Mutual Fund Performance
Mutual Fund Performance
Abstract
This study empirically examines the performance of mutual funds for the period of
1961-2009. In some tests, data available only cover year 2001 to year 2009. Two databases
are harnessed in analyzing the performance of mutual funds: (1) CRSP survivorship-biasfree mutual fund database and (2) CRSP main database. This research employs three main
approaches: (1) regressions to examine the relationship between fund return and actual
12b1 fee, management fee, expense ratio, turnover ratio, and age; (2) Jensens (1968) alpha
and Carharts (1997) four-factor model; (3) Grinblatt and Titmans (1993) measure; and (4)
Daniel et al.s (1997) and Wermers (2000) characteristic selectivity, characteristic timing,
and average style measures. Results provide evidence that gross return is positively related
to expense ratio, age, 12b1 fee, and management fee and negatively related to turnover
ratio. This finding is at odds with the evidence provided by Wermers (2000). During the
period of analysis, there were more mutual fund managers with significantly negative riskadjusted performances than those with significantly positive performances. This implies
that the majority of mutual fund managers do not have special capabilities of beating the
markets. Findings also show that Grinblatt and Titmans measures are significant but
negative for growth and growth and income funds. This implies that fund managers do not
have a special capability of outperforming benchmarks. Most of characteristic selectivity,
characteristic timing, and average style measures are insignificant, except the average style
for small-cap funds. Overall, the test results are not in favor of the assessment of fund
managers ability.
Keywords: Mutual fund performance, Jensens alpha, Carharts four-factor model,
characteristic selectivity, characteristic timing, and average style measures.
JEL Classifications codes: G10, G11, G23
1. Introduction
This paper emphasizes the holdings of domestic equity funds. According to Investment Company Fact
Book (2009), U.S. had the largest mutual fund market (51%) in the world in 2008. Of these U.S.
mutual funds, domestic equity funds had a share of 30%.
81
This research is aimed at empirically testing the performance of mutual funds for the period of
1961-2009. In some tests, data available only cover year 2001 to year 2009. Two databases are
harnessed in analyzing the performance of mutual funds: (1) CRSP survivorship-bias-free mutual fund
database and (2) CRSP main database. This paper employs three main approaches: (1) regressions to
examine the relationship between fund return and actual 12b1 fee, management fee, expense ratio,
turnover ratio, and age; (2) Jensens (1968) alpha and Carharts (1997) four-factor model; (3) Grinblatt
and Titmans (1993) measure; and (4) Daniel et al.s (1997) and Wermers (2000) characteristic
selectivity, characteristic timing, and average style measures.
Results provide evidence that gross return is positively related to expense ratio, age, 12b1 fee,
and management fee and negatively related to turnover ratio. This finding is at odds with the evidence
provided by Wermers (2000). During the period of analysis, there were more mutual fund managers
with significantly negative risk-adjusted performances than those with significantly positive
performances. This implies that the majority of mutual fund managers do not have special capabilities
of beating the markets. Findings also show that Grinblatt and Titmans measures are significant but
82
negative for growth and growth and income funds. This implies that fund managers do not have a
special capability of outperforming benchmarks. Most of characteristic selectivity, characteristic
timing, and average style measures are insignificant, except the average style for small-cap funds.
Overall, the test results are not in favor of the assessment of fund managers ability.
The remainder of this paper is organized as follows. Section 2 presents literature review related
to mutual fund performance. Section 3 discusses research methods and results for model regressions.
Research methods and results for Jensens alpha and Carharts four-factor model are explained in
Section 4. Subsequently, Section 5 shows research methods and results for Grinblatt and Titmans
model and Daniel et al.s and Wermers measures. Eventually, Section 6 concludes.
2. Literature Review
A vast array of literature has tested and discussed mutual fund performance in various settings and
times. According to Jensen (1968), the concept of performance has at least two dimensions: (1) the
ability of the fund manager to increase returns through successful prediction of future prices and (2) the
ability of the fund manager to minimize the amount of insurable risk. Using 115 open-end mutual
funds for the period of 1955-1964, he finds that the fund managers, on average, were not able to
predict security prices well enough to outperform a buy-and-hold policy. Furthermore, they were also
not capable of performing significantly better than that expected from random chance.
Carhart (1997) used monthly data of diversified equity funds from January 1962 to December
1993, covering 1,892 diversified equity funds and 16,109 fund years. This research elaborates on shortterm persistence in equity mutual fund returns with common factors in stock returns and investment
costs. He provides evidence that buying last year's top-decile mutual funds and selling last year's
bottom-decile funds produces a return of eight percent annually. Of this spread, differences in the
market value and momentum of stocks held explain 4.6 percent, differences in transaction costs explain
1 percent, and differences in expense ratios explain 0.7 percent. Expense ratios, portfolio turnover, and
load fees are found to be negatively related to performance. This evidence suggests that: (1) investors
should avoid funds with persistently poor performance, (2) funds with high returns last year have
higher-than-average expected returns next year, but not in years afterwards, and (3) the investment
costs of expense ratios, transaction costs, and load fees have negative impacts on performance.
In another setting, Wermers (2000) merged CDA Investment Technologies database with CRSP
database to test mutual fund holdings and performance. He decomposed mutual fund returns and costs
into several components, finds that mutual funds, on average, hold stocks that outperform the market
index by 130 basis points annually, but their net returns underperform the market by 230 basis points.
Of this 2.3 percent difference in results, 0.7 percent is contributed by the underperformance of nonstock holdings and 1.6 percent is due to expenses and transaction costs. It is also found that highturnover funds, albeit with higher transactions costs, also hold stocks with significantly higher average
returns than do low-turnover funds.
