive 15.000
12.500 21562320.xls
row 80
10.000
YY COLUMN LENGTHS and LOADS for BENDING ABOUT the Y-AXIS
Ly 14 ft center-to-center beam-column joints 7.500
ky 1.0 unitless 5.000
Luy 13.25 ft unsupported length of column Y bending 2.500
0.000
FACTORED LOADS 0.000 5.000 10.000 15.000 20.000 25.000
M2uy 0 k-ft ult factored largest moment, always positive Y - axis COMPRESSION BLOCK
OK k Lu/rx 18.9 ≤ 100 see ACI 10.10.1 braced frame ACI 10.11.5 As Mu changes, Mu provided will change row 110
OK 18.9 ≤ 40.0 no moment magnifier in the X direction as a function of en * Pu.
non-sidesway in the X direction ACI 10.22.4.2
β 1.571 radians resulting beta from combined, magnified MC2 x and MC2 y 0 row 118
0 ATAN( 1,176 / 0 ) 0
90.0000 degrees rotation of neutral axis counter clockwise from x-axis
0
I g xx ↑ 16286 in4 gross concrete 0
I xx ↑ 18435 in4 includes ± AS
0
0
I g yy → 16286 in4 gross concrete
I yy → 18435 in4 includes ± AS 0
Ec 57000 * f'C 0
3605 ksi Figure 45-5 Strain profile.
57000 * 4,000^0.5 / 1000
row 130
COLUMN SLENDERNESS and MOMENT MAGNIFIER for the X-AXIS Non-Sway Page
Circular, β =45 -3
90.00º
length 24 in referenced from above Mx
Lx 14 ft
kx 1.0 unitless
Pu 465 k ult X - axis
Ec 3605 ksi Move the formulas and explanations and Figure 45-6 Direction of moment icon.
copy-clip and park your math in a convenient cell.
M1 x -838 k-ft ult
smaller factored end moment, + in single curvature bending (, - in double curvature bending () 21562320.xls
M2 x 1176 k-ft ult larger factored end moment, always positive, referenced from above row 140
M1 < M2 OK
Cm 0.400 unitless 0.6 + 0.4 * (M1 / M2) , cannot be less than 0.4
Cm = 1 for transverse loads ACI 10.12.3.1
Cm x 0.400 unitless for transverse loading condition Cm applies to both the minimum e_min PU moment and
the MC2 moments.
FALSE logic Circular
rx 7.2 in 0.3 * h rectangular column ACI 10.11.2 Note: Greek, italic and math symbols from chapter 6 are
0.3 * 24.00 in used as much as possible to avoid format errors in Greek C,
rx 6.0 in 0.25 * diameter for circular columns Symbol SH, and Symbol when things are moved around.
rx ↑ 8.4 in computed ry or input ry as for composite column or Super and subscripting must still be redone -- but those
FOR STEEL COLUMN other section ACI (10 - 21) where the ACI quick errors are more obvious.
calculation in ACI 10.11.2 is overly conservative
Note Also: Symbols from chapter 6 appear as range
k Lux /rx 18.9 unitless kx * LUx / rx names when Insert, Name, Define is used. Use L
1.0 * 13.25 ft / 8.4 in * 12 in/ft instead of ℓ because ℓ does not show up as a range
FALSE logic name.
OK k Lu/rx 18.9 ≤ 100 see ACI 10.10.1 braced frame ACI 10.11.5
Subscript Lux rather than LUX which would be the more
Non-sidesway frames may neglect moment magnifier if: traditional choice. This is because range naming does not
Limit_x 40.0 unitless 34 - 12 * Mu 1 / Mu 2 < 40 ACI 10.12.2 (10-7) recognize formatted characters. A subscripted Lux which
min(40, 34 - 12 * -838 / 1,176 ) looks like Lux is more recognizable as a range name.
FALSE logic
OK 18.9 ≤ 40.0 no moment magnifier in the X direction
EI xx ### k-in2 ((EC * Ig / 5) + 29000 * Is ) / (1 + βd X ) ACI 10.12.3 (10-11)
((3,605 ksi * 16,286 in^4 / 5) + 29 ksi * 2,149.0 in^4) / (1 + 0.00)
EI ### k-in2 0.4 * Ec * Ig /(1 + bd ) ACI 10.12.3 (10 - 12)
0.4 * 3,605 ksi * 16,286 /(1 + 0.00 )
EI min x ### k-in2 min(23,484,413, 11,804,527) row 170
PC x 4128 k π2 * EI / (kx braced * Lux)2 Euler buckling load ACI 10.12.3 (10-10)
9.870 * 3,605 * 16,286 k-in² / (1.00 * 14.00 ft * 12 in/ft)²
δns xx 0.471 Cm / (1 - Pu / (0.75 * Pc x) ) ACI 10.12.3 (10-9) Pc, the column critical axial load, is ratioed against Pu. This is
0.40 / [1 - 465 / ( 0.75 * 4,128) ] used to reduce the stiffness factor EI which is important when
δns x 1.000 unitless max( 1.0, dns xx * Limit_x logic) column axial load is high.
max(1, 0.471 * 0)
M magnification factor for braced frame / no sidesway
row 180
e min x ↑ 1.32 in 0.6 + 0.03 * h minimum allowable e ACI 10.12.3.2 (10-14)
0.6 in + 0.03 * 24.00 in
emin Pu 51.15 k-ult dns x * e min x * Pu / 12 in/ft minimum required
1.000 * 1.32 * 465 /12
δns Mc2x 1176 k-ft ult dns M2x required The dns moment magnifier applies to both e_min * Pu moment
1.000 * 1,176 and applied Mc2 moment. The greater moment governs.
