Strength Interaction Diagram by Spreadsheet
CMU Masonry Shear Wall - Example Problem 20.4
f'm=1500 psi, 24.67 ft long, 7.625 in. thick,#5 bars @ 4' spacing
5000
4000
fPn, kips
3000
2000
1000
0
0
2000
4000
6000
-1000
fMn, ft-kips
8000
10000
12000
Spreadsheet for calculating strength moment-axial force interaction diagram for concrete masonry shear wall
depth, d v
e mu
216 in.
h=
180 in.
height
0.0025
f' m
2.5 ksi
s=
34.67 in.
bar spacing
fy
60 ksi
h/r =
53.64
slenderness ratio
Es
d1
29000 ksi
(c/d) balanced
width (wall thickness) t sp
212 in.
0.5472
Input axial load and mo
11.625 in.
Pu =
Mu =
0.9
m =
1.5
cmax/d = 0.4462
c max =
94.58461538 in.
steel layers are counted from the extreme compression fiber to the extreme tension fiber
distances are measured from the extreme compression fiber
reinforcement is assumed to be placed at 4-ft intervals
compression in masonry and reinforcement is taken as positive
stress in compressive reinforcement is set to zero, because the reinforcement is not laterally supported (except in determining
Row of Reinforcement
7
6
5
4
3
2
1
pure axial load
Points controlled by masonry
Points controlled by masonry
Points controlled by steel
distance from
extreme
compression
fiber, di
4.00
38.67
73.33
108.00
142.67
177.33
212.00
Area
1.00
1.00
1.00
1.00
1.00
1.00
1.00
c/d 1
1.0137
0.9
0.8
0.7
0.6
0.5472
0.5472
0.5
0.4
0.3
0.2
0.1
0.01
214.90
190.80
169.60
148.40
127.20
116.00
116.00
106.00
84.80
63.60
42.40
21.20
2.12
Slenderness factor
R=
0.8532
area
s, in.
As/cell, in2
Cmasonry
f s7
f s6
f s5
3997.22
0.00
0.00
0.00
3548.88
0.00
0.00
0.00
3154.56
0.00
0.00
0.00
2760.24
0.00
0.00
0.00
2365.92
0.00
0.00
0.00
2157.60
0.00
0.00
0.00
2157.60
0.00
0.00
0.00
1971.60
0.00
0.00
0.00
1577.28
0.00
0.00
0.00
1182.96
0.00
0.00 -11.10
788.64
0.00
0.00 -52.89
394.32
0.00 -59.73 -60.00
39.43 -60.00 -60.00 -60.00
f s4
0.00
0.00
0.00
0.00
0.00
0.00
0.00
-1.37
-19.83
-50.61
-60.00
-60.00
-60.00
f s3
0.00
0.00
0.00
0.00
-8.82
-16.67
-16.67
-25.08
-49.47
-60.00
-60.00
-60.00
-60.00
f * Pure tension = - sum (Asify)
Pure tension = - sum (Asify)
f Pn,max
Code Eqn. 3-18 or 3-19
D + 0.75L + 0.525QE
rt =
c = cmax
94.58
276 kips
0.002787734
1759.27 60.00
42.86 16.29 -10.28
f * Code Eqn. 3-18 or 3-19
-36.86
Input axial load and moment for up to 5 load combinations
800
kips
8000
kip-ft
ted (except in determining P max)
8.00
0.23
area of steel in each reinforced cell
40
48
16.00 24
32.00
0.46 0.69
0.92
1.15
1.38
56
1.62
64
1.85
f M n , k-ft
f P n , kips
f s2
0.00
0.00
-3.31
-14.14
-28.57
-38.33
-38.33
-48.79
-60.00
-60.00
-60.00
-60.00
-60.00
f s1 Moment
Axial Force
0 4507
0.00 6607 3597
-8.06 8495 3187
-18.13 9660 2820
-31.07 10385 2444
-48.33 10684 2052
-60.00 10679 1838
-60.00 10679 1838
-60.00 10487 1653
-60.00 9672 1249
-60.00 8232
847
-60.00 6183
446
-60.00 3413
31
-60.00 317
-343
f M n /f' m tfspPdnv/f'2 m t sp d v
0
0.0049
0.0063
0.0071
0.0077
0.0079
0.0079
0.0079
0.0077
0.0071
0.0061
0.0046
0.0025
0.0002
0.718
0.573
0.508
0.449
0.389
0.327
0.293
0.293
0.263
0.199
0.135
0.071
0.005
-0.05
Asify)
-19
-378
=540.2
-60.00 -60.00 f Pn,max1
0 2769
10684 2769
-0.06
0.8
0.7
0.6
0.5
0.4
0.3
Series1
0.2
0.1
0
-0.005
-0.1
-0.2
0.005
0.01
Shear design for shear walls
M u
Vnm 4.0 1.75
An
V
d
u v
f'm =
Mu =
f m ' 0.25 Pu
2500 psi
120000 k-in
Pu =
50 k
Vu =
l=
dv =
t=
An =
260
248
248
7.625
1891
Mu/Vudv =
1.861
Mu/Vudv =
k
in (wall length)
in (same as wall length)
in, actual, not nominal, wall thickness
in2
Vnm =
shear coef =
=
Vn,max =
225.24 k
1.70388751
4
378.2 Vu
phi shear =
Vns =
99.7625
fy =
60000
Av/s =
0.013408938
< Vn,max - OK
0.8
Provisions for Special Shearwalls
Mn =
140000 k-in - nominal moment capacity (from Shearwall Calculations Worksheet)
1.25Mn =
Vu =
Mu, top =
175000 nominal capacity
379.17 kips, scaled up
88800 k-in
Mu/Vudv =
1.861
Mu/Vudv =
Mtop =
Vnm =
height, H =
129500 k-in - scaled up
225.24 k
120 in
fVn = (1.25Mn Mtop)/h1
=
=
Vns =
Av/s =
scale factor =
379.17
379.17 Exceeds V n,max, increase masonry area or f'm
153.9
0.020689404
1.458333333
0
175000
This Worksheet is for strength design of masonry walls for combined out of plane moment and axial load, i
Enter the values in the yellow cells. The software iterates the deflections through 12 cycles. If the design un
After calculating the addional moment due to P - D, the spreadsheet calculates the required steel area.