Grinblatt and Titmans (1993) results seem to be more favorable towards the assessment of
fund managers abilities. Some fund managers are found to outperform benchmarks by two to three
percent. However, this study has caveats (Daniel et al. 1997) such as: (1) their benchmarks may not
account for anomalies such as size, book-to-market, and momentum factors; (2) the number of funds is
very limited. Hence, Daniel et al. (1997) and Wermers (2000) try to improve Grinblatt and Titmans
(1993) method by introducing a new approach to forming benchmarks by directly matching the
characteristics of the components stocks of a portfolio. They divide fund returns into: (1) characteristic
selectivity (CS); (2) characteristic timing (CT); and (3) average style (AS) measures. According to
Daniel et al. (1997), there are advantages of using mutual fund holdings to measure performance: (1)
using portfolio holdings of funds enable us to design benchmarks that capture investment styles, (2)
hypothetical returns generated from the portfolio holdings of funds exclude fees, expenses, and other
costs such that comparison with benchmarks will be more meaningful.
83
Return
NAV
TNA
12b1
Expense ratio
Mgt. Fee
Turnover ratio
Age (days)
Gross ret.
Table 2:
Year
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
Median
0.004379
10.72
45.8
0.0032
0.0115
0.0055
0.59
1826
0.014173
Std. Dev,
0.045094
9.720591
1208.832
0.003839
0.008713
0.005605
1.204755
2485.124
0.047792
Return
-0.012595959
0.017454577
0.012579436
0.019106995
-0.005474054
0.029962105
0.015869484
-0.01248898
-0.006839271
0.01689344
0.009487659
-0.023524986
-0.022981178
0.026034984
0.020526071
NAV
12.85633466
11.15968301
12.30781267
13.38487259
14.04026835
12.94349191
13.84970005
13.82770826
12.26479617
9.87998653
11.31931735
12.30177855
10.28123161
8.209967055
8.76072074
9.938497984
TNA
81.82820513
88.70152063
104.5857706
123.0129362
158.1424582
165.2850163
191.7977443
195.8834947
154.6156346
144.5066692
152.5976007
161.2416038
136.9122062
104.037302
119.4122724
132.1690772
Expense Ratio
0.007093782
0.007206394
0.008019644
0.008820498
0.007947025
0.008153761
0.008222259
0.008635842
0.009017173
0.010145718
0.011275596
0.012336146
0.011797435
0.011845228
0.01257515
0.012550773
Turnover Ratio
Age (Days)
0.585847328
0.589307644
0.588081944
0.640993299
0.742985956
0.762852865
0.773015106
0.653778465
0.56830702
0.485682973
0.515702337
197.0745856
537.3509128
862.5274356
1187.008255
1477.953052
1738.425797
1918.40085
1915.809116
1909.285192
2045.225671
2280.963056
2565.144198
2853.925506
3082.980268
3359.625636
84
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
0.00201885
0.008180679
0.017356378
0.01848757
0.002444237
0.019501118
0.012743166
0.003934447
0.016344248
0.010756268
0.004011916
0.008711684
0.011681388
0.00108345
0.014708567
0.005128693
0.009562671
-0.001768652
0.013578799
0.007842108
0.009522667
0.007509006
0.012651439
0.000793263
-0.003582828
-0.009226458
0.016718449
0.00760745
0.005212196
0.008904169
0.005143265
-0.027096427
0.020084465
9.922153101
10.28304022
10.55980373
11.10243067
10.74809552
9.717237082
11.26373836
9.617101275
10.56213122
11.67490929
11.36698039
10.36064326
10.6959519
9.933226737
10.27607981
10.10970921
10.60667457
10.25165003
10.70277232
11.62991706
12.48538557
12.81341887
13.57235258
14.56794246
12.1984621
10.79003929
11.21903326
12.96458505
14.09245526
15.24765733
16.27283147
13.3539259
11.27608795
121.7826777
122.5375358
153.1578482
183.8013942
223.0024979
247.5984135
273.3021533
275.4328286
312.2885067
387.3238946
386.8708381
329.4970201
337.7742752
351.303972
363.140937
385.1695988
381.0684238
332.7100837
289.9045054
330.0496713
353.0970298
366.6398236
408.7402246
372.2626475
333.7266374
313.0167648
314.3717069
339.1611071
361.2789729
397.1222802
437.2329267
394.8157325
358.649392
0.011688126
0.011625177
0.011780509
0.01110206
0.010442698
0.010460021
0.010790139
0.00958346
0.009659913
0.009879217
0.010100736
0.010574835
0.011455109
0.011391303
0.011403683
0.011499136
0.010892936
0.01118969
0.011967993
0.012278511
0.012549166
0.012659983
0.01278583
0.013312704
0.013461089
0.013654937
0.013808396
0.013650441
0.013163512
0.012922019
0.012538943
0.012034894
0.011882862
0.52603031
0.458715854
0.558293248
0.627696262
0.740928008
0.72396373
0.82582443
0.846945869
0.792867324
0.905205047
0.925289044
1.007217453
0.884043665
0.869118179
0.898090006
0.627577971
0.630069823
0.693007392
0.770701921
0.766218399
0.772786323
0.823213972
0.909227136
0.956428363
1.064722743
1.107447513
1.039692266
1.017006748
0.939642445
0.888774963
0.883338774
0.902762723
0.988745232
3465.86839
3541.686006
3654.525461
3763.154118
3796.295668
3690.855386
3413.801589
3185.686944
2942.408883
2672.562194
2416.052005
2263.494503
2296.134649
2447.133271
2477.609095
2464.485308
2244.038642
1966.335678
1783.177451
1985.048198
2075.674735
2077.28856
2397.619434
2186.289798
2263.250434
2272.994626
2409.379065
2576.317835
2729.074585
2832.02218
2845.925467
2764.423787
2877.536516
Figure 3 exhibits that while return is fluctuating, expense ratio is relatively stable over time.
85
Afterwards, I conduct two regressions using this data set. The first regression uses net return
while the second employs gross return. The regression formulae are shown below, respectively.
(1)
(2)
where i = fund i and t = month t.
Table 3:
Dependent Var.
Net ret.
Gross ret.