1176 k-ft ult
row 190
COLUMN SLENDERNESS and MOMENT MAGNIFIER for the X-AXIS -- SIDESWAY Circular, β = 90.00º
ΣPu x 7749 k ult sum of factored axial loads for all columns resisting sidesway
ΣVu x 1527 k sum of story horizontal shear Mx
M2sx 1174 k-ft ult larger factored moment due to loads causing appreciable sidesway
FALSE !!! input the larger factored end moment
X - axis
Icons are frequently used to help the
Do x 0.8 in relative lateral deflection designer and reviewer identify where
they are in the calculations.
row 200
A story can be considered as non-sidesway if:
Qx 0.02 unitless ΣPU x * ∆ o / (ΣVU x * LC) ≤ 0.05 ACI 10.11.4.2 (10 - 6)
7,749 * 0.80 / (1,527.00 * 14.00 in * 12)
TRUE logic Q < 0.05 is nonsway in the X direction
non-sidesway in the X direction ACI 10.22.4.2
Page 45 - 4
Member slenderness in a frame not braced against sidesway can be neglected if:
sway x TRUE logic k LU /r ≤ 22 ACI 10.13.2
neglect column slenderness k Lu/r = 18.9 row 210
βd x 0.00 unitless ratio of maximum factored sustained axial load to maximum factored axial load for non-sidesway condition
ratio of the maximum sustained shear to the maximum shear within a story for sidesway condition
21562320.xls
Note: If the column is braced against sidesway or meets the conditions of ACI 10.11.4.2 (10-6)
story sidesway, use the non-sidesway moment magnifier.
row 220
ΣPcx 20640 k ult sum of PC's for columns in a story resisting sidesway, for ds sidesway calculation
row 230
δs M2s x 1203 k-ft ult M2S /(1 - Q) ACI 12.13.4.2 (10-17)
1,174 /(1 - 0.02417)
M1 y 0 k-ft ult smaller factored end moment, + in single curvature bending (, - in double curvature bending (
)
M2 y 0 k-ft ult larger factored end moment, always positive 21562320.xls
M1 < M2 OK row 260
Cm 0.600 unitless 0.6 + 0.4 * (M1 / M2) , cannot be less than 0.4
Cm = 1 for transverse loads ACI 10.12.3.1
Cm y 1.00 unitless for transverse loading condition
Y - axis
Doy 0 in
row 320
A story can be considered as non-sidesway if:
Qy 0 unitless ΣPU y * ∆ o / (ΣVU y * LC) ≤ 0.05 ACI 10.11.4.2 (10 - 6)
0.00 k * 0.00 in / (0.00 k * 13.25 in *12)
TRUE logic Q < 0.05 is nonsway in the Y direction
non-sidesway in the Y direction ACI 10.11.4.2
Page 45 - 6
Member slenderness in a frame not braced againts sidesway can be neglected if:
sway y TRUE logic k Lu /r ≤ 22
neglect column slenderness k Lu/r = 18.9 row 330
βd y 0.00 unitless ratio of maximum factored sustained axial load to maximum factored axial load for non-sidesway condition
ratio of the maximum sustained shear to the maximum shear within a story for sidesway condition
21562320.xls
row 340
ΣPcy 0 k ult sum of Pc's for columns in a story resisting sidesway, for ds sidesway calculation
row 350
δs M2s y 0 unitless M2S /(1 - Q) ACI 12,13,4,2 (10-17) Σ, sigma this means sum or the sum of
0 /(1 - 0.00000) for you liberal arts majors
logic 1 FALSE Where there is no applied moment, the largest emin PU will be used in
Mc req'd 1176 0 the moment magnifier calculations. 21562320.xls
row 380
Mc req'd 1176 k-ft ult 1,176² + 0²
Ec 57000 * f 'C
2 12.500
3605 k/in 2
ry → 4.6 in √ I yy /area →
Neutral Axis
Figure 45-8 Plan view of compression block Figure 45-9 The strain profile diagram.
and reinforcing.
Distance of Reinforcing from PCxy Es Young's modulus of steel, εS = strain
[ (12.00 - 8.13)^2 + (12.00 - 21.35)^2 ]^0.5 εs strain
21562320.xls
c1 c2 c3 c4 εcu concrete crushing strain, 0.003, unitless
PC r1 c1 10.13 10.13 10.13 10.12 εy strain at first yield, unitless
r2 10.12 8.48 15.52 10.13 ε's strain in compression reinforcing, unitless row 600
r3 10.13 23.62 8.48 10.13 εt allowable tension reinforcing strain, unitless
r4 10.13 8.48 13.42 10.13
r5 10.13 5.63 8.48 10.12 xb ,x bal distance of the neutral axis to the extreme
r6 10.12 10.13 10.13 10.13 fiber in compression noted as
C_test/β1 in this template, inches.