The required steel area (Cell M36) should be < the assumed steel area (Cell H16). If not, repeat the design
Other code checks are also made
This includes updates for inclusion of axial load stress added to f r to calculate Mcr.
It also uses the new equation for Icr (3-31 and 3-32)
nominal wall thk, in
ksi
Steel area in each reinforced cell, in2
t=
f'm =
8
2.5
8
2.5
8
2.5
8
2.5
As = 0.310000
0.31
0.31
0.31
fy =
ksi
60
60
60
60
bar spacing, in
s=
24
24
24
24
np = 0.043667
n=
12.89
As = 0.155000
k = 0.255066
Icr = 19.79227 not used
d=
3.8125
d=
3.8125 in.
modulus of rupture, fr =
153 psi, table 3.1.8.2.1
4
c = 0.524219 in. Icr = 23.95469 in , from ACI 530 Code Eqns. 3-31
Pu, lb/ft
h, ft.
Mu, in-lb/ft
P-D
765
765
765
765
765
24
24
24
24
24
29720.7 29881.06 29900.73 29903.14 29903.44
Mcr, in-lb/ft
18763.22 18763.22 18763.22 18763.22 18763.22 18763.22
Icr, in
23.95469 23.95469 23.95469 23.95469 23.95469 23.95469
Ig, in4
443.3223 443.3223 443.3223 443.3223 443.3223 443.3223
Em, psi
2250000
du, in
dMu, in-lb/ft
1.70941 1.919037 1.944744 1.947897 1.948283 1.948331
Ase=(Asfy + Pn)/fy =
a = (Asfy + Pn)/(.8f'mb) =
Ase=Mu/ffy(d-a/2) =
As = Ase - Pu/fy =
Iterative method to
solve for required
steel area
765
24
28413
a=
Ase =
As =
cmax =
As-max =
0.05f'mAn =
Pmax =
2250000
2250000
2250000
2250000
2250000
29720.7 29881.06 29900.73 29903.14 29903.44 29903.47
2
0.169 in
Mn = Asefy (d - a/2)=
0.423 in
2
0.154 in
2
0.141 in
Mu = fMn = 32.89552 k-in
0.384 0.382407
0.1530
0.1529
0.139
36.55057 k-in
0.3823 0.382294 0.382294 0.382294
0.1529
0.1529
0.1529
0.1529
0.139
0.139
0.139
0.139
0.139
1.701 in
2
0.532 in
this area exceeds the actual area usedOK
11.4375 kips
Code Section 3.3.5.3
23.358 21.02262 kips
Pmax = 41.90353 37.71318 kips
Code Section 3.3.3.5 (ductility requirement)
Code Eqns. 3-18 or 3-19 (Slenderness)
out of plane moment and axial load, including the P -D effect.
ns through 12 cycles. If the design unstable, the iterations will not converge.
alculates the required steel area.
a (Cell H16). If not, repeat the design with a larger assumed steel area (larger bar or smaller spacing).
alculate Mcr.
8
2.5
8
2.5
8
2.5
8
2.5
8
2.5
8
2.5
0.31
0.31
0.31
0.31
0.31
0.31
60
24
60
24
60
24
60
24
60
24
60
24
130.84
R=
0.286
in2/ft
in.
h/r =
in4, from ACI 530 Code Eqns. 3-31 and 3-32
765
24
29903.47
765
24
29903.48
765
765
765
765
24
24
24
24
29903.478 29903.48 29903.48 29903.48
18763.22
18763.22
18763.219 18763.22 18763.22 18763.22
23.95469
23.95469
23.954693 23.95469 23.95469 23.95469
443.3223
443.3223
443.32227 443.3223 443.3223 443.3223
2250000
2250000
1.948336
1.948337
1.9483372 1.948337 1.948337 1.948337
29903.48
29903.48
29903.478 29903.48 29903.48 29903.48 in-lb
2250000
2250000
2250000
2250000
design moment including the P - D effect (AC
moment capacity of the wall based on input steel size and spacing
0.382294
0.1529
0.382294
0.1529
0.139
0.139
(ductility requirement)
19 (Slenderness)
0.3822936 0.382294 0.382294 in
2
0.1529
0.1529
0.1529 in
2
0.139
0.139
0.139 in
this is less than the value of As used to calculate Icr, so
0.277502 area per grouted cell
ment including the P - D effect (ACI 530 Code eqn. 3-26)
lue of As used to calculate Icr, so OK