Parameters
Parameters
Intercept
0.001944
0.002150
exp_ratio
0.06335495
0.20281648
turn_ratio
-0.00004323
-0.00012853
age
0.0000001
0.0000001
actual_12b1
man_fee
0.64305429
0.97311
Regression results indicate that gross return is positively related to expense ratio, age, 12b1 fee,
and management fee and negatively related to turnover ratio. This finding is at odds with the evidence
provided by Wermers (2000).
Subsequently, I delete non-equity mutual funds and also non-U.S. funds. Therefore, in this
subsection of analysis, I only examine U.S. equity funds. This yields 18,401 funds and 1,109,349 fundobservations.
Table 4:
Return
NAV
TNA
12b1
Expense ratio
Mgt. Fee
Turnover ratio
Age
Gross ret.
Median
0.007672
13.1
33
0.005
0.0134
0.0067
0.64
1645
0.018734
Std. Dev,
0.058761
11.13576
1147.482
0.003551
0.010911
0.006433
1.211241
2553.961
0.058181
Compared to the total funds data set, U.S. equity funds data set has a slightly lower mean
return, higher NAV, higher 12b1 fee, higher expense ratio, higher management fee, higher turnover
ratio, and lower age.
Table 5:
Year
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
No. of Fund
418
5152
6030
6972
7444
7674
8014
9208
10554
14896
16080
Ret.
0.084795
0.000701
-0.0073
-0.01971
0.024306
0.010094
0.006143
0.010606
0.005079
-0.03474
0.022877
NAV
20.80246
20.70079
15.60967
13.10229
13.59138
16.28326
17.79293
18.90742
19.67157
15.52127
12.6244
TNA
438.852
447.087
337.5072
269.7246
257.2878
301.4715
327.4008
350.8277
369.7504
296.2441
251.5638
12b1 Fee
0.006137
0.006226
0.006353
0.006395
0.006409
0.006347
0.006239
0.006148
0.006024
0.005835
0.005679
Expense Rat.
0.014944338
0.015025029
0.015156384
0.015549739
0.015859609
0.015706949
0.015008482
0.014406646
0.013653261
0.012778138
0.012494223
Mgt. Fee
0.005751
0.005922
0.005872
0.005599
0.005626
0.006032
0.006189
0.005769
0.005205
0.004696
0.004389
Turnover Rat.
0.947800877
0.981596055
1.121721707
1.126588344
1.015880092
0.960178466
0.941580978
0.867202308
0.851301228
0.854639334
0.944964923
Age (Days)
1900.513
1998.271
1970.869
1976.958
2114.757
2290.811
2423.438
2490.364
2485.266
2414.018
2543.626
86
I then redo regressions (1) and (2) for the U.S. equity funds data set, and the results are as
follows.
Table 6:
Dependent Var.
Net ret.
Gross ret.
Parameters
Parameters
intercept
0.000410
0.0005234
exp_ratio
0.0886434
0.184064
turn_ratio
-0.000358
-0.000441
age
0.0000002
0.0000001
actual_12b1
man_fee
0.764833933
0.972652771
Again, this study finds that gross return is significantly and positively related to expense ratio,
age, 12b1 fee, and management fee. Meanwhile, turnover ratio negatively affects the gross return.
These findings are similar to those for total funds data set.
Year
2003
2004
2005
2006
2007
2008
2009
Descriptive Statistics of U.S. Equity Fund Portfolios Data Set Year by Year
Portfolio
1,239
2,444
2,456
2,703
3,019
4,751
5,160
Ret
0.0275
0.0100
0.0062
0.0105
0.0053
-0.0352
0.0218
NAV
15.8555
17.1983
18.8519
20.0170
21.0952
17.0853
13.9845
TNA
459.154
513.502
566.506
610.853
642.164
517.131
409.437
12b1
Fee
0.00384
0.00392
0.00393
0.00392
0.00394
0.00391
0.00387
Expens
e Rat.
0.0141
0.0139
0.0131
0.0127
0.0121
0.0114
0.0111
Mgt.
Fee
0.0058
0.0062
0.0065
0.0059
0.0054
0.0051
0.0047
Turnover
Rat.
1.0121
0.9777
0.9517
0.8744
0.8758
0.867
0.9656
Age
(Days)
3039.9
3197.6
3297.
3337.9
3246.8
3085.6
3055.3
Gross
Ret.
0.0364
0.0197
0.0164
0.0204
0.0149
-0.0253
0.0298
87
I delete regressions with observations fewer than 30. Results show that most fund portfolios
have insignificant Jensens alphas. 440 fund portfolios experience negative and significant Jensens
alphas whereas only 138 fund portfolios earn positive and significant Jensens alphas.
Table 8:
Jensens Alpha
Mean Alpha
-0.000147009
-0.004921943
0.005653849
Not significant
Negative and significant
Positive and significant
Freq.
2512
440
138
Mean Alpha
-0.00008.724
-0.00417607
0.004897149
Market Beta
0.936252599
0.947584238
0.911491006
SMB Beta
0.171640932
0.164037567
0.075210578
HML Beta
-0.086797563
0.059233587
-0.129955285
Momentum Beta
0.018179953
0.00183735
0.066952895
Freq.
4226
1173
151
Results in Table 9 imply that 1,173 fund portfolios have negative and significant alphas while
151 fund portfolios enjoy positive and significant alphas, whereas the other fund portfolios are not
significant. Accordingly, during the period of analysis, there were more mutual fund managers with
significantly negative risk-adjusted performances than those with significantly positive performances.
This implies that the majority of mutual fund managers do not have special capabilities of beating the
markets.
5. Research Methods: Grinblatt and Titmans Model and Daniel et al.s and
Wermers Measures
I collect monthly data on permno, stock price, capitalization, return, and exchange code from CRSP
main database from 2003 to 2009. Firstly, I use only stocks traded on the NYSE to create size ranks
based on capitalization. This ranking process is conducted every year from July to June the next year,
similar to Fama and French (1993). Next, the quintile ranks formulated using NYSE stocks are then
applied to all stocks in my CRSP data set. Of each size rank each year, I then create quintile ranks
88
based on prior year return (return in month t-13). Accordingly, I now have 25 stock portfolios based on
size and prior-year-return ranks.