Es * STRAIN
C_TEST 11.000 in referenced from the summary window to the extreme fiber (up and right) perpendicular to the
axis through intersection of PCx and PCy
x bal /d = ε'c = 0.003 Strain Profile See 02 ACI 318 10.3.2 and 10.3.3
ε'c + εt = 0.003 + fy /29,000 row 610
x bal = 87 d /(87 + 60)
8.125 - $Pcx
horizontal c1 c2 c3 c4
r1 -3.875 0.000 3.875 7.158 inch
r2 -7.158 0.000 0.000 9.354
r3 -9.354 -22.587 8.480 10.125
r4 -10.125 -8.480 -6.000 9.354
r5 -9.354 0.000 0.000 7.158 β
r6 -7.158 -3.875 0.000 3.875 PCx ↑ row 620
21.354 - $Pcy PCy →
vertical c1 c2 c3 c4
r1 9.354 10.125 9.354 7.158 inch
r2 7.158 8.480 -15.520 3.875
r3 3.875 -6.908 0.000 0.000
r4 0.000 0.000 -12.000 -3.875
r5 -3.875 5.625 -8.480 -7.158 Figure 45-10 Rotation of the X-axis about PCxy.
r6 -7.158 -9.354 -10.125 -9.354
row 630
REINFORCING LOCATION LOGIC Page
Circular, 4590.00º
β= - 11
Horizontal Direction -β +β
-1 1 1 1
-1 1 1 1
-1 -1 1 1
-1 -1 -1 1
-1 1 1 1
-1 -1 1 1
ABS(ATAN(IF(0 , 9.354 /(-3.875 + 0.000001), -3.875 /(9.354 + 0.000001))) - PI() /2 * 0) * -1 Figure 45-12 Direction of loads.
angle c1 c2 c3 c4
r1 -0.3927 0.0000 0.3927 0.7854 radians -22.5 0.0 22.5 45.0 degrees
r2 -0.7854 0.0000 3.1416 1.1781 -45.0 0.0 180.0 67.5 row 660
r3 -1.1781 -1.8676 1.5708 1.5708 -67.5 -107.0 90.0 90.0
r4 -1.5708 -1.5708 -2.6779 1.9635 -90.0 -90.0 -153.4 112.5
r5 -1.9635 0.0000 3.1416 2.3562 -112.5 0.0 180.0 135.0
r6 -2.3562 -2.7489 3.1416 2.7489 -135.0 -157.5 180.0 157.5
Difference between β and Reinforcing Angle
$β + R1 C1
1.5708 + -0.3927
c1 c2 c3 c4
r1 1.1781 1.5708 1.9635 2.3562 67.5 90.0 112.5 135.0 degrees row 670
r2 0.7854 1.5708 4.7124 2.7489 radians 45.0 90.0 270.0 157.5
r3 0.3927 -0.2968 3.1416 3.1416 22.5 -17.0 180.0 180.0
r4 0.0000 0.0000 -1.1071 3.5343 0.0 0.0 -63.4 202.5
r5 -0.3927 1.5708 4.7124 3.9270 -22.5 90.0 270.0 225.0
r6 -0.7854 -1.1781 4.7124 4.3197 -45.0 -67.5 270.0 247.5 β
Distance
Distance of Rebar from Rotating X-axis Through PCxy
SIN(r1 c1) * PC_r1_c1 Angle of Reinforcing
SIN(1.1781) * 10.13 row 680
c1 c2 c3 c4
r1 9.354 10.125 9.354 7.158 inch
r2 7.158 8.480 -15.520 3.875
r3 3.875 -6.908 0.000 0.000
r4 0.000 0.000 -12.000 -3.875
r5 -3.875 5.625 -8.480 -7.158
r6 -7.158 -9.354 -10.125 -9.354
Figure 45-13 Distance of reinforcing from the
rotationg vertical axis through PCxy.
row 690
REINFORCING STRAIN Page
Circular, 4590.00º
β= - 12
C_Test 11.000 in reference
β1 0.85 unitless reference
N.A. 12.941 11.000 /0.85 neutral axis N.A. C_Test
PCxy
strain u 0 unitless 60 /29000 strain to first yield, reference
β 1.571 radians reference 90.0000 degrees
21562320.xls
row 700
C_Test to PCxy N.A. to PCxy
x top→pt 12.0000 x begin→ 12.0000 0.0000 x begin→ 12.0000 0.0000 reinf
y top ↑ pt 24.0000 y begin↑ 13.0000 1.0000 y begin↑ 11.0588 -0.9412
row 750
For Pn Page
Circular, 4590.00º
β= - 13
Tension Steel k
A_r1_c1 * fs_1_c1 * (fs_1_c1 < 0) PCx ↑
1.00 * 60.0 * (60.0 < 0) PCy →
c1 c2 c3 c4
Ts_1 0.0 0.0 0.0 0.0 k
Ts_2 0.0 0.0 0.0 0.0
Ts_3 0.0 0.0 0.0 0.0
Ts_4 0.0 0.0 0.0 -26.0 21562320.xls
Ts_5 -26.0 0.0 -526.8 -48.1 row 760
Ts_6 -48.1 -60.0 -60.0 -60.0
30.000
STL_COMP 1 logic 1 for f 'S = ES * eS compression reinforcing compatibility switch 27.500
0 for f 'S = 0 when f 'S < fy 25.000
Compression Steel k 22.500
A_r1_c1 * fs_1_c1 * (fs_1_c1 > 0) 20.000
1.00 * 60.0 * (60.0 > 0) 17.500
c1 c2 c3 c4
15.000
Cs_1 60.000 60.0 60.0 54.5 k
12.500
Cs_2 48.1 526.8 0.0 26.0 row 770
10.000
Cs_3 26.0 0.0 0.0 0.0
7.500
Cs_4 0.0 0.0 0.0 0.0
5.000
Cs_5 0.0 0.0 0.0 0.0
Cs_6 0.0 0.0 0.0 0.0 2.500
0.000
0.000 5.000 10.000 15.000 20.000 25.000
C_Test AS COMPRESSION BLOCK
Area Cc 2.89 unitless Deduct the area of reinforcing As * β1 * f'c of steel for Cc
Figure 45-17 Load direction with
reinforcing location and compression row 780
block.