From the CRSP Mutual Fund database, I get portno, report date, security rank, effective date,
percentage of a security held relative to total net assets (percent_tna), number of security shares held in
the portfolio (nbr_shares), market value of each security held, and CRSP company key from holdings
file. I define January, February, March as quarter 1; April, May, June as quarter 2; and July, August,
September as quarter 3; and October, November, December as quarter 4. I use report date instead of
effective date. If a portno reported twice in an assigned quarter, then I use the latest report month. For
instance, if a portno A provided reports in February and March 2003, and both months are included
into quarter 1, then I use the report in March. This holdings file is then merged with holdings_co_info
file to get additional variables such as security name, cusip number, permno, and ticker symbol. Since I
use monthly data, I assume that the stock holdings hold for the whole next quarter until a new report is
submitted. For instance, the stock holdings in March 2004 held until a new report appeared in June
2004.
I also make use of monthly_return file to get each funds monthly returns, and get styles from
fund_style file. The styles that I use are taken from Lipper asset code and Lipper objective code. I then
merge the holdings file with monthly_return and fund_style files using crsp_portno_map file as the
intermediary. The merging process is similar to that reported in the previous section.
I exclude fund portfolios with Lipper asset code other than EQ. This purports to analyze
equity funds only. Furthermore, I also exclude international fund portfolios, which have Lipper class
codes of 'CH', 'CN', 'DM', 'EM', 'EMD', 'EU', 'GFS', 'GH', 'GL', 'GLCC', 'GLCG', 'GLCV', 'GLI',
'GMLC', 'GMLG', 'GMLV', 'GNR', 'GRE', 'GS', 'GSMC', 'GSME', 'GSMG', 'GSMV', 'GTK', 'GX', 'IF',
'ILCC', 'ILCG', 'ILCV', 'IMLC', 'IMLG', 'IMLV', 'INI', 'IRE', 'IS', 'ISMC', 'ISMG', 'ISMV', 'JA', 'LT',
'PC', 'XJ'. Finally, I only include observations with Lipper objective codes of G, SC, and GI. G is
growth fund, SC is small-cap fund, and GI is growth and income fund. Eventually, I merge CRSP
mutual fund data set with CRSP main data set by permno.
Grinblatt and Titmans (1993) measure is as follows:
(6)
where:
GTt = GT measure in month t,
wj,t-1 = portfolio weight on stock j in month t-1,
Rjt = return on stock j in month t,
wj,t-13 = portfolio weight on stock j in month t-13.
Weight in this study is calculated as follows:
(7)
where wjt = portfolio weight on stock j in month t.
Based on this approach, the benchmark used is the current return earned by the portfolio formed
or held 13 months ago. I then average the GT measure across all fund portfolios, within the same style,
for a particular month. Subsequently, I time-series average the GT measure across all months to
observe the statistical significance.
Daniel et al. (1997) divide fund returns into: (1) characteristic selectivity (CS); (2)
characteristic timing (CT); and (3) average style (AS) measures. CS uses the return on a portfolio of
stocks matched to a fund portfolios holdings each month along the dimensions of market
capitalization (representing size) and prior year return. CS is calculated as follows:
(8)
89
SC
250
300
328
351
378
464
GI
222
259
263
265
268
344
90
Table 11:
Year
2004
2005
2006
2007
2008
2009
Month
Size Style
Momentum Style
Hypothetical Ret.
CS
CT
AS
GT
-0.001627328
10
298
2.85593625
1.418632115
0.012313585
0.000359085
0.448687335
0.008680332
11
240
2.780604447
2.240117746
0.029412678
-0.004464185
3.24273016
0.032407628
0.00112773
12
398
2.935873056
1.751989612
0.025923803
-0.002976422
2.170412644
0.028802728
-0.001820733
310
2.703022211
1.972838232
-0.013478884
-0.000750097
-2.058699431
-0.012834372
0.000606208
232
2.693404493
1.697025525
0.015413183
0.000367114
1.150573039
0.017649149
0.000718775
329
3.068990524
1.964607182
-0.00893856
-0.002317876
-1.390109978
-0.006765334
-0.000150841
288
2.664124454
1.376466412
-0.011931324
0.002010567
-2.119613663
-0.015522054
-0.001420633
243
2.678078594
1.323887298
0.02779729
0.000382911
1.812421108
0.023890196
-0.000318228
398
3.208453864
1.938633835
0.006532886
-0.007807275
0.408651636
0.006860571
0.002011838
336
2.895970388
1.904251879
0.030926938
-0.001068187
2.93648849
0.029798279
0.001578398
332
2.769103077
1.111253093
-0.002459782
-0.003651506
-0.874320025
-0.000556218
0.000351357
433
3.100147033
1.718593456
0.009100826
-0.000775915
0.135207419
0.007686948
0.001631511
10
343
2.765042147
1.853324414
-0.005288651
0.000660098
-1.629693103
-0.008947812
-0.001013073
11
325
2.532760175
1.584506074
0.024182953
-0.001001222
1.884212328
0.023211385
-0.001318596
12
384
2.815291067
2.16100576
0.003328627
-0.001181693
-0.135022531
0.004687421
-0.000514556
334
2.512402615
1.888815941
0.020125924
-0.006473865
3.115773251
0.031773786
0.000703364
318
2.595562203
1.223459903
0.001670326
0.008574563
-1.39408226
-0.009441687
0.000160814
420
2.85019147
1.873573532
0.009746569
-0.003872202
1.484216812
0.012660775
-1.50323E-05
383
2.540967706
1.250527389
0.007295277
-0.000652991
0.004385948
0.006621355
-0.000341463
357
2.456910718
1.145098254
-0.015844876
0.000374212
-2.981220793
-0.019212277
0.001129957
453
2.873879563
2.234859921
0.001170433
-0.00304371
-0.595760838
0.002688181
-0.000268536
422
2.641585403
1.601910809
-0.000538306
-0.000171785
-1.538702076
-0.00623847
1.32018E-05
385
2.549360298
1.968935626
0.01604684
-0.000960952
0.941413212
0.014636283
-0.002430708
463
2.809287992
1.524627932
0.016399466
0.009664484
1.302115553
0.020570577
0.000133023
10
421
2.566440625
1.617935793
0.019175017
-0.001935065
1.387982951
0.020130082
-0.001001235
11
331
2.565546421
1.412243482
0.013802559
0.000877483
0.411317765
0.011276726
-0.000462558
12
417
3.03586328
2.392186842
0.006284383
0.000923628
-0.263079471
0.003804022
0.000696002
352
2.759706414
1.579171468
0.014931175
-0.002212856
0.995868409
0.015963227
8.27831E-05
318
2.697142822
1.875126449
-0.007612856
-0.004976851
-0.930018219
-0.004526034
-0.001537055
464
2.986082196
1.748695336
0.008297392
0.000944449
0.230406417
0.007886358
0.001269573
421
2.654539987
1.709896479
0.025420488
-0.000188862
1.523035361
0.023294148
0.000475798
392
2.598846869
1.62474888
0.023600646
-6.64899E-05
1.202900511
0.019861251
0.000222316
498
3.022061663
1.153390211
-0.007046513
5.48335E-05
-1.629503892
-0.010674464
7.01566E-05
431
2.736234252
1.535013284
-0.013090805
0.004485645
-2.652241141
-0.017624487
0.001565906
418
2.594490558
1.49549983
0.01078434
0.003406027
0.055270647
0.006774338
0.00070172
501
2.906404014
1.9995984
0.027999565
0.001390063
1.533164008
0.023325068
0.000176548
10
426
2.755142
1.910072277
0.021420136
0.00277393
0.811863439
0.013840713
0.00209106
11
390
2.735879929
2.006919653
-0.02235064
-0.001293136
-3.517901525
-0.024164741
8.32073E-05
12
452
3.099368736
2.140292789
0.001006818
0.0001305
-1.614568721
-0.007682724
0.004343013
440
2.79963341
1.688251335
-0.037004523
-0.007348481
-4.612994549
-0.034185793
-0.007806448
0.002107779
388
2.628692067
1.817585818
-0.010741004
-0.004146712
-2.143256394
-0.012252804
507
2.910666942
1.449259415
-0.001832931
0.003474167
-1.809662595
-0.010670971
0.002020978
482
2.550640701
1.676381475
0.032940906
0.000533269
3.194100427
0.032521265
-0.001068578
434
2.541693003
2.038550389
0.016965976
-0.001077849
1.995480356
0.016839589
0.000798369
524
3.08553207
2.401178172
-0.045879431
-0.000272195
-8.563707093
-0.056287022
0.009346232
459
2.912256953
1.484847989
0.004132195
0.013266854
0.252333851
-0.002284384
-0.005128016
406
2.852810021
1.313355837
0.013672097
0.002909592
1.088646182
0.006893546
0.000639435
504
3.238243743
2.102115727
-0.062226536
0.012327127
-11.27139095
-0.071007556
-0.013489475
10
348
2.818542546
2.26633686
-0.076003296
0.001558149
-13.27198689
-0.083530684
-0.007296101
11
271
2.747997753
1.853744016
-0.05893031
-0.016043448
-2.858886544
-0.037324615
-0.02568203
12
416
3.265212573
1.425556767
0.00747608
-0.01972927
0.643345619
0.014871025
-0.010226546
331
2.404635473
1.832905328
-0.02402494
0.020718092
-3.22110681
-0.038336486
-0.002293091
91
332
2.385976364
1.346877291
-0.04024123
0.009043065
-3.922634162
-0.050506252
0.002142363
608
3.10971774
2.156473074
0.067931673
-0.009930709
9.76431559
0.066322582
-0.011288597
570
2.828300988
2.191141376
0.082658335
-0.002302383
11.28858362
0.057753071
-0.016213057
548
2.734574369
2.517257522
0.037756827
-0.003323799
3.711527979
0.035805859
-0.007606457
688
4.20374233
3.533821616
0.008510996
0.001737747
-0.367844967
0.001131215
0.001919966
634
3.893750476
1.958656511
0.068651748
0.010963957
8.719526793
0.058552678
-0.006436943
540
2.970010821
2.203879304
0.024444175
-0.002066129
2.763517622
0.035202284
0.003115447
654
3.300760902
2.648497082
0.030720986
-0.007979351
7.091316622
0.048394207
-0.024914276
10
231
4.028575493
2.115838116
-0.01349709
0.003000546
-8.291599911
-0.026019502
-0.001533894
11
165
3.695642006
1.272732619
0.043145379
-0.000471039
6.418261856
0.048486357
-0.004624882
12
59
8.286728321
4.335821558
0.023510091
-0.05384732
20.9495887
0.070727917
-0.003673713
(11)
where:
wjt = portfolio weight on stock j in month t,
Size rankjt = size rank which stock j belongs to in month t.
(12)
where:
wjt = portfolio weight on stock j in month t,
Prior-year-return rankjt = prior-year-return rank which stock j belongs to in month t.
(13)
where:
wjt = portfolio weight on stock j in month t,
Retjt = return on stock j in month t.
Size style in Table 11 is cross-funds average for a particular month of each funds size style.
Momentum style in Table 11 is cross-funds average for a particular month of each funds momentum
style. Hypothetical return in Table 11 is cross-funds average for a particular month of each funds
hypothetical return.
Tables 12 and 13 show the means across all funds for a particular month for small-cap funds
and growth and income funds, respectively.
92
Table 12: Small-Cap Funds: Mean Across All Funds for a Particular Month
Year
2004
2005
2006
2007
2008
2009
Month
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
Freq.