TS*arm
-Ts_1, c1 * PC_r1_c1 row 790
- 0.0 * 10.1
0.0 0.0 0.0 0.0 k-in
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 263.8
263.8 0.0 4466.9 487.2
487.2 607.5 607.5 607.5
row 810
For Pnen Page
Circular, 4590.00º
β= - 14
FALSE logic Circular
TS arm 7791 k-in TS * arm from centroid
CS arm 7855 k-in
CC arm 3577 k-in CC conc * CL area
IF(0, 844.6 * 6.50, 634.6 * 5.64 )
row 830
Yxx↑ 0.844 unitless (h - d' - ds) /h > 0.70 ACI 9.3.2.2 Where:
Yyy→ 0.844 unitless (h - d' - ds) /h > 0.70 fy < 60 ksi
and reinforcing is symmetrical row 840
Y 1 logic Yxx and Yyy > 0.70 (h - d' - ds) /h > 0.70
ø may be increased linearly to 0.90
as øPn decreases from 0.10 f'c Ag to 0
ACI 9.3.2.2
ø1 0.75 unitless Tied columns = 0.7, Spiral tied columns = 0.75 ACI 9.3.2.2
ø1Pn 480.7 k ø1 * Pn
0.75 * 640.9
ø2 0.75 unitless max (ø1 , 0.90 - (Tie * ø1Pn /_.1Agf'C )) ACI 9.3.2.2
MAX(0.75, (0.9 - (0.15 * 481 /230 )))
ø2Pn 481 k ø2 * Pn
0.75 * 640.9
row 860
ø3 0.75 max (ø1 , 0.90 - (Tie * ø2Pn /_.1Agf'C))
MAX(0.75, (0.9 - (0.15 * 481 /230)))
row 870
MATH for RECTANGULAR ROTATING COMPRESSION BLOCK Page
Circular, 4590.00º
β= - 15
L 24.00 in referenced from above
W 24.00 in reference
βinput 1.5708 radians reference
90.0000 degrees
tan β ### unitless
sin β 1.0000 unitless 1111 0110 0110 0110 0110
cos β 0.0000 unitless 0111 0111 1110 1110
1 2 0110 3 4
PCx 12.00 in PCx top 12.00 in Figure 45-19 30.000
Area computation logic diagrams. 21562320.xls
row 880
PCy 12.00 in PCy right 12.00 in 27.500
25.000
A diag 0.785 rad 22.500
45.000 deg 20.000
diag 16.971 in PC x, y to top right corner 17.500
sweep TRUE logic βinput > A diag 15.000
12.500
diff 0.7854 rad difference between diagonal and load direction 10.000
45.0000 deg 7.500
5.000 row 890
x top→pt 12.0000 0.0000 12.0000 pt the extreme fiber up and right 2.500
0.000
y top ↑ pt 12.0000 12.0000 24.0000
0.000 5.000 10.000 15.000 20.000 25.000
COMPRESSION BLOCK
C_Test 11.000
For 0 pressure line intersection with perimeter Figure 45-20 Load direction and compression block.
x top→pt 12.000 x diag→ 0.0000
y top ↑ pt 24.000 y diag↑ 11.0000 x begin→ 12.000 x top→ ### x top→ 0 FALSE
y begin↑ 13.000 y top ↑ 0.000 y top ↑ 13 TRUE
x bot→ 24.000 x bot→ 24 TRUE
logic 0110 0110 y bot ↑ 0.000 y bot ↑ 13 TRUE
logic 0111 1110 A triangle
x→ 24.00 0.00 1111 0111 0110 1110
y ↑ 11.000 24 24.000 24.000 24.000 24.000
A rect 264.0 0.0 11.000 0.000 13.000 24.000
132.0 0.0 156.0 288.0
logic TRUE FALSE 0 1 0 0
logic 0 2 0 0 sum A 2
A rect 264.0 0.0 0.0 0.0 0.0 0.0 264.00 in² area of compression block
row 910
CG y→ 12.00 24.00 16.00 16.00 16.00 16.00 in
CG x ↑ 18.50 12.00 20.33 13.00 8.67 16.00 in
sum Ad CG from bottom left CG from top right
Ad y→ 3168.0 0.0 0.0 0.0 0.0 0.0 3168 in³ 12 in→ 12 in←
Ad x ↑ 4884.0 0.0 0.0 0.0 0.0 0.0 4884 in³ 18.5 in ↑ 5.5 in ↓
CG PCy→ 0.0000 in→
CG PCx↑ 6.5000 in ↑
CG PCxy 6.5000 in sum(d*A) / AREA from PCx and y
row 920
CC concrete 845 k 0.85 * f'C * AREA -sum(d < C_TEST AS ) w/o deduct for comp st'l area
0.85 * 4.00 * 264.00 - SUM(52.96)
c
A semi c 226.2 in2 area of semicircle
leg
A bearing 1 202.2 in2 11.96
The Lotus 1-2-3 r2.01 macro language was tailored specifically for the spreadsheet. It is flexible and relatively
easy to learn.
Microsoft's Excel for Microsoft office '97 allows the use of Lotus 1-2-3 macros. The range names to activate
a macro must be created in Lotus 1-2-3 r2.01, however. At the top of this template are several macro range
names that can be used to activate a macro. 21562320.xls
row 1000
The \a is the range name for the cell to the right. Hold down the [Ctrl] key and press a to start the macro.
These macros make use of string concantenation to wright values into cells and branch to other macros.
The graphing macro activated by [Ctrl] [Shift] x is written in VBA. The value range must be adjusted in the
VBA code.
\e {goto}Testing~
{Let P_Compare,11.000} row 1030
{calc}
{Branch P_BranchB1}
row 1050
VERIFYING GRAPHS Graphing Ctrl Shift x Page 45 - 18
24" circular column with 16 - #7's. Combined M2ux and M2uy = Mu provided. Pu = 200 k-ult.
β 1.571 aa 0 0 0.03 0.13 0.25 0.38 0.52 0.68 0.74 0.79 0.83
C_Test 11 15.22 15.57 15.59 15.63 15.57 15.39 15.45 15.4 15.34 15.29 15.34
M2Ux 1176 0 1 10 50 100 150 200 250 270 282.84 295.13
M2Uy 0 400 400 399.87 396.86 387.3 370.81 346.41 312.25 295.13 282.84 270
ø3Pn provided/10 48.069 76.42 79.69 79.76 79.84 79.26 77.97 78.14 77.77 77.38 77.04 77.38
area b1,1 0.60 b2,1 0.60 b3,1 0.60 b4,1 0.60 80 21562320.xls
column c1→ 8.2 c2→ 12.0 column c3→ 15.8 c4→ 19.1
75
row r1 ↑ 21.2 r1 ↑ 22.0 row r1 ↑ 21.2 r1 ↑ 19.1
70
b1,2 0.60 b2,2 0.00 Composite b3,2 0.00 b4,2 0.60 65
c1→ 4.9 c2→ 12.000 c3→ 12.000 c4→ 21.239
60
r2 ↑ 19.07 r2 ↑ 20.48 r2 ↑ 3.52 r2 ↑ 15.83
55
b1,3 0.60 b2,3 0.00 b3,3 0.00 b4,3 0.60 50
c1→ 2.8 c2→ 10.6 c3→ 20.48 c4→ 22.0 45
r3 ↑ 15.8 r3 ↑ 5.1 r3 ↑ 12.00 r3 ↑ 12.0 40
35
b1,4 0.60 b2,4 0.00 b3,4 0.00 b4,4 0.60
c1→ 2.0 c2→ 3.52 c3→ 6.000 c4→ 21.239 30
r4 ↑ 12.0 r4 ↑ 12.0 r4 ↑ 0.00 r4 ↑ 8.173 25
20
b1,5 0.60 b2,5 0.00 b3,5 0.00 b4,5 0.60
15
c1→ 2.8 c2→ 12.0 c3→ 12.00 c4→ 19.1
0 0.25 0.5 0.75 1 1.25 1.5 1.75
r5 ↑ 8.2 r5 ↑ 17.6 r5 ↑ 3.52 r5 ↑ 4.9
C_Test ø3Pn
b1,6 0.60 b2,6 0.60 b3,6 0.60 b4,6 0.60 provided/1
col c1→ 4.9 c2→ 8.2 column 3→ 12.0 c4→ 15.8 0
row r6 ↑ 4.9 r6 ↑ 2.8 row r6 ↑ 2.0 r6 ↑ 2.8
Figure 45-23 Curves for M2Ux and M2Uy.
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
Colum Colum Colum Colum Colum Colum Colum Colum Colum Colum Colum Colum Colum Colum Colum Colum Colum Colum
nD nE nF nG nH nI nJ nK nL nM nN nO nP nQ nR nS nT nU
ø3Pn provided/10
24 x 24 COLUMN WITH 8 - #8's C_TEST ADJUSTED FOR ø3Pn provided = PU required = 900 k ult
C_Test 11.000 aaa 14.786 14.58 14.85 15.94 17.1 18.01 18.62 18.9 18.91 18.91 18.62
M2Ux 1176.000 0.00 1 10 50 100 150 200 270 282.84 295.13 346.41
M2Uy 0.00 400 400 399.87 396.86 387.3 370.81 346.41 295.13 282.84 270 200
MU provided 1202 464.80 481.63 480.41 475.04 467.93 459.94 450.7 437.21 435.32 437.2 450.7
β*100 1.57 0.0000 0.25 2.5 12.53 25.27 38.44 52.36 74.1 78.54 82.98 104.72
logic 2 4 4 4 4 4 4 4 3 3 3 2
300
200
100
0
14.500 15.000 15.500 16.000 16.500 17.000 17.500 18.000 18.500 19.000
375
350
325
300
275
250
225
200
175
150
125
100
75
50
25
0
4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5
450
21.57
400 200
346.41
350 110.36
300
414.81
250 45.1
52.36
200
150
100
50
0
18.5 18.75 19 19.25 19.5 19.75 20 20.25 20.5 20.75 21 21.25 21.5 21.75 22 22.25 22.5
Row 1294 Row 1295 Row 1296 Row 1297 Row 1298 Row 1299
Figure 45-29 The rotation of β through 1/4 π radians (90º) to check M2Ux, M2Uy, and Mu provided.