184
155
222
195
146
199
170
145
213
193
189
251
201
190
216
196
195
257
240
210
247
231
219
271
250
195
241
219
196
282
251
230
281
248
236
283
244
227
279
269
244
305
282
252
297
248
222
274
209
172
257
208
206
316
297
273
383
359
292
354
98
72
23
Size Style
1.721407626
1.631434671
1.858070705
1.705992493
1.680101549
1.949411843
1.741439212
1.700978384
2.020142891
1.746403404
1.729344949
1.950516987
1.690453622
1.609799696
1.882128425
1.64892922
1.61578853
1.863940003
1.659942595
1.666139962
1.893343002
1.675893248
1.590366484
1.726026006
1.572897901
1.647205893
1.917576848
1.731132703
1.726451517
1.833379219
1.631332316
1.620836203
1.920872793
1.66382728
1.63077359
1.809780343
1.713017918
1.712875606
1.921304339
1.681531172
1.63065414
1.827825621
1.585971483
1.591808543
2.067176092
1.691629116
1.663128772
2.033720111
1.968723347
1.947506091
1.962064173
1.175848559
1.099506153
1.741133676
1.548384184
1.758426374
3.888134784
4.324125823
2.746518442
4.70971936
1.838710793
1.469584974
1.772116684
Momentum Style
1.1843168
1.880812976
1.773021367
1.55352413
1.617630017
1.755521479
1.455129821
1.191549398
1.765734398
1.917546432
1.040137752
1.526639696
1.828648218
1.53931693
2.286911331
1.704232377
1.098725942
1.831131567
1.20101368
0.979775461
2.212699166
1.80768363
1.920891472
1.381757283
1.447810581
1.212750968
2.113588615
1.380568136
1.985710617
1.590218846
1.770160662
1.367821173
1.092936681
1.421531524
1.20292685
1.809032016
1.572031382
1.910062446
1.977975545
1.576678738
1.740649525
1.76338454
1.704152431
1.791152779
2.555869303
1.457287383
1.037864918
2.116967621
2.322086471
2.035186873
1.552557586
1.352737482
1.018765917
1.939828046
1.99022866
2.377459598
5.210549945
3.116768711
2.855455541
5.462290987
1.438648845
0.764226332
1.224329897
Hypothetical Ret.
0.014983891
0.040974442
0.022831466
-0.013076554
0.015701484
-0.008344845
-0.022183587
0.035719016
0.024214141
0.037389649
-0.002215944
0.009308202
-0.011073388
0.025714964
0.001997711
0.040862494
0.003317708
0.028895089
0.00502495
-0.020126683
0.002612236
-0.013321462
0.014010852
0.00992771
0.024062334
0.01734206
0.004805689
0.013873039
0.002303444
0.011489215
0.014815779
0.026134235
-0.003140831
-0.023130966
0.012438667
0.015882234
0.018619299
-0.028186116
0.002638935
-0.027723716
-0.009792372
0.004990661
0.030035549
0.02665829
-0.05019459
0.020318217
0.024286703
-0.04569239
-0.129169421
-0.069847894
0.04982983
-0.028271031
-0.033038761
0.069933547
0.120878516
0.031245661
0.02527546
0.139814828
0.026559341
0.087153037
-0.026842645
0.018003271
0.046564591
CS
-0.000375377
-0.002066379
-0.002884431
0.000831169
0.000388436
0.000953459
-0.000389592
0.001883294
-0.000678247
0.003129881
-0.000297372
-0.000382376
-0.002467186
-0.003294543
-0.002305955
0.000956692
0.003481302
0.002571703
0.001305777
-0.00024828
0.005259
-0.001114753
-0.003823374
0.004676574
-0.00221393
0.001238005
0.000586899
-0.001355959
0.000312325
0.003022272
-0.000936903
0.001541306
0.002212695
0.004935805
0.001018502
0.001375404
0.001391345
0.001212731
0.00176411
-0.003974474
-0.000538536
0.002451993
0.00378919
-0.000995656
0.003371932
0.005162937
0.00121481
0.012563929
0.005451651
-0.004331691
-0.007306973
0.02799263
0.002250826
-0.0103004
-0.024555802
-0.008988247
-0.008180406
0.008598807
-0.02135169
-0.012639377
-0.000628354
-0.002669719
-0.003732314
CT
1.96470822
10.27846194
4.597581906
-4.578246223
2.566663511
-3.542043338
-6.568479287
6.743080731
3.71692733
8.557998205
-1.897126031
-0.019320814
-3.000929279
4.598276936
-0.488331685
7.474230178
-0.863115129
5.100427946
-0.418201415
-6.085295202
-1.836754241
-4.062445516
2.685219037
1.68131968
4.781322227
1.686631306
0.301116929
1.299883493
-0.867781283
0.779284726
1.783760934
3.178623428
-1.991921394
-7.05813286
1.262675209
0.699477524
1.619458521
-8.772109778
-2.084689262
-7.087066042
-4.171422633
-1.444004058
4.154406098
4.611480849
-14.01626989
4.805041963
4.506647992
-16.21775139
-19.07467636
-7.426926268
3.748757331
-6.229168
-7.164605128
18.2793088
35.2847588
7.165112369
5.033397296
34.65319042
9.153621828
41.92818234
-14.34502106
4.842576676
19.59138272
AS
0.01129068
0.040679726
0.023288796
-0.015892234
0.016120172
-0.013304249
-0.026095231
0.030762235
0.014823696
0.03449737
-0.005676959
0.003162912
-0.012819655
0.026929627
0.001469657
0.038423751
-0.003099076
0.024067346
0.001340872
-0.025286983
-0.005169068
-0.017461213
0.015209717
0.012516647
0.024569849
0.012125645
0.003484657
0.012552351
-0.001410332
0.007539656
0.012889781
0.020431762
-0.007758576
-0.028430068
0.008675736
0.008764883
0.011648274
-0.036225637
-0.007696821
-0.030362996
-0.01655716
-0.005107905
0.023874592
0.025044442
-0.064095609
0.016615595
0.018481663
-0.059451634
-0.076335661
-0.039848125
0.028099585
-0.040980496
-0.051764095
0.069635948
0.1241564
0.030079056
-0.005271349
0.148600184
0.046003762
0.115466321
-0.03613706
0.021823835
0.057614726
GT
-0.001188806
-0.002192748
-0.002455669
0.001944736
0.000731785
-0.000567798
0.000431038
-0.000905774
0.000872456
0.000313183
0.000137721
0.002020644
-0.000848135
-0.001985357
-0.000779169
0.000730517
8.23925E-05
-0.000666031
0.000288831
0.000557185
0.000955977
0.000120427
-0.002927169
-0.000778946
-0.001483263
-0.002153199
0.000354859
-0.000492327
-0.000785442
0.001642335
-0.000456538
-0.001192708
-0.000173792
0.000889636
-0.000630657
0.002226887
0.002093249
0.001013131
0.001961802
-0.005431534
0.000433091
0.000478206
0.000533508
-0.003434884
0.00208475
0.004526156
-0.001638007
-0.004517351
0.002775025
-0.035970142
0.007555214
0.005572376
0.013195231
-0.015544651
-0.040696009
-0.014997029
0.077689712
-0.057931531
-0.01364686
-0.013377805
0.000222145
3.92035E-05
-0.013081874
93
2005
2006
2007
2008
2009
Month
Freq.
Size Style
Momentum Style
Hypothetical Ret.
CS
CT
AS
GT
-0.000966808
10
144
3.195768036
1.568641342
0.01315093
0.000744673
0.791523753
0.009124081
11
112
3.145305765
2.404543841
0.030812551
-0.005138954
3.18387105
0.035667653
3.73135E-05
12
190
3.374575538
1.991410173
0.026630434
-0.004362265
2.266484319
0.032541297
-0.001749315
156
3.113451739
2.442544311
-0.012073146
0.001540217
-2.179071383
-0.014959189
0.000593553
108
3.213953112
1.919472057
0.020221611
0.003357393
1.306846283
0.019504687
0.000667288
158
3.501149607
2.242364159
-0.009230459
-0.001036279
-3.217358938
-0.006665584
0.000790032
134
3.186604415
1.469862343
-0.011615417
0.004285136
-7.003237095
-0.01674794
-0.001377981
110
3.154021369
1.453869142
0.023442265
-0.008239318
4.483544701
0.027161704
-0.000227282
178
3.593198874
2.025048414
0.006913514
-0.008218224
0.662728021
0.007265314
0.001950584
151
3.316636171
2.120967331
0.026674958
-0.007717354
4.269037879
0.033491608
-0.000401762
139
3.212462192
1.320900572
-0.003397178
-0.004429982
-0.976582002
0.00016111
0.000171252
193
3.513967453
1.9921065
0.008565731
-0.001729761
0.162571339
0.008218286
0.00139464
10
148
3.194823417
1.925090217
-0.006204189
0.000302546
-1.747592468
-0.009284805
-0.003032559
11
138
2.966171893
1.782126548
0.02261095
-0.004520651
1.534067306
0.025303166
-0.001800741
12
175
3.233156384
2.40914573
0.004815721
0.000381471
-0.027013073
0.004766327
0.000509854
150
2.882082343
2.142969378
0.022610443
-0.005999135
6.418470097
0.033228558
-7.97428E-05
134
2.980883793
1.398313403
0.003946609
0.012132609
-1.729057744
-0.012273674
-0.000821295
191
3.183481661
2.104225931
0.010211272
-0.003495267
3.090590718
0.012886572
-0.000603322
180
2.927749887
1.398759778
0.013755413
0.005227241
0.279587093
0.007969292
-0.001236414
163
2.827362518
1.358907119
-0.016415121
0.002347438
-5.778540433
-0.021647347
-0.000554405
210
3.264571391
2.357749818
0.002399649
-0.002321698
-0.901152421
0.003645953
-7.04681E-06
193
3.086777079
1.808300069
0.007050718
0.008612376
-2.588669725
-0.007305182
-0.00044125
172
2.99681674
2.169337716
0.016036451
-0.003554554
1.859369595
0.017186844
-0.002155167
206
3.248491357
1.712620946
0.018368241
0.00868119
1.763140974
0.023002178
0.000223905
10
187
2.9688969
1.807969339
0.020036992
-0.002891866
1.871886102
0.022302628
-0.001347959
11
139
2.913476948
1.558520351
0.012333229
-0.001369295
0.751406933
0.013442108
-0.000824516
12
184
3.240212923
2.454499749
0.012893602
0.007404066
0.100580783
0.004130899
-0.000147098
155
3.023084553
1.690954068
0.012720394
-0.006105359
1.895309091
0.017155445
7.10342E-05
133
2.963099
1.971466114
-0.011588867
-0.00798993
-1.087804924
-0.005113013
-0.001548833
195
3.401156611
2.010435057
0.00850082
0.000467391
0.736459136
0.008781433
0.000870986
172
3.03928049
1.89480331
0.027848606
-0.000403866
3.571406435
0.027303335
-0.000350421
160
3.067440459
1.984320998
0.026599397
0.000286726
4.070768514
0.02307251
0.000454133
213
3.369104247
1.309231308
-0.010856674
-0.001734058
-2.382394178
-0.012099939
9.10747E-05
176
3.262722231
1.79826943
-0.024009964
-0.002596653
-6.099090779
-0.021355782
0.001390831
169
3.046931217
1.862452871
0.010381173
0.001615062
0.463080322
0.007971165
-0.000480667
203
3.365320666
2.272909947
0.023901781
-0.005995815
2.186778308
0.026705382
0.000216019
10
190
3.191187682
2.169393269
0.01503866
-0.004997996
1.470740634
0.015725633
0.001539649
11
172
3.091257895
2.212719924
-0.02386778
-0.000840757
-4.725079532
-0.025912495
0.001104344
12
205
3.380579498
2.198997455
-0.003401252
-0.002798529
-2.15850708
-0.010821493
0.005111294
196
3.044910971
1.987581156
-0.02967091
0.003682677
-6.041465278
-0.037990338
-0.004654172
0.004119964
172
2.954988573
1.971965077
-0.015616245
-0.007786824
-3.113101356
-0.014214106
202
3.318019609
1.56155144
-0.003028134
0.002567539
-2.232398469
-0.011882182
0.002380393
190
2.994669912
1.922737559
0.036261573
-0.000985849
4.280922208
0.037662851
-0.000914013
171
3.027924539
2.407161026
0.014483092
-0.006222576
3.135210634
0.019191876
0.001222261
217
3.552676727
2.738163283
-0.061258255
-0.007646912
-11.80485906
-0.066531883
0.013685028
186
3.216979508
1.519138139
0.008322321
0.019048753
0.945194657
-0.001963651
-0.006757328
168
3.152607213
1.328774432
0.014260554
0.001582977
2.092591724
0.00862404
-0.001042497
201
3.483488085
2.21138241
-0.061359332
0.016598925
-14.23284292
-0.077944686
-0.021900595
10