24" square column with 16 - #7's in a rectangular configuration. Combined M2ux and M2uy. Pu = 200 k-ult, Mu = Mu provided
β degrees 90.000 aaa 0 0.14 0.29 1.43 7.18 14.48 22.02 30 38.68 45 51.32
C_Test 11 18.56 18.87 18.89 19.08 19.91 20.68 21.22 21.52 21.61 21.5 21.61
M2Ux 1176 0 1 2 10 50 100 150 200 250 282.84 312.25
M2Uy 0 400 400 399.99 399.87 396.86 387.3 370.81 346.41 312.25 282.84 250
ø3Pn provided/10 48.069 112.85 115.66 115.62 115.32 113.85 111.99 110.52 109.62 108.48 107.4 108.48
10 en 299.95 42.53 41.51 41.52 41.63 42.16 42.87 43.43 43.79 44.25 44.69 44.25
MU provided 1201.51 400.02 400.05 400.05 400.05 400.03 400.04 400.02 400.03 400.01 400.02 400.01
600
500
400
Row 1325
300
Row 1327
200 Row 1328
Row 1329
100 Row 1330
0
Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co Co
lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu lu
mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn mn
350
300
250
200
150
100
50
0
18.5 18.75 19 19.25 19.5 19.75 20 20.25 20.5 20.75 21 21.25 21.5 21.75
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
700
650
600
550
500
450
MC required
400
k LUx /rx *10
350 ø3Pn provided
300
250
200
150
100
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1400
1200
1000
800
600
400
200
0
2 4 6 8 10 12 14 16 18 20 22 24
1500
21562320.xls
1400
1300
1200
1100
1000
900 #REF!
800
700
600
500
400
300
200
100
0
0 2 4 6 8 10 12 14 16 18 20 22 24
ø3Pn provided en
21562320.xls
COLUMN LOADING AND SLENDERNESS GRAPHING XX Column Outline ========= ========= =======> =========
X-Axis 0 6.3 1 1 1.2 1.2 1
E outline 0 28.51 3 21.93 21.93 3 3
E data
D reinforcing
D labels
A text
A data
B lines
B data
Page 45 - 28
21562320.xls
Graph
Moment u 0 1201.5 1201.5 1201.5 0 0 1201.5
P ultimate 3402 480.7 480.7 0 -2859.8 480.7 480.7
24
21562320.xls
Page 45 - 30
21562320.xls
Page 45 - 31
21562320.xls
Page 45 - 32
21562320.xls
Page 45 - 33
21562320.xls
Page 45 - 34
21562320.xls
Page 45 - 35
21562320.xls
Page 45 - 36
21562320.xls
Page 45 - 37
21562320.xls
Page 45 - 38
21562320.xls
Page 45 - 39
21562320.xls
Page 45 - 40
21562320.xls
Page 45 - 41
21562320.xls
Page 45 - 42
21562320.xls
Page 45 - 43
21562320.xls
Page 45 - 44
21562320.xls
25 1.5 1.75
/1
Page 45 - 45
11.44 11.11 10.08 8.92 7.42 6.14 5.34 5.17 5.15 0 17.18 17.66
295.13 312.25 346.41 370.81 387.3 396.86 399.87 400 400 0 1
270 250 200 150 100 50 10 1 0 400 400
82.98 89.57 104.72 118.64 131.81 144.55 154.58 156.83 157.08 0 0.25
1 1 1 1 2 2 2 2 2 4 4
21562320.xls
Page 45 - 47
21562320.xls
Page 45 - 48
22.26 22.01 22.26 22.01 21.57 21.02 20.15 19.25 19.02 18.99
312.25 346.41 312.25 346.41 370.81 387.3 396.86 399.87 400 400
250 200 250 200 150 100 50 10 1 0
112.96 113.2 112.96 113.2 113.28 114.52 115.73 116.71 116.94 116.97
400.01 400.03 400.01 400.03 400.04 400.04 400.06 400.05 400.06 400.06
42.49 42.4 42.49 42.4 42.38 41.92 41.48 41.13 41.05 41.04
89.57 104.72 89.57 104.72 118.64 131.81 144.55 154.58 156.83 157.08 21562320.xls
60 67.98 75.52 82.82 88.57 89.71 89.86 90.00 0 14.48 22.02 38.68
21.52 21.22 20.68 19.91 19.08 18.89 18.87 18.84 4.24 5.21 8.54
346.41 370.81 387.3 396.86 399.87 399.99 400 400.00 100.00 150.00 250
200 150 100 50 10 2 1 0.00 387.30 370.81 312.25
109.62 110.52 111.95 113.85 115.32 115.62 115.66 115.70 8.03 8.93 18.56
43.79 43.43 42.91 42.16 41.63 41.52 41.51 41.49 597.51 537.82 258.58
400.03 400.02 400.26 400.03 400.05 400.05 400.05 400.01 400.03 400.02 400.01
Page 45 - 49
21.56 21.61 21.52 21.22 20.68 19.91 19.08 18.89 18.87 18.84 4.24
47.55 51.32 60 67.98 75.52 82.82 88.57 89.71 89.86 90.00 14.48
295.13 312.25 346.41 370.81 387.3 396.86 399.87 399.99 400 400.00 100.00
270 250 200 150 100 50 10 2 1 0.00 387.30
107.86 108.48 109.62 110.52 111.95 113.85 115.32 115.62 115.66 115.70 8.03
44.51 44.25 43.79 43.43 42.91 42.16 41.63 41.52 41.51 41.49 597.51
400.04 400.01 400.03 400.02 400.26 400.03 400.05 400.05 400.05 400.01 400.03
21562320.xls
Page 45 - 50
21562320.xls
Page 45 - 51
21 22 23 24 25 26 27 28 29 30
172.25 185.3 201.27 221.17 246.58 280.09 326.13 393.22 499.76 694.54
420 440 460 480 500 520 540 560 580 600
575.05 575.05 575.05 575 575.05 575.05 575.05 575.05 575.05 575.05
551.53 551.53 551.53 552 551.53 551.53 551.53 551.53 551.53 551.53
1150.93 1150.93 1150.93 1150.93 1150.93 1150.93 1150.93 1150.93 1150.93 1150.93
12 12 12 12 12 12 12 12 12 12 21562320.xls
MC required
k LUx /rx *10
ø3Pn provided
9.32 10.09 10.85 11.62 12.39 13.16 13.96 15.6 16.45 17.33 18.25 19.22
400 450 500 550 600 650 700 800 850 900 950 1000
565.97 565.71 563.92 557.9 544.51 526.36 506 458.34 430.94 400.82 367.57 330.94
16.98 15.08 13.53 12.17 10.89 9.72 8.67 6.87 6.08 5.34 4.64 3.97
Page 45 - 52
6.75 7.53 8.33 9.14 9.96 10.78 11.57 12.35 13.14 13.93 14.72 15.51
400.08 450.09 500.01 550.01 600.01 650.07 700.07 750.09 800.04 850.02 900.02 950.05
638.76 651.37 662.07 669.55 674.68 677.23 667.75 651.23 633.55 614.31 593.26 570.13
19.16 17.37 15.89 14.61 13.49 12.5 11.45 10.42 9.5 8.67 7.91 7.2
21562320.xls
22 24
Page 45 - 53
21562320.xls
========= ========= ========= ========= ========= ========= ========= ========= ========= ========= =========
1.2 0.5 1.2 1.2 0.5 0.5
12.46
kLx/rx = 18.9
eY → 30.0 in =SIN(b ) * e
Page 45 - 54
21562320.xls
0 1176.0 0 1176.0
640.9 465
0 465
Page 45 - 55
21562320.xls
Page 45 - 56
21562320.xls
Page 45 - 57
21562320.xls
Page 45 - 58
21562320.xls
Page 45 - 59
21562320.xls
Page 45 - 60
21562320.xls
Page 45 - 61
21562320.xls
Page 45 - 62
21562320.xls
Page 45 - 63
21562320.xls
Page 45 - 64
21562320.xls
Page 45 - 65
21562320.xls
Page 45 - 66
21562320.xls
Page 45 - 67
21562320.xls
Page 45 - 68
21562320.xls
Page 45 - 69
21562320.xls
Page 45 - 70
21562320.xls
Page 45 - 71
21562320.xls
Page 45 - 72
17.9 18.87 19.82 20.46 20.75 20.77 20.72 20.66 20.72 20.77 20.75 20.46
10 50 100 150 200 250 270 282.84 295.13 312.25 346.41 370.81
399.87 396.86 387.3 370.81 346.41 312.25 295.13 282.84 270 250 200 150
2.5 12.53 25.27 38.44 52.36 67.51 74.1 78.54 82.98 89.57 104.72 118.64
4 4 4 4 4 3 3 3 3 3 2 2
21562320.xls
Page 45 - 73
21562320.xls
Page 45 - 74
21562320.xls
21562320.xls
Page 45 - 77
21562320.xls
16.31 17.11 17.91 18.71 19.51 20.32 21.12 21.93 22.73 23.54 24
1000 1050.03 1100.02 1150.05 1200.06 1250.06 1300 1350.02 1400.05 1450.03 1478.38
544.81 517.05 486.79 453.87 418.24 379.81 338.56 294.33 247.11 196.91 167.08
6.54 5.91 5.31 4.74 4.18 3.65 3.13 2.62 2.12 1.63 1.36
21562320.xls
Page 45 - 79
21562320.xls
Reinforcing
0 0 0 24 8.125 12.000 15.875 19.158 4.842
0 0 0
24.61 14.96
eX ↑ 0.0
Page 45 - 80
21562320.xls
Page 45 - 81
21562320.xls
Page 45 - 82
21562320.xls
Page 45 - 83
21562320.xls
Page 45 - 84
21562320.xls
Page 45 - 85
21562320.xls
Page 45 - 86
21562320.xls
Page 45 - 87
21562320.xls
Page 45 - 88
21562320.xls
Page 45 - 89
21562320.xls
Page 45 - 90
21562320.xls
Page 45 - 91
21562320.xls
Page 45 - 92
21562320.xls
Page 45 - 93
21562320.xls
Page 45 - 94
21562320.xls
Page 45 - 95
21562320.xls
Page 45 - 96
21562320.xls
Page 45 - 97
21562320.xls
Page 45 - 98
21562320.xls
Page 45 - 100
21562320.xls
Page 45 - 101
21562320.xls
Page 45 - 102
21562320.xls
Page 45 - 103
21562320.xls
Page 45 - 104
21562320.xls
Page 45 - 105
21562320.xls
12.000 0.000 21.354 2.646 0.000 20.480 22.125 1.875 3.520 0.000 21.354 2.646
20.48 0.00 15.87 15.87 0.00 12.00 12.00 12.00 12.00 0.00 8.13 8.13
9.24 0 1 1 0 9.24 1 1 9.24 0 1 1
in
Page 45 - 106
21562320.xls
Page 45 - 107
21562320.xls
Page 45 - 108
21562320.xls
Page 45 - 109
21562320.xls
Page 45 - 110
21562320.xls
Page 45 - 111
21562320.xls
Page 45 - 112
21562320.xls
Page 45 - 113
21562320.xls
Page 45 - 114
21562320.xls
Page 45 - 115
21562320.xls