137
3.155175135
2.37719872
-0.091783733
0.002988599
-8.243031966
-0.084700162
-0.003286186
11
126
3.11094796
1.929978174
-0.069012079
-0.019174301
-4.077586835
-0.043597627
-0.030949629
12
174
3.567452689
1.522201409
0.010820318
-0.020473804
1.372786509
0.01986215
-0.007836707
139
2.711836051
2.114128707
-0.040198977
0.008185323
-5.392396657
-0.050521769
-0.002657098
94
134
2.623152839
1.602639978
-0.055098111
0.000726691
-6.437122055
-0.059837818
0.005191441
230
3.218261073
2.230958638
0.06963942
-0.010298303
11.5928163
0.069487363
-0.013304505
221
2.912264577
2.267909282
0.081307337
-0.008772994
15.17383635
0.06391341
-0.015633332
210
3.03387734
2.777210207
0.041260807
-0.003000023
6.405650952
0.040760891
-0.00816884
291
7.486823306
6.08233021
0.021736462
0.010968185
-0.325101064
0.001657662
0.00216492
275
5.80797204
2.850384315
0.100376719
0.016252096
16.17160019
0.075740016
-0.000143919
222
4.133339165
3.063999918
0.040278804
0.003153573
6.186976654
0.037736882
-0.012569178
261
4.372471465
3.55018221
0.032509467
-0.018334619
10.1654095
0.054896224
-0.004515784
10
94
3.144030141
1.635090395
-0.009383549
0.003986377
-6.435703708
-0.020032267
-0.000461384
11
61
2.364978195
0.824593711
0.027205985
-0.000862772
1.599544394
0.031512236
-0.002809911
12
11
2.259836598
1.241299572
0.016692057
-0.004904193
0.46226262
0.024055956
-0.019070379
G
SC
GI
CS
-0.00101
-0.00026
-0.00095
CT
0.339842
1.96513
0.283147
AS
0.005487
0.0081
0.00507
GT
-0.0019
-0.00172
-0.0021
Table 14 indicates that GT measures are significant but negative for G and GI funds. This
implies that fund managers do not have a special capability of outperforming benchmarks. Most of CS,
CT, and AS measures are insignificant, except AS for SC funds. Overall, the test results are not in
favor of the assessment of fund managers ability.
Conclusion
This study purports to empirically examine the performance of mutual funds for the period of 19612009. Three main approaches are utilized: (1) regressions to examine the relationship between fund
return and actual 12b1 fee, management fee, expense ratio, turnover ratio, and age; (2) Jensens (1968)
alpha and Carharts (1997) four-factor model; (3) Grinblatt and Titmans (1993) measure; and (4)
Daniel et al.s (1997) and Wermers (2000) characteristic selectivity, characteristic timing, and average
style measures.
Results provide evidence that gross return is positively related to expense ratio, age, 12b1 fee,
and management fee and negatively related to turnover ratio. This finding is at odds with the evidence
provided by Wermers (2000). During the period of analysis, there were more mutual fund managers
with significantly negative risk-adjusted performances than those with significantly positive
performances. This implies that the majority of mutual fund managers do not have special capabilities
of beating the markets. Findings also show that Grinblatt and Titmans measures are significant but
negative for growth and growth and income funds. This implies that fund managers do not have a
special capability of outperforming benchmarks. Most of characteristic selectivity, characteristic
timing, and average style measures are insignificant, except the average style for small-cap funds.
Overall, the test results are not in favor of the assessment of fund managers ability.
95
References
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Carhart, M. 1997. On persistence in mutual fund performance, Journal of Finance 52 (1), p. 5782.
Center for Research in Security Prices. 2010. Survivor-bias-free U.S. mutual fund guide.
Available [online] on http://www.crsp.com/documentation/pdfs/MFDB_Guide.pdf
Daniel, K., M. Grinblatt, S. Titman, and R. Wermers. 1997. Measuring mutual fund
performance with characteristic-based benchmarks, Journal of Finance 52 (3), p. 1035-1058.
Fama, E. and K. French. 1993. Common risk factors in the returns on stocks and bonds, Journal
of Financial Economics 33 (1), p. 3-56.
Grinblatt, M. and S. Titman. 1993. Performance measurement without benchmarks: An
examination of mutual fund returns, Journal of Business 66 (1), p. 47-68.
Jensen, M. 1968. The performance of mutual funds in the period 1945-1964, Journal of
Finance 23 (2), p. 389-416.
Wermers, R. 2000. Mutual fund performance: An empirical decomposition into stock-picking
talent, style, transaction costs, and expenses, Journal of Finance 55 (4), p. 1655-1695.