Page 45 - 116
21562320.xls
Page 45 - 117
21562320.xls
Page 45 - 118
21562320.xls
Page 45 - 119
21562320.xls
Page 45 - 120
21562320.xls
Page 45 - 121
21562320.xls
Page 45 - 122
21562320.xls
Page 45 - 123
21562320.xls
Page 45 - 124
21562320.xls
Page 45 - 125
21562320.xls
Page 45 - 126
21562320.xls
Page 45 - 127
21562320.xls
Page 45 - 128
21562320.xls
Page 45 - 129
21562320.xls
Page 45 - 130
21562320.xls
Page 45 - 131
21562320.xls
w 24 in width in Y direction
L 24 in length in X direction
45.00 aspect 1
Beta 1.57 comp block 9.35 PC x & y
β1*C 9.35 in β1 reduction factor *C_test
21562320.xls
Page 45 - 133
21562320.xls
Page 45 - 134
21562320.xls
Page 45 - 135
21562320.xls
Page 45 - 136
21562320.xls
Page 45 - 137
21562320.xls
Page 45 - 138
21562320.xls
Page 45 - 139
21562320.xls
25.000
22.500
20.000
17.500
15.000
12.500
10.000
7.500
5.000
2.500
0.000
0.000 2.500 5.000 7.500 10.00 12.50 15.00 17.50 20.00 22.50 25.00
0 0 0 0 0 0 0
Page 45 - 140
21562320.xls
Page 45 - 141
21562320.xls
Page 45 - 142
21562320.xls
Page 45 - 143
21562320.xls
Page 45 - 144
21562320.xls
Page 45 - 145
21562320.xls
Page 45 - 146
21562320.xls
Page 45 - 147
21562320.xls
Page 45 - 148
21562320.xls
Page 45 - 149
21562320.xls
Page 45 - 150
21562320.xls
Page 45 - 151
21562320.xls
Page 45 - 152
21562320.xls
Page 45 - 153
21562320.xls
Page 45 - 154
21562320.xls
Page 45 - 155
21562320.xls
Page 45 - 156
21562320.xls
Page 45 - 157
21562320.xls
β inp 1.5708 rad FALSE logic Circular
90.0 deg
[tan β ] ### Err:502
[sin β ] 1.0000
β1 reduction factor *C_test [cos β ] 0.0000
X-Sect Whitney's Stress Block diagonal
mid-diag end lt side rt side cross - hairs
24 0.0 24.0000 12.000
19.2
4.84"
13.000 13.0 12.000
B = 90.0000 degrees a block = 9.3"
Page 45 - 158
21562320.xls
Page 45 - 159
21562320.xls
Page 45 - 160
21562320.xls
Page 45 - 161
21562320.xls
Page 45 - 162
21562320.xls
Page 45 - 163
21562320.xls
Page 45 - 164
21562320.xls
Page 45 - 165
21562320.xls
Page 45 - 166
21562320.xls
Page 45 - 167
21562320.xls
Page 45 - 168
21562320.xls
Page 45 - 169
21562320.xls
Page 45 - 170
21562320.xls
Page 45 - 171
21562320.xls
Page 45 - 172
21562320.xls
Page 45 - 173
21562320.xls
Page 45 - 174
21562320.xls
Page 45 - 175
21562320.xls
Page 45 - 176
21562320.xls
Page 45 - 177
21562320.xls
Page 45 - 178
21562320.xls
Page 45 - 179
21562320.xls
Page 45 - 180
21562320.xls
Page 45 - 181
21562320.xls
Page 45 - 182
21562320.xls
Page 45 - 183
21562320.xls
21562320.xls
Page 45 - 185
21562320.xls
Page 45 - 186
21562320.xls
Page 45 - 187
21562320.xls
Page 45 - 188
21562320.xls
Page 45 - 189
21562320.xls
Page 45 - 190
21562320.xls
Page 45 - 191
21562320.xls
Page 45 - 192
21562320.xls
Page 45 - 193
21562320.xls
Page 45 - 194
21562320.xls
Page 45 - 195
21562320.xls
Page 45 - 196
21562320.xls
Page 45 - 197
21562320.xls
Page 45 - 198
21562320.xls
Page 45 - 199
21562320.xls
Page 45 - 200
21562320.xls
Page 45 - 201
21562320.xls
Page 45 - 202
21562320.xls
Page 45 - 203
21562320.xls
Page 45 - 204
21562320.xls
Page 45 - 205
21562320.xls
Page 45 - 206
21562320.xls
Page 45 - 207
21562320.xls
Page 45 - 208
21562320.xls
Page 45 - 209
21562320.xls
16.971 1.2
12.000 12.575 11.425 12.000
21562320.xls
Page 45 - 211
21562320.xls
Page 45 - 212
21562320.xls
Page 45 - 213
21562320.xls
Page 45 - 214
21562320.xls
Page 45 - 215
21562320.xls
Page 45 - 216
21562320.xls
Page 45 - 217
21562320.xls
Page 45 - 218
21562320.xls
Page 45 - 219
21562320.xls
Page 45 - 220
21562320.xls
Page 45 - 221
21562320.xls
Page 45 - 222
21562320.xls
Page 45 - 223
21562320.xls
Page 45 - 224
21562320.xls
Page 45 - 225
21562320.xls
Page 45 - 226
21562320.xls
Page 45 - 227
21562320.xls
Page 45 - 228
21562320.xls
Page 45 - 229
21562320.xls
Page 45 - 230
21562320.xls
Page 45 - 231
21562320.xls
Page 45 - 232
21562320.xls
Page 45 - 233
21562320.xls
Page 45 - 234
21562320.xls